PRINCIPAL PIVOT TRANSFORMS OF RANGE SYMMETRIC MATRICES IN MINKOWSKI SPACE

AR. MEENAKSHI AND D. KRISHNASWAMY

Abstract. It is shown that the property of a matrix being range symmetric in Minkowski space \mathfrak{m} is preserved under the principal pivot transformation.

1. Introduction

Throughout we shall deal with $C^{n \times n}$, the space of $n \times n$ complex matrices. Let C^{n} be the space of complex n-tuples, we shall index the components of a complex vector in C^{n} from 0 to $n-1$, that is $u=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right)$. Let G be the Minkowski metric tensor defined by $G u=\left(u_{0},-u_{1},-u_{2}, \ldots,-u_{n-1}\right)$. Clearly, the Minkowski metric matrix

$$
G=\left[\begin{array}{cc}
1 & 0 \tag{1.1}\\
0 & -I_{n-1}
\end{array}\right], \quad G=G^{*} \text { and } G^{2}=I_{n}
$$

In [8], Minkowski inner product on C^{n} is defined by $(u, v)=[u, G v]$, where [...] denotes the conventional Hilbert (unitary) space inner product. A space with Minkowski inner product is called a Minkowski space and denoted as \mathfrak{m}.

For $A \in C^{n \times n}, x, y \in C^{n}$ and by using (1.1), we get

$$
\begin{align*}
(A x, y) & =[A x, G y] \\
& =\left[x, A^{*} G y\right] \\
& =\left[x, G\left(G A^{*} G\right) y\right] \\
& =\left[x, G A^{\sim} y\right] \\
& =\left(x, A^{\sim} y\right) \quad \text { where } A^{\sim}=G A * G . \tag{1.2}
\end{align*}
$$

A^{\sim} is called the Minkowski adjoint of A in $\mathfrak{m}\left(A^{*}\right.$ is usual Hermitian adjoint of A). Naturally, we call a matrix $A \in C^{n \times n} \mathfrak{m}$-symmetric in \mathfrak{m} if $A=A^{\sim}$. For $A \in C^{n \times n}$, $\operatorname{rk}(A), N(A)$ and $R(A)$ are respectively the rank of A, the null space of A and the range space of A. By a generalized inverse of A we mean a solution of the equation $A \times A=A$ and is denoted as $A^{(1)} . A\{1\}$ is the set of all generalized inverses of A. Throughout I refers to identity matrix of appropriate order unless otherwise specified.

[^0]Definition 1.1.(p.7 [2]) For $A \in C^{m \times n}, A^{+}$is the Moore-Penrose inverse of A if $A A^{+} A=A, A^{+} A A^{+}=A^{+}, A A^{+}$and $A^{+} A$ are hermitian.

Theorem 1.2.([4]) For $A, B, C \in C^{n \times n}$, the following are equivalent
(i) $C A^{(1)} B$ is invariant for every $A^{(1)} \in A\{1\}$.
(ii) $N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$.
(iii) $C=C A^{(1)} A$ and $B=A A^{(1)} B$ for every $A^{(1)} \in A\{1\}$.

Theorem 1.3.(Lemma 3.3[7]) Let A and B be matrices in \mathfrak{m}. Then $N\left(A^{*}\right) \subseteq$ $N\left(B^{*}\right) \Leftrightarrow N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$.

Theorem 1.4.(Lemma 2.3[7]) For $A_{1}, A_{2} \in C^{n \times n}\left(A_{1} A_{2}\right)^{\sim}=A_{2}^{\sim} A_{1}^{\sim}$ and $\left(A_{1}^{\sim}\right)^{\sim}=$ A_{1}.

A matrix $A \in C^{n \times n}$ is said to be range symmetric is unitary space (or) equivalently A is said to be $E P$ if $N(A)=N\left(A^{*}\right)$ [or $\left.A A^{+}=A^{+} A\right][\mathrm{p} .163(2)]$. For further properties of $E P$ matrices one may refer [1, 2, 4 and 9$]$.

