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PRINCIPAL PIVOT TRANSFORMS OF RANGE SYMMETRIC

MATRICES IN MINKOWSKI SPACE

AR. MEENAKSHI AND D. KRISHNASWAMY

Abstract. It is shown that the property of a matrix being range symmetric in Minkowski space

m is preserved under the principal pivot transformation.

1. Introduction

Throughout we shall deal with Cn×n, the space of n×n complex matrices. Let Cn be
the space of complex n-tuples, we shall index the components of a complex vector in Cn

from 0 to n−1, that is u = (u0, u1, u2, . . . , un−1). Let G be the Minkowski metric tensor
defined by Gu = (u0,−u1,−u2, . . . ,−un−1). Clearly, the Minkowski metric matrix

G =

[

1 0
0 −In−1

]

, G = G∗ and G2 = In. (1.1)

In [8], Minkowski inner product on Cn is defined by (u, v) = [u, Gv], where [.,.]
denotes the conventional Hilbert (unitary) space inner product. A space with Minkowski
inner product is called a Minkowski space and denoted as m.

For A ∈ Cn×n, x, y ∈ Cn and by using (1.1), we get

(Ax, y) = [Ax, Gy]

= [x, A∗Gy]

= [x, G(GA∗G)y]

= [x, GA∼y]

= (x, A∼y) where A∼ = GA ∗ G. (1.2)

A∼ is called the Minkowski adjoint of A in m (A∗ is usual Hermitian adjoint of A).
Naturally, we call a matrix A ∈ Cn×n

m-symmetric in m if A = A∼. For A ∈ Cn×n,
rk(A), N(A) and R(A) are respectively the rank of A, the null space of A and the range
space of A. By a generalized inverse of A we mean a solution of the equation A×A = A

and is denoted as A(1). A{1} is the set of all generalized inverses of A. Throughout I

refers to identity matrix of appropriate order unless otherwise specified.
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Definition 1.1.(p.7 [2]) For A ∈ Cm×n, A+ is the Moore-Penrose inverse of A if

AA+A = A, A+AA+ = A+, AA+ and A+A are hermitian.

Theorem 1.2.([4]) For A, B, C ∈ Cn×n, the following are equivalent

(i) CA(1)B is invariant for every A(1) ∈ A{1}.

(ii) N(A) ⊆ N(C) and N(A∗) ⊆ N(B∗).

(iii) C = CA(1)A and B = AA(1)B for every A(1) ∈ A{1}.

Theorem 1.3.(Lemma 3.3 [7]) Let A and B be matrices in m. Then N(A∗) ⊆

N(B∗) ⇔ N(A∼) ⊆ N(B∼).

Theorem 1.4.(Lemma 2.3 [7]) For A1, A2 ∈ Cn×n (A1A2)
∼ = A∼

2 A∼

1 and (A∼

1 )∼ =

A1.

A matrix A ∈ Cn×n is said to be range symmetric is unitary space (or) equivalently

A is said to be EP if N(A) = N(A∗) [or AA+ = A+A] [p.163(2)]. For further properties

of EP matrices one may refer [1, 2, 4 and 9].

In [6], the concept of range symmetric matrix in m is introduced and developed

analogous to that of EP matrices in unitary space. A matrix A ∈ Cn×n is said to be

range symmetric in m ⇔ N(A) = N(A∼). In the sequel, we shall make use of the

following results.

Theorem 1.5.(Theorem 2.2 [6]) For A ∈ Cn×n, the following are equivalent:

i) A is range symmetric in m

ii) GA is EP

iii) AG is EP

iv) N(A∗) = N(AG)

v) R(A) = R(A∼)

vi) A∼ = HA = AK for some non-singular matrices H and K.

vii) R(A∗) = R(GA)

Definition 1.6.(p.291 [3]) Let M =

[

A B

C D

]

be an n × n matrix. The schur com-

plement of A in M , denoted by S is defined as D −CA(1)B, where A(1) is a generalized

inverse of A.

