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FUGLEDE-PUTNAM THEOREM AND QUASI-NILPOTENT PART
OF n-POWER NORMAL OPERATORS

J. STELLA IRENE MARY AND P. VIJAYALAKSHMI

Abstract. In this article we show that the following properties hold for n-power normal
operators T

(i) T has the Bishop’s property(f).

(i) T is isoloid.

(iii) T is invariant under tensor product.

(iv) T satisfies the Fuglede-Putnam theorem.

(v) T is of finite ascent and descent.

(vi) The Quasi-nilpotent part of T reduces T.

1. Introduction

In this introductory section, we indicate the main trend of the ideas to be developed in
this paper. Let H and K be complex Hilbert spaces and T a bounded linear operator on H,
whose domain, range and null space lie in H. Let L(H) denote the algebra of all bounded
linear operators acting on H. An operator T is said to be n-power normal if T*T" = T"T*
where n € N. The class of n-power normal operators is denoted by [1nN]. The class [nN] was
introduced by A. S. Jibril [15] and he characterized several properties of class [nN]. One of
the properties frequently used in this paper is that T € [nN] if and only if 7" is normal. The
normality of T" enable us to study several properties of class [nN]. For example, in section 2

we give matrix representation for T and prove property(f).

Definition 1.1. An operator T € B(H) is said to have the property(f) at A € C if the following
assertion holds:-

If D c Cis an open neighbourhood of A and if f,, : D — H(n =1,2,...) are vector valued
analytic functions such that (T — p) f;, () — 0 uniformly on every compact subset of D, then

frn (W) — 0, again uniformly on every compact subset of D, for all g€ D.
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Property(f) has been proved for several operators such as hyponormal operators [21],
(p, k)-quasi-hyponormal operators [26], class A operators [5], class A(k) operators [19], para-
normal operators [27], *-paranormal operators [7] and k-quasi-M-hyponormal operators
[24].

Definition 1.2. An operator T € L(H) is said to be isoloid if every isolated point of o(T) is an

eigen value of T.

Throughout this paper, the range, null space and the closure of the range of a bounded
linear operator T, are denoted by ran T, ker T and [ranT] respectively. For convenience we
write (T — A) in the place of (T — AI).

Two important subspaces in local spectral theory are y v (F), the glocal spectral subspace
and yr(C—{A}).

Definition 1.3. For T € B(H) and a closed subset F of C the glocal spectral subspace y r(F) is
defined as the set of all x € H such that there is an analytic H-valued function f : C\F — H for
which (T-A)f(1) =xforall 1 e C\F.

The quasinilpotent part of (T — A1) is denoted by Hy (T — 1) and defined as follows:

Definition 1.4.

Ho(T= 1) ={xe H: lim [[(T-)"x
n—oo

%=0}.

Note that the subspace y r({1}) coincides with the quasinilpotent part of (T — A) while y r(C -
{0}) coincides with the analytic core K(T) defined as the set K(T—A) ofall x € H such that there
exists ¢ > 0 and a sequence {x,} € H for which (T—A)x; = x, (T—A)Xp4+1 = X and || x|l < ¢ || x|l

forall n e N.

Vrbova’ [28] introduced the subspace K(T) which is the analytic counter part of the alge-
braic core C(T). Saphar [25] introduced the subspace C(T) in purely algebraic terms.

Definition 1.5. Let T be a linear operator on H. The algebraic core C(T) is defined to be the
greatest subspace M of H for which T(M) = M.

We note that T"(M) = M for all n e N.

The class of all upper semi-Fredholm operators is denoted by @, (H) and is defined as,
O,(H)={TeL(H):a(T)<oco and T(H) is closed}
and the class of all lower semi-Fredholm operators is denoted by ®_(H) and is defined as,

O_(H)={T € L(H): B(T) < oo}
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where a(T) and B(T) denote the dimension of the kernel of T and the codimension of the
range of T. The class of all semi-Fredholm operators is denoted by ®.(H) and is defined
as @, (H) = &, (H) ud_(H) and the class of Fredholm operators is denoted by ®(H) and is
defined as ®(H) = . (H) nD_(H).