In [6], the concept of range symmetric matrix in \mathfrak{m} is introduced and developed analogous to that of $E P$ matrices in unitary space. A matrix $A \in C^{n \times n}$ is said to be range symmetric in $m \Leftrightarrow N(A)=N\left(A^{\sim}\right)$. In the sequel, we shall make use of the following results.

Theorem 1.5.(Theorem $2.2[6])$ For $A \in C^{n \times n}$, the following are equivalent:
i) A is range symmetric in \mathfrak{m}
ii) $G A$ is $E P$
iii) $A G$ is $E P$
iv) $N\left(A^{*}\right)=N(A G)$
v) $R(A)=R\left(A^{\sim}\right)$
vi) $A^{\sim}=H A=A K$ for some non-singular matrices H and K.
vii) $R\left(A^{*}\right)=R(G A)$

Definition 1.6.(p. $291[3])$ Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ be an $n \times n$ matrix. The schur complement of A in M, denoted by S is defined as $D-C A^{(1)} B$, where $A^{(1)}$ is a generalized inverse of A.

Theorem 1.7.(Theorem $1[4])$ Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ be an $n \times n$ matrix with $N(A) \subseteq$ $N(C)$ and $N(S) \subseteq N(B)$. Then M is $E P$ if and only if A and S the schur complement of A in M are $E P, N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ and $N\left(S^{*}\right) \subseteq N\left(C^{*}\right)$.

2. Principal Pivot on a Matrix

Let us consider a system of linear equations $M z=t$, where $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ satisfying
$N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$. If z and t are partitioned conformally as $z=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $t=\left[\begin{array}{l}u \\ v\end{array}\right]$ then the system becomes $A x+B y=u ; C x+D y=v$. Since M satisfy $N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ by using Theorem 1.2 and Theorem 1.3, we can express x and v in terms of u and y as $x=A^{+} u-A^{+} B y ; v=C A^{+} u-\left(D-C A^{+} B\right) y$. Thus $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ which satisfies $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ can be transformed into the matrix

$$
\hat{M}=\left[\begin{array}{cc}
A^{+} & -A^{+} B \tag{2.1}\\
C A^{+} & S
\end{array}\right]
$$

where $S=D-C A^{+} B$ is the schur complement of A in $M . \hat{M}$ is called a principal pivot transform of M. The operation that transforms $M \rightarrow \hat{M}$ is called a principal pivot. If A is non-singular it reduces to the principal pivot by pivoting the block A [10]. Properties and applications of the principal pivot transforms are well recognized in mathematical programming [10 and 11].

Theorem 2.1. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ be a matrix with $N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq$ $N\left(B^{*}\right), S$ the schur complement of A in M, then the following are equivalent:
i) M is range symmetric in \mathfrak{m}.
ii) A is range symmetric in \mathfrak{m} and S is $E P, N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ and $N\left(S^{\sim}\right) \subseteq N\left(C^{\sim}\right)$.

Proof. (i) \Rightarrow (ii) Let us consider the matrices $P=\left[\begin{array}{cc}I & O \\ C A^{(1)} & I\end{array}\right] ; Q=\left[\begin{array}{cc}I & B S^{(1)} \\ O & I\end{array}\right]$ for $A^{(1)} \in A\{1\}$ and $S^{(1)} \in S\{1\}$, and $L=\left[\begin{array}{cc}A & O \\ O & S\end{array}\right] \cdot\left[\begin{array}{cc}A^{(1)} & O \\ O & S^{(1)}\end{array}\right]$ is one choice of $L^{(1)}$. P, Q are non-singular. Since $N(A) \subseteq N(C), N(S) \subseteq N(B)$, by Theorem 1.2, we have $C=C A^{(1)} A$ and $B=B S^{(1)} S$. Thus M can be factorized as

$$
\begin{aligned}
P Q L & =\left[\begin{array}{cc}
I & O \\
C A^{(1)} & I
\end{array}\right]\left[\begin{array}{cc}
I & B S^{(1)} \\
O & I
\end{array}\right]\left[\begin{array}{cc}
A & O \\
O & S
\end{array}\right] \\
& =\left[\begin{array}{ll}
A & B S^{(1)} S \\
C A^{(1)} A & C A^{(1)} B S^{(1)} S+S
\end{array}\right]=\left[\begin{array}{ll}
A & B S^{(1)} S \\
C A^{(1)} A & C A^{(1)} B+S
\end{array}\right]=M
\end{aligned}
$$