Theorem 1.7.(Theorem 1 [4]) Let M =

[

A B

C D

]

be an n × n matrix with N(A) ⊆

N(C) and N(S) ⊆ N(B). Then M is EP if and only if A and S the schur complement

of A in M are EP , N(A∗) ⊆ N(B∗) and N(S∗) ⊆ N(C∗).

2. Principal Pivot on a Matrix

Let us consider a system of linear equations Mz = t, where M =

[

A B

C D

]

satisfying
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N(A) ⊆ N(C) and N(A∗) ⊆ N(B∗). If z and t are partitioned conformally as z =

[

x

y

]

and t =

[

u

v

]

then the system becomes Ax + By = u; Cx + Dy = v. Since M satisfy

N(A) ⊆ N(C) and N(A∗) ⊆ N(B∗) by using Theorem 1.2 and Theorem 1.3, we can

express x and v in terms of u and y as x = A+u − A+By; v = CA+u − (D − CA+B)y.

Thus M =

[

A B

C D

]

which satisfies N(A) ⊆ N(C), N(A∗) ⊆ N(B∗) can be transformed

into the matrix

M̂ =

[

A+ −A+B

CA+ S

]

(2.1)

where S = D−CA+B is the schur complement of A in M . M̂ is called a principal pivot

transform of M . The operation that transforms M → M̂ is called a principal pivot. If A

is non-singular it reduces to the principal pivot by pivoting the block A [10]. Properties

and applications of the principal pivot transforms are well recognized in mathematical

programming [10 and 11].

Theorem 2.1. Let M =

[

A B

C D

]

be a matrix with N(A) ⊆ N(C) and N(A∗) ⊆

N(B∗), S the schur complement of A in M , then the following are equivalent:

i) M is range symmetric in m.

ii) A is range symmetric in m and S is EP , N(A∼) ⊆ N(B∼) and N(S∼) ⊆ N(C∼).

Proof. (i) ⇒ (ii) Let us consider the matrices P =

[

I O

CA(1) I

]

; Q =

[

I BS(1)

O I

]

for A(1) ∈ A{1} and S(1) ∈ S{1}, and L =

[

A O

O S

]

.

[

A(1) O

O S(1)

]

is one choice of L(1).

P, Q are non-singular. Since N(A) ⊆ N(C), N(S) ⊆ N(B), by Theorem 1.2, we have

C = CA(1)A and B = BS(1)S. Thus M can be factorized as

PQL =

[

I O

CA(1) I

] [

I BS(1)

O I

] [

A O

O S

]

=

[

A BS(1)S

CA(1)A CA(1)BS(1)S + S

]

=

[

A BS(1)S

CA(1)A CA(1)B + S

]

= M

Since M = PQL, P and Q are non-singular and N(L) ⊆ N(M). Also rk(M) =

rk(PQL) = rk(L) therefore N(L) = N(M). Also M is range symmetric in m, we have
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N(M∼) = N(M) = N(L) hence by using Theorem 1.2, we get

M∼ = M∼L(1)L

GM∗G = GM∗GL(1)L [By using (1.2)]

M∗ = M∗GL(1)LG [By using (1.1)]
[

A∗ C∗

B∗ D∗

]

=

[

A∗ C∗

B∗ D∗

] [

G1 O

O −I

] [

A(1) O

O S

] [

A O

O S

] [

G1 O

O −I

]

[

A∗ C∗

B∗ D∗

]

=

[

A∗G1A
(1)AG1 C∗S(1)S

B∗G1A
(1)AG1 D∗S(1)S

]

.

Equating the corresponding blocks, we get

A∗ = A∗G1A
(1)AG1

G1A
∗G1 = G1A

∗G1A
(1)A

A∼ = A∼A(1)A [By using (1.2)]

By using Theorem 1.2 and Theorem 1.3, for A∼ = A∼A(1)A, we get N(A) ⊆ N(A∼)

also rk(A) = rk(A∼) implies N(A) = N(A∼). Thus A is range symmetric in m.