Recall that the ascent p(T) of an operator T is the smallest non-negative integer p such
that ker TP = ker TP*! and if such an integer does not exist then we put p(T) = co. Anal-
ogously, descent g(T) of the operator T is the smallest non-negative integer g such that
ran T9 = ran T9*! and if such an integer does not exist then we put q(T) = co. If p(T) and
q(T) are finite then p(T) = q(T) [12, Proposition 38.3].

The class of all Weyl operators denoted by W (H) is defined by,

W(H)={T e ®(H):ind T =0 where ind T =a(T)- B(T)}.

2. Main results
We begin with the matrix representation for T € [nN].
Lemma 2.1 ([15]). T € [nN] ifand only if T" is normal.

Lemma 2.2. Suppose T € [nN] then [ranT"] reduces T.

Proof. Since T € [nN], T"T* = T*T". [ranT"] is invariant under T is obvious. We shall
show that [ranT"] is invariant under T*. Let x € ranT". Then x = T"y for some y € H and
T*x=T*T"y=T"T*yeranT".

Suppose z is a limit point of ran T”, then there is a sequence {z,} in ran(T") such that
zn — z. Since {z,} is a sequence in ran T", z, = T"xy,n=1,2,...,ne N,x, € H. T*z, =
T*T"x, =T"T*x, € ranT".

So {T*z,} is a sequence in ranT". By the continuity of T*, the sequence {T*z,} — T*z €

[ranT"]. Thus [ranT"] is invariant under T* and [ranT"] reduces T. Oa

Theorem 2.3. If T is n-power normal then T has the following matrix representation, T =
1 O

( ! T ) onH=[ranT™ & kerT*" where Ty = T|(ranT") is also an n-power normal operator
2

and T, is a nilpotent operator with nilpotency n. Futhermore o(T) = o(T1) U {0}.

Proof. By Lemma 2.2, [ranT"] reduces T. Hence T has the matrix representation, T =

T; O
( 01 T ) on H=[ranT"] & ker T*". Let P be the orthogonal projection onto [ranT"]. Then
2



154 J. STELLA IRENE MARY AND P. VIJAYALAKSHMI

Ty 0
0 =TP=PT=PTP.
ThT* 0
p(riryp=| 11! )
0 0
T*T" 0
Also P(T*TMP=| ' 7! 0
Since T € [nN],P(T"T*)P = P(T*T")P, implying T'T;" = T} T{". Hence T € [nN].
21
Forany z= ( € H,
<2
(T)'z2,22) = (T"(I-P)z,(I-P)z)
= (I-P)z, T*""(I-P)z)
= 0.
Therefore T, = 0. Since [ranT"] reduces T, o (T) = o(T1) Uo (T2) = o(T1) U {0}. O

Lemma 2.4. If T is an n-power normal operator and M is a reducing subspace of T then Ty,

is also an n-power normal operator.

Ty O
Proof. Since M is areducing subspace of T, it has the matrix representation, T = 01 T ) on
2
1 . . T1 0
H=M®e M~—. Let P be the orthogonal projection onto M. Then 0 =TP=PT=PTP.
' T /7" 0
P(T"T*)Pz( 101 .P(T*T™MP = 10 ! 0).

Since T € [nN], T{'T} = T;" T{". Therefore T; € [nN]. Hence Ty is n-power normal. [

Theorem 2.5. If T € [nN] then T has the property(f).

Proof. Consider an open neighbourhood D c Cof A € Cand f;,,(m =1, 2,...), the vector valued

analytic functions on D such that (T — ) f;,, (1) — 0 uniformly on every compact subset of D.