Since $M=P Q L, P$ and Q are non-singular and $N(L) \subseteq N(M)$. Also $\operatorname{rk}(M)=$ $\operatorname{rk}(P Q L)=\operatorname{rk}(L)$ therefore $N(L)=N(M)$. Also M is range symmetric in \mathfrak{m}, we have
$N\left(M^{\sim}\right)=N(M)=N(L)$ hence by using Theorem 1.2, we get

$$
\begin{array}{rlr}
M^{\sim} & =M^{\sim} L^{(1)} L & \\
G M^{*} G & =G M^{*} G L^{(1)} L & {[\text { By using (1.2)] }} \\
M^{*} & =M^{*} G L^{(1)} L G & {[\text { By using (1.1)] }} \\
{\left[\begin{array}{ll}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right]} & =\left[\begin{array}{ll}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right]\left[\begin{array}{cc}
G_{1} & O \\
O & -I
\end{array}\right]\left[\begin{array}{cc}
A^{(1)} & O \\
O & S
\end{array}\right]\left[\begin{array}{cc}
A & O \\
O & S
\end{array}\right]\left[\begin{array}{cc}
G_{1} & O \\
O & -I
\end{array}\right] \\
{\left[\begin{array}{ll}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right]} & =\left[\begin{array}{ll}
A^{*} G_{1} A^{(1)} A G_{1} & C^{*} S^{(1)} S \\
B^{*} G_{1} A^{(1)} A G_{1} & D^{*} S^{(1)} S
\end{array}\right] .
\end{array}
$$

Equating the corresponding blocks, we get

$$
\begin{aligned}
A^{*} & =A^{*} G_{1} A^{(1)} A G_{1} \\
G_{1} A^{*} G_{1} & =G_{1} A^{*} G_{1} A^{(1)} A \\
A^{\sim} & =A^{\sim} A^{(1)} A
\end{aligned}
$$

[By using (1.2)]

By using Theorem 1.2 and Theorem 1.3, for $A^{\sim}=A^{\sim} A^{(1)} A$, we get $N(A) \subseteq N\left(A^{\sim}\right)$ also $\operatorname{rk}(A)=\operatorname{rk}\left(A^{\sim}\right)$ implies $N(A)=N\left(A^{\sim}\right)$. Thus A is range symmetric in \mathfrak{m}.

$$
\begin{aligned}
B^{*} & =B^{*} G_{1} A^{(1)} A G_{1} \\
G_{1} B^{*} G_{1} & =G_{1} B^{*} G_{1} A^{(1)} A \\
B^{\sim} & =B^{\sim} A^{(1)} A .
\end{aligned}
$$

Again by Theorem $1.2, N(A) \subseteq N\left(B^{\sim}\right)$, since A is range symmetric in \mathfrak{m}, we have $N\left(A^{\sim}\right)=N(A) \subseteq N\left(B^{\sim}\right)$. Using $C^{*}=C^{*} S^{(1)} S$ and $D^{*}=D^{*} S^{(1)} S$ in $S=D-C A^{(1)} B$, we get

$$
\begin{aligned}
S^{*} S^{(1)} S & =\left(D-C A^{(1)} B\right)^{*} S^{(1)} S \\
& =D^{*} S^{(1)} S-\left(C A^{(1)} B\right)^{*} S^{(1)} S \\
& =D^{*} S^{(1)} S-B^{*}\left(A^{(1)}\right)^{*} C^{*} S^{(1)} S \\
& =D^{*}-B^{*}\left(A^{(1)}\right)^{*} C^{*} \\
& =\left(D-C A^{(1)} B\right)^{*} \\
S^{*} S^{(1)} S & =S^{*}
\end{aligned}
$$