B∗ = B∗G1A
(1)AG1

G1B
∗G1 = G1B

∗G1A
(1)A

B∼ = B∼A(1)A.

Again by Theorem 1.2, N(A) ⊆ N(B∼), since A is range symmetric in m, we have

N(A∼) = N(A) ⊆ N(B∼). Using C∗ = C∗S(1)S and D∗ = D∗S(1)S in S = D−CA(1)B,

we get

S∗S(1)S = (D − CA(1)B)∗S(1)S

= D∗S(1)S − (CA(1)B)∗S(1)S

= D∗S(1)S − B∗(A(1))∗C∗S(1)S

= D∗ − B∗(A(1))∗C∗

= (D − CA(1)B)∗

S∗S(1)S = S∗.

By applying Theorem 1.2, we get N(S) ⊆ N(S∗). Since rk(S) = rk(S∗), N(S) =

N(S∗) from this it follows that S is EP . Again applying Theorem 1.2, for C∗ = C∗S(1)S

implies N(S) ⊆ N(C∗) also S is EP . We have N(S∗) = N(S) ⊆ N(C∗). By using

Theorem 1.3, we have N(S∼) ⊆ N(C∼). Hence (ii) is proved.

(ii) ⇒ (i) By hypothesis A is range symmetric, S is EP , N(A) ⊆ N(C), N(A∼) ⊆

N(B∼), N(S) ⊆ N(B) and N(S∼) ⊆ N(C∼). Since A is range symmetric in m by
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Theorem 1.5 (ii), G1A is EP . Therefore

G1A(G1A)+ = (G1A)+G1A

G1AA+G1 = A+G1G1A

G1AA+G1 = A+A [By using (1.1)] (2.2)

By using Theorem 1.2 and Theorem 1.3 we have N(A) ⊆ N(C), N(A∗) ⊆ N(B∗),
N(S) ⊆ N(B) and N(S∗) ⊆ N(C∗) hold. According to the assumption of Theorem 1
(v) [3], we have

M+ =

[

A+ + A+BS+CA+ −A+BS+

−S+CA+ S+

]

(2.3)

Under the condition N(A∼) ⊆ N(B∼) and N(S∼) ⊆ N(C∼), we have AA+B = B,
C = SS+C

Now MM+ =

[

A B

C D

] [

A+ + A+BS+CA+ −A+BS+

−S+CA+ S+

]

=

[

AA+ + AA+BS+CA+ − BS+CA+ −AA+BS+ + BS+

CA+ + CA+BS+CA+ − DS+CA+ −CA+BS+ + DS+

]

=

[

AA+ + AA+BS+CA+ − BS+CA+ −AA+BS+ + BS+

CA+ − (D − CA+B)S+CA+ (D − CA+B)S+

]

MM+ =

[

AA+ O

O SS+

]

[By using (2.4)] (2.5)

Similarly by using Theorem 1.2, N(A) ⊆ N(C) and N(S) ⊆ N(B), we have C =
CA+A; B = BS+S,

M+M =

[

A+A O

O S+S

]

. (2.6)

We claim GM is EP , for

GM(GM)+ = GMM+G

= G

[

AA+ O

O SS+

]

G =

[

G1 O

O −I

] [

AA+ O

O SS+

] [

G1 O

O −I

]

=

[

G1AA+G1 O

O SS+

]

=

[

A+A O

O S+S

]

[By using (2.2) and S is EP ]

= M+M = M+GGM [By using (1.1)] (2.7)

Hence GM is EP again by Theorem 1.5 (ii), M is range symmetric in m.