T, O
Decompose H as H = [ranT"]® ker T*", by Theorem 2.3, T = ( ! ) where T; € [nN]
2

and 7> is a nilpotent operator with nilpotency n.
(T — ) fm (@) — 0 implies,

I-p O S @) _ [ (T =10 fimy () ~0
0 T—p)\ fm(w (T2 — ) fim, (1) '

Since T is nilpotent, it has property(f) and therefore f,,, (1) — 0.
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Also since T" is normal, it has property(f) and therefore by Theorem 3.39 [17], T has
property(f). O

Corollary 2.6. If T € [nN] then T has the single-valued extension property.

The following two Examples show that for a n- power normal operator T, the correspond-
ing eigenspaces need not be reducing subspaces of T.

01
Example2.7. T = ( 00 ) Clearly T is a 2-power normal operator and the eigenspace of T is

X
( 0 ) but it is not a reducing subspace of T.

2
Example 2.8. T = ( 0 ) Here T is a 2-power normal operator and the corresponding

X X
eigenspaces of T are ( 0 ) and ( ) but these are not reducing subspaces of T.

-X
Also the n-power normal operators are not semiregular. For example consider the multi-

plication operator T defined by (T f)(¢) = tf(¢) for f € I2[0,1] and ¢ € [0,1]. Then T is normal,

injective and has dense range. Since the range of T is not closed, T is not semiregular.

Lemma 2.9. Let T € [nN] and A € o(T) be an isolated point.Then A" is an isolated point of
o(Th).

Proof. Since 1 € ¢(T) is an isolated point there is a neighbourhood V of A with radius § which
contains no point of o (T) other than A. By Spectral mapping Theorem, A" € g(T"). Suppose
A" e g(T") is not an isolated point of 0 (T™), then every neighbourhood of 1" contains atleast
one point of g(T") other than A". Consequently, let u” in g(T") be a point in a neighbour-
hood V,, of A" with radius gp where p = |ZZ;& Ank=1 ,uk|. It follows from Spectral mapping
Theorem that y € o(T). Then

AT = gp 2.1)
n-1
|An_un| — |/’L—[J| Z/ln—k—lluk
k=0
= [A-ulp
Consequently,  [A—p| < gby 2.1).

This shows that y # A is a point in V, contradicting the hypothesis that A is an isolated
point of o(T). Thus, A" is an isolated point of o (T"). O
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Lemma2.10. Let T € [nN] then T is isoloid.

Proof. Let A € ¢(T) be an isolated point. By Lemma 2.9, A" is an isolated point of a(T").
Since T" is normal, it is isoloid. Therefore A" is in the point spectrum of T". This implies that
(A" = T™~1 does not exist.

1

1 T\ !
(A”—T”)_1=—(I——) =u"I-p"T™™ where p=a

Al AR

Recall the identity,
1
I-p'Tm™t = E[(I—HT)_I +(I—pwD Y+ (I—pw D 4+ (- pw" i)Y

I-p"m™™" = %[(I—uT)‘HnZI(I—uw’CT)‘l] (2.2)
k=1

where w is the primitive root of unity. Since (I — u*T™)~! does not exist, atleast one term of
the expression on the righthand side of (2.2) does not exist. Hence there exist two cases.
Case(i):
Suppose (I — ,LLT)_1 does not exist. Since y = %, (A — T)~! does not exist, which implies 1 €
Py (T).
Case(ii):
Suppose (I — pw*T)~! does not exist for some k =1,2,3,...,n— 1. From (2.2),

n(I-p" T ' = —pw*n)™ = U-pD) '+ + (- pw* 7)™
+(I-pw D) e = g™ D)L

Since n(I — u"T™ ™! — (I — pw*T)~! does not exist the expression on the otherside also does
not exist. In that expression atleast one term does not exist. On repeating a similar argument
as above, we arrive at a stage where (I — uT)~! does not exist. That is %(/ll — T)~! does not
exist, hence A € P, (T). It follows that T is isoloid. O