By applying Theorem 1.2, we get $N(S) \subseteq N\left(S^{*}\right)$. Since $\operatorname{rk}(S)=\operatorname{rk}\left(S^{*}\right), N(S)=$ $N\left(S^{*}\right)$ from this it follows that S is $E P$. Again applying Theorem 1.2, for $C^{*}=C^{*} S^{(1)} S$ implies $N(S) \subseteq N\left(C^{*}\right)$ also S is $E P$. We have $N\left(S^{*}\right)=N(S) \subseteq N\left(C^{*}\right)$. By using Theorem 1.3, we have $N\left(S^{\sim}\right) \subseteq N\left(C^{\sim}\right)$. Hence (ii) is proved.
(ii) \Rightarrow (i) By hypothesis A is range symmetric, S is $E P, N(A) \subseteq N(C), N\left(A^{\sim}\right) \subseteq$ $N\left(B^{\sim}\right), N(S) \subseteq N(B)$ and $N\left(S^{\sim}\right) \subseteq N\left(C^{\sim}\right)$. Since A is range symmetric in \mathfrak{m} by

Theorem 1.5 (ii), $G_{1} A$ is $E P$. Therefore

$$
\begin{aligned}
G_{1} A\left(G_{1} A\right)^{+} & =\left(G_{1} A\right)^{+} G_{1} A \\
G_{1} A A^{+} G_{1} & =A^{+} G_{1} G_{1} A \\
G_{1} A A^{+} G_{1} & =A^{+} A
\end{aligned}
$$

[By using (1.1)]

By using Theorem 1.2 and Theorem 1.3 we have $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$, $N(S) \subseteq N(B)$ and $N\left(S^{*}\right) \subseteq N\left(C^{*}\right)$ hold. According to the assumption of Theorem 1 (v) [3], we have

$$
M^{+}=\left[\begin{array}{cc}
A^{+}+A^{+} B S^{+} C A^{+} & -A^{+} B S^{+} \tag{2.3}\\
-S^{+} C A^{+} & S^{+}
\end{array}\right]
$$

Under the condition $N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ and $N\left(S^{\sim}\right) \subseteq N\left(C^{\sim}\right)$, we have $A A^{+} B=B$, $C=S S^{+} C$

$$
\begin{aligned}
\text { Now } \left.\begin{array}{rl}
M M^{+} & =\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
A^{+}+A^{+} B S^{+} C A^{+} & -A^{+} B S^{+} \\
-S^{+} C A^{+} & S^{+}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A A^{+}+A A^{+} B S^{+} C A^{+}-B S^{+} C A^{+} & -A A^{+} B S^{+}+B S^{+} \\
C A^{+}+C A^{+} B S^{+} C A^{+}-D S^{+} C A^{+} & -C A^{+} B S^{+}+D S^{+}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A A^{+}+A A^{+} B S^{+} C A^{+}-B S^{+} C A^{+} & -A A^{+} B S^{+}+B S^{+} \\
C A^{+}-\left(D-C A^{+} B\right) S^{+} C A^{+} & \left(D-C A^{+} B\right) S^{+}
\end{array}\right] \\
M M^{+} & =\left[\begin{array}{cc}
A A^{+} & O \\
O & S S^{+}
\end{array}\right]
\end{array}\right][\text {By using (2.4)](2.5) }
\end{aligned}
$$

Similarly by using Theorem $1.2, N(A) \subseteq N(C)$ and $N(S) \subseteq N(B)$, we have $C=$ $C A^{+} A ; B=B S^{+} S$,

$$
M^{+} M=\left[\begin{array}{cc}
A^{+} A & O \tag{2.6}\\
O & S^{+} S
\end{array}\right]
$$

We claim $G M$ is $E P$, for

$$
\left.\left.\begin{array}{rlr}
G M(G M)^{+} & =G M M^{+} G \\
& =G\left[\begin{array}{cc}
A A^{+} & O \\
O & S S^{+}
\end{array}\right] G=\left[\begin{array}{cc}
G_{1} & O \\
O & -I
\end{array}\right]\left[\begin{array}{cc}
A A^{+} & O \\
O & S S^{+}
\end{array}\right]\left[\begin{array}{cc}
G_{1} & O \\
O & -I
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1} A A^{+} G_{1} & O \\
O & S S^{+}
\end{array}\right] & \\
& =\left[\begin{array}{cc}
A^{+} A & O \\
O & S^{+} S
\end{array}\right] & \\
& =M^{+} M=M^{+} G G M & \tag{2.7}
\end{array}\right] \quad[\text { By using }(2.2) \text { anding } S \text { is } E P]\right] \text { (1.1)] } \quad l
$$