Theorem 2.2. Let M =

[

A B

C D

]

be range symmetric in m with N(A) ⊆ N(C),

N(A∼) ⊆ N(B∼), then M̂ the principal pivot transform of M is range symmetric in m.
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Proof. Since M is range symmetric in m with N(A) ⊆ N(C), N(A∼) ⊆ N(B∼) by

applying Theorem 2.1, A is range symmetric in m. Again by Theorem 1.5 (ii) both GM

and G1A are EP , where G1 is Minkowski tensor of order as that of A. Thus

GM =

[

G1 O

O −I

] [

A B

C D

]

=

[

G1A G1B

−C −D

]

.

Since N(A) ⊆ N(C), N(G1A) = N(A) ⊆ N(C) and N(A∼) ⊆ N(B∼) implies

N(A∼G1) ⊆ N(B∼G1) ⇒ N(G1A)∼ ⊆ N(G1B)∼ [By Theorem 1.4]. Thus N(G1A) ⊆

N(C) and N(G1A)∼ ⊆ N(G1B)∼ hold for GM . Hence by using (2.1) GM can be

transformed into its principal pivot

ˆGM =

[

A+G1 −A+B

−CA+G1 −S

]

Now M̂G =

[

A+ −A+B

CA+ S

] [

G1 O

O −I

]

=

[

A+G1 A+B

CA+G1 −S

]

Consider P =

[

I O

O −I

]

; P∼ = GP ∗G =

[

I O

O −I

]

= P ∗

Now PM̂GP ∗ =

[

I O

O −I

] [

A+G1 A+B

CA+G1 −S

] [

I O

O −I

]

=

[

A+G1 −A+B

−CA+G1 −S

]

= ˆGM

Since GM is EP , by Theorem 1 [5], ˆGM is EP . Hence M̂G = P ∗ ˆGMP is EP , again

by Theorem 1.5 (iii) M̂ is range symmetric in m.

Lemma 2.3. Let M =

[

A B

C D

]

, G =

[

G1 O

O −I

]

be partitioned in confirmity with

that of M . S and S1 be the schur complements of A and D is M respectively. Let

N(A) ⊆ N(C) and N(D) ⊆ N(B), then the following are equivalent.

i) M is range symmetric in m with N(S) ⊆ N(B), N(S1) ⊆ N(C).

ii) A, G1D are range symmetric in m, S, G1S1 are EP , N(A) = N(S1) ⊆ N(B∼) and

N(D) = N(S) ⊆ N(C∼).

Proof. (i)⇒(ii) Since M is range symmetric in m with N(A) ⊆ N(C) and N(S) ⊆

N(B) by Theorem 2.1, A is range symmetric in m and S is EP , N(A∼) ⊆ N(B∼)

and N(S∼) ⊆ N(C∼). Since A is range symmetric in m, N(A) = N(A∼) ⊆ N(B∼)

and S is EP implies N(S) = N(S∗) by using Theorem 1.7. N(S∗) ⊆ N(C∗) again by

Theorem 1.3, N(S∼) ⊆ N(C∼) and hence N(S) ⊆ N(C∼). Since M is range symmetric

in m, by Theorem 1.5 (ii), GM is EP . Then the principal rearrangement P ∗GMP =
[

−D −C

G1B G1A

]

is EP with N(D) ⊆ N(B) = N(G1B) and N(G1S1) = N(S1) ⊆ N(C).

Now the schur complement of D in P ∗GMP is G1A − G1BD+C = G1(A − BD+C) =
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G1S1 and therefore by Theorem 1.7, D and S1 are EP . N(D∗) ⊆ N(C∗), N(G1S1)
∗ ⊆

N(G1B)∗. Since D, G1S1 are EP by using Theorem 1.5 (ii), G1D and S1 using Theorem

1.3, it follows that N(G1D)∼ = N(G1D) = N(D) ⊆ N(C∼) and N(S∼

1 ) = N(S1) ⊆
N(B∼). Since A is range symmetric in m, by Theorem 1.5 (ii), G1A is EP and hence