Hence $G M$ is $E P$ again by Theorem 1.5 (ii), M is range symmetric in \mathfrak{m}.
Theorem 2.2. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ be range symmetric in \mathfrak{m} with $N(A) \subseteq N(C)$, $N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$, then \hat{M} the principal pivot transform of M is range symmetric in \mathfrak{m}.

Proof. Since M is range symmetric in \mathfrak{m} with $N(A) \subseteq N(C), N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ by applying Theorem 2.1, A is range symmetric in \mathfrak{m}. Again by Theorem 1.5 (ii) both $G M$ and $G_{1} A$ are $E P$, where G_{1} is Minkowski tensor of order as that of A. Thus

$$
G M=\left[\begin{array}{cc}
G_{1} & O \\
O & -I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
G_{1} A & G_{1} B \\
-C & -D
\end{array}\right]
$$

Since $N(A) \subseteq N(C), N\left(G_{1} A\right)=N(A) \subseteq N(C)$ and $N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ implies $N\left(A^{\sim} G_{1}\right) \subseteq N\left(B^{\sim} G_{1}\right) \Rightarrow N\left(G_{1} A\right)^{\sim} \subseteq N\left(G_{1} B\right)^{\sim}$ [By Theorem 1.4]. Thus $N\left(G_{1} A\right) \subseteq$ $N(C)$ and $N\left(G_{1} A\right)^{\sim} \subseteq N\left(G_{1} B\right)^{\sim}$ hold for $G M$. Hence by using (2.1) GM can be transformed into its principal pivot

$$
\begin{aligned}
\hat{G M} & =\left[\begin{array}{cc}
A^{+} G_{1} & -A^{+} B \\
-C A^{+} G_{1} & -S
\end{array}\right] \\
\text { Now } \hat{M} G & =\left[\begin{array}{cc}
A^{+} & -A^{+} B \\
C A^{+} & S
\end{array}\right]\left[\begin{array}{cc}
G_{1} & O \\
O & -I
\end{array}\right]=\left[\begin{array}{cc}
A^{+} G_{1} & A^{+} B \\
C A^{+} G_{1} & -S
\end{array}\right] \\
\text { Consider } P & =\left[\begin{array}{cc}
1 & O \\
O & -I
\end{array}\right] ; P^{\sim}=G P^{*} G=\left[\begin{array}{cc}
I & O \\
O & -I
\end{array}\right]=P^{*} \\
\text { Now } P \hat{M} G P^{*} & =\left[\begin{array}{cc}
I & O \\
O & -I
\end{array}\right]\left[\begin{array}{cc}
A^{+} G_{1} & A^{+} B \\
C A^{+} G_{1} & -S
\end{array}\right]\left[\begin{array}{cc}
I & O \\
O & -I
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{+} G_{1} & -A^{+} B \\
-C A^{+} G_{1} & -S
\end{array}\right]=G \hat{M M}
\end{aligned}
$$

Since $G M$ is $E P$, by Theorem 1 [5], $\hat{G M}$ is $E P$. Hence $\hat{M} G=P^{*} \hat{G M P}$ is $E P$, again by Theorem 1.5 (iii) \hat{M} is range symmetric in \mathfrak{m}.

Lemma 2.3. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right], G=\left[\begin{array}{cc}G_{1} & O \\ O & -I\end{array}\right]$ be partitioned in confirmity with that of $M . S$ and S_{1} be the schur complements of A and D is M respectively. Let $N(A) \subseteq N(C)$ and $N(D) \subseteq N(B)$, then the following are equivalent.
i) M is range symmetric in \mathfrak{m} with $N(S) \subseteq N(B), N\left(S_{1}\right) \subseteq N(C)$.
ii) $A, G_{1} D$ are range symmetric in $\mathfrak{m}, S, G_{1} S_{1}$ are $E P, N(A)=N\left(S_{1}\right) \subseteq N\left(B^{\sim}\right)$ and $N(D)=N(S) \subseteq N\left(C^{\sim}\right)$.

Proof. (i) \Rightarrow (ii) Since M is range symmetric in \mathfrak{m} with $N(A) \subseteq N(C)$ and $N(S) \subseteq$ $N(B)$ by Theorem 2.1, A is range symmetric in \mathfrak{m} and S is $E P, N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ and $N\left(S^{\sim}\right) \subseteq N\left(C^{\sim}\right)$. Since A is range symmetric in $\mathfrak{m}, N(A)=N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ and S is $E P$ implies $N(S)=N\left(S^{*}\right)$ by using Theorem 1.7. $N\left(S^{*}\right) \subseteq N\left(C^{*}\right)$ again by Theorem 1.3, $N\left(S^{\sim}\right) \subseteq N\left(C^{\sim}\right)$ and hence $N(S) \subseteq N\left(C^{\sim}\right)$. Since M is range symmetric in \mathfrak{m}, by Theorem 1.5 (ii), $G M$ is $E P$. Then the principal rearrangement $P^{*} G M P=$ $\left[\begin{array}{cc}-D & -C \\ G_{1} B & G_{1} A\end{array}\right]$ is $E P$ with $N(D) \subseteq N(B)=N\left(G_{1} B\right)$ and $N\left(G_{1} S_{1}\right)=N\left(S_{1}\right) \subseteq N(C)$. Now the schur complement of D in $P^{*} G M P$ is $G_{1} A-G_{1} B D^{+} C=G_{1}\left(A-B D^{+} C\right)=$
$G_{1} S_{1}$ and therefore by Theorem 1.7, D and S_{1} are $E P . N\left(D^{*}\right) \subseteq N\left(C^{*}\right), N\left(G_{1} S_{1}\right)^{*} \subseteq$ $N\left(G_{1} B\right)^{*}$. Since $D, G_{1} S_{1}$ are EP by using Theorem 1.5 (ii), $G_{1} D$ and S_{1} using Theorem 1.3, it follows that $N\left(G_{1} D\right)^{\sim}=N\left(G_{1} D\right)=N(D) \subseteq N\left(C^{\sim}\right)$ and $N\left(S_{1}^{\sim}\right)=N\left(S_{1}\right) \subseteq$ $N\left(B^{\sim}\right)$. Since A is range symmetric in \mathfrak{m}, by Theorem 1.5 (ii), $G_{1} A$ is $E P$ and hence $G_{1} A A^{+} G_{1}=A^{+} A$. Also $N(A) \subseteq N(C), N(S) \subseteq N(B), N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ and $N\left(S^{\sim}\right) \subseteq$ $N\left(C^{\sim}\right)$ hold, by applying Theorem 1 (v) [3], we have M^{+}of the form (2.3). By using Theorem 1.2 and Theorem 1.3, for the conditions $N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ and $N\left(S^{\sim}\right) \subseteq$ $N\left(C^{\sim}\right)$. We get $M M^{+}=\left[\begin{array}{cc}A A^{+} & O \\ O & S S^{+}\end{array}\right][$By using (2.5)]. Since $N(A) \subseteq N(C), N(S) \subseteq$ $N(B), N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ and $N\left(S^{\sim}\right) \subseteq N\left(C^{\sim}\right)$ hold for A as well as D according to the assumptions of Theorem 1(v) [3], M^{+}is also given by

$$
M^{+}=\left[\begin{array}{cc}
S_{1}^{+} & -A^{+} B S^{+} \tag{2.8}\\
-D^{+} C S_{1}^{+} & S^{+}
\end{array}\right] .
$$