G1AA+G1 = A+A. Also N(A) ⊆ N(C), N(S) ⊆ N(B), N(A∼) ⊆ N(B∼) and N(S∼) ⊆

N(C∼) hold, by applying Theorem 1 (v) [3], we have M+ of the form (2.3). By using

Theorem 1.2 and Theorem 1.3, for the conditions N(A∼) ⊆ N(B∼) and N(S∼) ⊆

N(C∼). We get MM+ =

[

AA+ O

O SS+

]

[By using (2.5)]. Since N(A) ⊆ N(C), N(S) ⊆

N(B), N(A∼) ⊆ N(B∼) and N(S∼) ⊆ N(C∼) hold for A as well as D according to the
assumptions of Theorem 1(v) [3], M+ is also given by

M+ =

[

S+
1 −A+BS+

−D+CS+
1 S+

]

. (2.8)

Again by using Theorem 1.2 and Theorem 1.3, for N(A∼) ⊆ N(B∼), N(D∼) ⊆

N(C∼) we have B = AA+B and C = DD+C, hence

MM+ =

[

AA+ O

O SS

]

=

[

S1S
+
1 O

O SS+

]

.

Since M is range symmetric in m by Theorem 1.5 (ii), GM is EP , by using (2.7)
MM+ = GM+MG implies G1A

+AG1 = G1S
+
1 S1G1 and hence N(A) = N(S1). Sim-

ilarly, using the formulae (2.4) and (2.8), we obtain two more expressions for M+M

comparing the coresponding block yields D+D = S+S which implies N(D) = N(S).
Thus (ii) holds.

(ii)⇒(i) N(S) ⊆ N(B) follows directly from N(S) = N(D) ⊆ N(B). Similarly,

N(S1) ⊆ N(C) follows from N(S1) = N(A) ⊆ N(C). Since A, G1D are range symmetric
in m and S, G1S1 are EP satisfying N(A) ⊆ N(C), N(S) ⊆ N(B), N(D) ⊆ N(B) and

N(S1) ⊆ N(C). Hence by Theorem 2.1, M is range symmetric in m. Thus (i) holds.

Theorem 2.4. Let M =

[

A B

C D

]

, S and S1 be the schur complements of A and D

in M respectively, If M is range symmetric in m with N(A) ⊆ N(C), N(D) ⊆ N(B),

N(S) ⊆ N(B) and N(S1) ⊆ N(C). The following hold:

i) Principal submatrices A is range symmetric in m and D is EP .

ii) The schur complements S and G1S1 are EP .

iii) The principal pivot transform M̂ of M by pivoting the block A is range symmetric

in m and rk(M̂) = r.

Proof. (i) and (ii) are consequence of Lemma 2.3.

(iii) By Lemma 2.3, M satisfies N(A) ⊆ N(C) and N(S) ⊆ N(B) hence by pivoting

the block A, the principal pivot transform M̂ of M is M̂ =

[

A+ −A+B

CA+ S

]

. In M̂ ,
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N(A+) ⊆ N(CA+) and N(A+)∗ ⊆ N(A+B)∗. Futher the schur complement of A+ in M̂

is Ŝ = S + CA+(A+)+A+B = S + CA+B = D. By assumption N(Ŝ) = N(D) ⊆ N(B).

By using Lemma 2.3, A and G1D are range symmetric in m. Again by Theorem 1.5

(ii), G1A and D are EP . N(D∗) = N(Ŝ)∗ ⊆ N(C∗), by using Theorem 1.3, we get

N(Ŝ∼) ⊆ N(C∼). Now applying Theorem 2.2, we have M̂ is range symmetric in m.

Finally, we prove rk(M̂) = rk(M) = r. The proof runs as follows:

rk(M̂) = rk(A+) + rk(Ŝ)

= rk(A) + rk(D)

= rk(A) + rk(S) [By using N(D) = N(S)]

= rk(M) = r.