Again by using Theorem 1.2 and Theorem 1.3, for $N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right), N\left(D^{\sim}\right) \subseteq$ $N\left(C^{\sim}\right)$ we have $B=A A^{+} B$ and $C=D D^{+} C$, hence

$$
M M^{+}=\left[\begin{array}{cc}
A A^{+} & O \\
O & S S
\end{array}\right]=\left[\begin{array}{cc}
S_{1} S_{1}^{+} & O \\
O & S S^{+}
\end{array}\right] .
$$

Since M is range symmetric in \mathfrak{m} by Theorem 1.5 (ii), $G M$ is $E P$, by using (2.7) $M M^{+}=G M^{+} M G$ implies $G_{1} A^{+} A G_{1}=G_{1} S_{1}^{+} S_{1} G_{1}$ and hence $N(A)=N\left(S_{1}\right)$. Similarly, using the formulae (2.4) and (2.8), we obtain two more expressions for $M^{+} M$ comparing the coresponding block yields $D^{+} D=S^{+} S$ which implies $N(D)=N(S)$. Thus (ii) holds.
(ii) \Rightarrow (i) $N(S) \subseteq N(B)$ follows directly from $N(S)=N(D) \subseteq N(B)$. Similarly, $N\left(S_{1}\right) \subseteq N(C)$ follows from $N\left(S_{1}\right)=N(A) \subseteq N(C)$. Since $A, G_{1} D$ are range symmetric in \mathfrak{m} and $S, G_{1} S_{1}$ are $E P$ satisfying $N(A) \subseteq N(C), N(S) \subseteq N(B), N(D) \subseteq N(B)$ and $N\left(S_{1}\right) \subseteq N(C)$. Hence by Theorem 2.1, M is range symmetric in \mathfrak{m}. Thus (i) holds.

Theorem 2.4. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right], S$ and S_{1} be the schur complements of A and D in M respectively, If M is range symmetric in \mathfrak{m} with $N(A) \subseteq N(C), N(D) \subseteq N(B)$, $N(S) \subseteq N(B)$ and $N\left(S_{1}\right) \subseteq N(C)$. The following hold:
i) Principal submatrices A is range symmetric in \mathfrak{m} and D is $E P$.
ii) The schur complements S and $G_{1} S_{1}$ are $E P$.
iii) The principal pivot transform \hat{M} of M by pivoting the block A is range symmetric in \mathfrak{m} and $\operatorname{rk}(M)=r$.

Proof. (i) and (ii) are consequence of Lemma 2.3.
(iii) By Lemma 2.3, M satisfies $N(A) \subseteq N(C)$ and $N(S) \subseteq N(B)$ hence by pivoting the block A, the principal pivot transform \hat{M} of M is $\hat{M}=\left[\begin{array}{cc}A^{+} & -A^{+} B \\ C A^{+} & S\end{array}\right]$. In \hat{M},
$N\left(A^{+}\right) \subseteq N\left(C A^{+}\right)$and $N\left(A^{+}\right)^{*} \subseteq N\left(A^{+} B\right)^{*}$. Futher the schur complement of A^{+}in \hat{M} is $\hat{S}=S+C A^{+}\left(A^{+}\right)^{+} A^{+} B=S+C A^{+} B=D$. By assumption $N(\hat{S})=N(D) \subseteq N(B)$. By using Lemma 2.3, A and $G_{1} D$ are range symmetric in \mathfrak{m}. Again by Theorem 1.5 (ii), $G_{1} A$ and D are $E P . N\left(D^{*}\right)=N(\hat{S})^{*} \subseteq N\left(C^{*}\right)$, by using Theorem 1.3, we get $N\left(\hat{S}^{\sim}\right) \subseteq N\left(C^{\sim}\right)$. Now applying Theorem 2.2 , we have \hat{M} is range symmetric in \mathfrak{m}. Finally, we prove $\operatorname{rk}(\hat{M})=\operatorname{rk}(M)=r$. The proof runs as follows:

$$
\begin{aligned}
\operatorname{rk}(\hat{M}) & =\operatorname{rk}\left(A^{+}\right)+\operatorname{rk}(\hat{S}) \\
& =\operatorname{rk}(A)+\operatorname{rk}(D) \\
& =\operatorname{rk}(A)+\operatorname{rk}(S) \\
& =\operatorname{rk}(M)=r .
\end{aligned}
$$

$$
=\operatorname{rk}(A)+\operatorname{rk}(S) \quad[\text { By using } N(D)=N(S)]
$$

Remark 2.5. In the special case, when M is non-singular with A and D nonsingular then the conditions $N(A) \subseteq N(C)$ and $N(D) \subseteq N(B)$ automatically hold and by Theorem 1 in [3], S and S_{1} are non-singular further $\operatorname{rk}(\hat{M})=\operatorname{rk}(A)+\operatorname{rk}(D)$. Hence it follows that the principal pivot transform \hat{M} of M if non-singular. However, we note that the non-singularity of \hat{M} need not imply that M is non-singular. This is illustrated in the following example.

Example 2.6. Let $M=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ be range symmetric in \mathfrak{m}.

$$
\begin{aligned}
\text { For } M^{\sim}=G M^{*} G & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]=M
\end{aligned}
$$

Thus $N(M)=N\left(M^{\sim}\right)$ implies M is range symmetric in \mathfrak{m}.

$$
\text { Let } B=C^{*}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] ; D=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \text { and } A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . \text { Here } A \text { and } D \text { are non-singular }
$$

and $S=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]-\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$

$$
S=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

By Theorem 2.4, S is $E P$ and $\operatorname{rk}(S)=1$ and hence S is $E P_{1}$. Therefore $\operatorname{rk}(M)=$ $\operatorname{rk}(A)+\operatorname{rk}(S)=2+1=3$. By using $(2.1), \hat{M}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ is non-singular and by using Theorem 2.4, $\operatorname{rk}(\hat{M})=\operatorname{rk}(A)+\operatorname{rk}(D)=2+2=4$.

Acknowledgements

The first author is thankful to the All India Council for Technical Education, New Delhi for the financial support to carryout the work.

References

[1] T. S. Baskett and I. J. Katz, Theorems on product of EPr matrices, Lin. Alg. Appln. 2(1969), 87-103.
[2] A. Ben Israel and T. N. E. Greville, Generalized Inverses, Theory and Application, Wiley and Sons, New York, 1974.
[3] D. Carlson, Emilie Haynsworth and Thomas Markham, A generalization of the schur complement by the Moore-Penrose inverse, SIAM. J. Appl. Math. 26(1974), 169-175.
[4] AR. Meenakshi, On schur complement in an EP matrix, Periodica Mathematica Hungarica 16(1985), 193-200.
[5] AR. Meenakshi, Principal pivot transform of an EP matrix, C. R. Math. Rep. Acad. Sci. 2(1986), 121-126.
[6] AR. Meenakshi, Range symmetric matrices in Minkowski space, Bull. Malaysian Math. Sci. Soc. 1(2000), 45-52.
[7] AR. Meenakshi and D. Krishnaswamy, On sums of range symmetric matrices in Minkowski space, Bull. Malaysian Math. Sci. Soc. Second Series 25(2002), 137-148.
[8] Michael Renardy, Singular value decomposition in Minkowski space, Lin. Alg. Appln. 236 (1996), 53-58.
[9] M. H. Pearl, On Normal and EPr matrices, Michigan Math. J. 6(1959), 1-5.
[10] A. W. Tucker, Combinatorial Analysis (Bellman and Hall Eds), American Math. Soc. Providence RI(1960), 129-140.
[11] A. W. Tucker, Principal pivot transforms of square matrices, SIAM. Rev. 5(1963), 305.

AICTE - Emeritus Professor of Mathematics, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar - 608 002. Tamil Nadu, SouthIndia.
E-mail: arm_meenakshi@yahoo.co.in
Reader in Mathematics, Directorate of Distance Education, Annamalai University, Annamalai Nagar - 608 002. Tamil Nadu, SouthIndia.
E-mail: Krishna_swamy2004@yahoo.co.in

[^0]: Received January 12, 2005.
 2000 Mathematics Subject Classification. 15A09, 15A57.
 Key words and phrases. Minkowski space, principal pivot, range symmetric matrices.