Remark 2.5. In the special case, when M is non-singular with A and D non-

singular then the conditions N(A) ⊆ N(C) and N(D) ⊆ N(B) automatically hold and

by Theorem 1 in [3], S and S1 are non-singular further rk(M̂) = rk(A) + rk(D). Hence

it follows that the principal pivot transform M̂ of M if non-singular. However, we note

that the non-singularity of M̂ need not imply that M is non-singular. This is illustrated

in the following example.

Example 2.6. Let M =









1 0 0 0
0 1 1 0

0 1 2 1

0 0 1 1









be range symmetric in m.

For M∼ = GM∗G =









1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

















1 0 0 0

0 1 1 0

0 1 2 1

0 0 1 1

















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1









=









1 0 0 0
0 1 1 0

0 1 2 1

0 0 1 1









= M.

Thus N(M) = N(M∼) implies M is range symmetric in m.

Let B = C∗ =

[

0 0

1 0

]

; D =

[

2 1

1 1

]

and A =

[

1 0

0 1

]

. Here A and D are non-singular

and S =

[

2 1
1 1

]

−

[

0 1
0 0

] [

1 0
0 1

] [

0 0
1 0

]

S =

[

2 1

1 1

]

−

[

1 0

0 0

]

=

[

1 1

1 1

]
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By Theorem 2.4, S is EP and rk(S) = 1 and hence S is EP1. Therefore rk(M) =

rk(A) + rk(S) = 2 + 1 = 3. By using (2.1), M̂ =









1 0 0 0

0 1 −1 0

0 1 1 1
0 0 1 1









is non-singular and by

using Theorem 2.4, rk(M̂) = rk(A) + rk(D) = 2 + 2 = 4.

Acknowledgements

The first author is thankful to the All India Council for Technical Education, New

Delhi for the financial support to carryout the work.

References

[1] T. S. Baskett and I. J. Katz, Theorems on product of EPr matrices, Lin. Alg. Appln.

2(1969), 87-103.

[2] A. Ben Israel and T. N. E. Greville, Generalized Inverses, Theory and Application, Wiley

and Sons, New York, 1974.

[3] D. Carlson, Emilie Haynsworth and Thomas Markham, A generalization of the schur com-

plement by the Moore-Penrose inverse, SIAM. J. Appl. Math. 26(1974), 169-175.

[4] AR. Meenakshi, On schur complement in an EP matrix, Periodica Mathematica Hungarica

16(1985), 193-200.

[5] AR. Meenakshi, Principal pivot transform of an EP matrix, C. R. Math. Rep. Acad. Sci.

2(1986), 121-126.

[6] AR. Meenakshi, Range symmetric matrices in Minkowski space, Bull. Malaysian Math. Sci.

Soc. 1(2000), 45-52.

[7] AR. Meenakshi and D. Krishnaswamy, On sums of range symmetric matrices in Minkowski

space, Bull. Malaysian Math. Sci. Soc. Second Series 25(2002), 137-148.

[8] Michael Renardy, Singular value decomposition in Minkowski space, Lin. Alg. Appln. 236

(1996), 53-58.

[9] M. H. Pearl, On Normal and EPr matrices, Michigan Math. J. 6(1959), 1-5.

[10] A. W. Tucker, Combinatorial Analysis (Bellman and Hall Eds), American Math. Soc.

Providence RI(1960), 129-140.

[11] A. W. Tucker, Principal pivot transforms of square matrices, SIAM. Rev. 5(1963), 305.

AICTE - Emeritus Professor of Mathematics, Faculty of Engineering and Technology, Annamalai

University, Annamalai Nagar - 608 002. Tamil Nadu, SouthIndia.

E-mail: arm meenakshi@yahoo.co.in

Reader in Mathematics, Directorate of Distance Education, Annamalai University, Annamalai

Nagar - 608 002. Tamil Nadu, SouthIndia.

E-mail: Krishna swamy2004@yahoo.co.in