Tensor product of class[nN] operators

For A, B € L(H), anumber of authors have considered variously ,the tensor product A® B,
on the product space H® H. The operation of taking tensor products A ® B preserves many a
property of A, B € L(H), but by no means all of them. For instance the normaloid property is
invariant under tensor products, whereas the spectroloid property is not [23, pp.623 and 631].
H. Jinchuan [16] proved that A® B is normal if and only if A and B are so, where A and B are
non-zero operators. Similar results were proved for subnormal operators [18], hyponormal
operators [13], p— hyponormal operators [6], class A operators [14] and p— quasihyponormal
operators [9]. But there exists paranormal operators A and B such that A® B is not paranormal
[3]. We show that if A and B are of class n-power normal then A® B is also of the class n-power
normal.
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Lemma 2.11 ([13]). If A€ L(H) and B € L(K) are non-zero operators, then A® B is normal if
and only if so are A and B.

Theorem 2.12. T; ® T, is an n-power normal operator if and only if T and T, are so.

Proof. First we begin with the observations that (T} ® T5)*(T1 ® T) = T; Ty ® T, T> and (T} ®
T»)" = T]'® T;'. Suppose T} and T3 are n-power normal operators, then

(e T (TY®T)* = TI'T; @ TIT,
T T ® T) T}

(M) (T T)".

Therefore T; ® T» is an n-power normal operator. Conversely, suppose T} ® T, is an n-power
normal operator, then (T; ® T»)" is normal. By Lemma 2.11, we have Tl" and T. 2” are normal.

Then by Lemma 2.1, T; and T» are n-power normal operators. O
Fuglede-Putnam Theorem for n-power normal operators

Fuglede-Putnam Theorem is well known in operator theory. It affirms that if A and B are
normal operators and AX = XB for some operator X then A*X = XB*. First, Fuglede [10]
proved it in the case when A = B and then Putnam [22] proved it in a general case. There
exists many generalizations of this Theorem of which most of them go into unwinding the

normality of A and B (see [11, 20] and some of the references cited in these papers).

Berbarian [4] unwinds the hypothesis on A and B by assuming A and B* are hyponor-
mal operators and X to be a Hilbert-Schmidt class. The operators in H which are of Hilbert-
Schmidt class form an ideal H in the algebra L(H) of all operators in H. H itself is a Hilbert

space for the inner product
(X, )= Z(Xei, Ye;)=Tr(Y*X)=Tr(XY"),

where {e;} is any orthonormal basis of H. For each pair of operators A, B € L(H), there is an
operator I' defined on L(H) via the formula I'(X) = AXB as in [4]. Obviously, |T|| < [|AlllBI|.
The adjoint of T is given by the formula I'* (X) = A* XB*. Alsoif A=0,B=0thenT =0 [4].

Lemma 2.13. If A and B* are of class[nN] then the operatorT is of class[nN].

n

Proof. By hypothesis, A* A" = A"A*, BB*" = B*"B.

Since, I'(X) = AXB and I'* (X) = A* XB* for any pair A, B € L(H),
C*T*"-T"T")X = I*I*X-T"T*X

I*(A"XB*")-T"(A*XB)



158 J. STELLA IRENE MARY AND P. VIJAYALAKSHMI

= A*A"XB*'B- A"A*XBB*"
A*A"XB*"'B- A*A"XB*"B

0.

The above equality shows thatI" € [nN]. O

Lemma2.14. If A€ [nN] and A is invertible, then A~ le[nN].

1

Proof. By hypothesis A* A" = A" A*, we need to prove that A* A" = A" A* .

A AT Z(AnAY) T = (AT AT = A AT
Hence A~! € class[nN]. O

Lemma 2.15 ([15]). Let T € L(H) such that T € [2N]n [3N], then T € [nN] for all positive
integers n = 4.

Theorem 2.16. Let A and B* be in class[2NN3N] such that B* is invertible and X be a Hilbert-
Schmidt operator. Suppose that AX = XB then A*X = XB*.

Proof. Let I be the Hilbert-Schmidt operator defined by, 'Y = AYB~!, where Y € L(H). By
hypothesis A and B* are of class[nN], by Lemma 2.14 (B*)~! is of class[nN]. Since (B*)™! =
(B~1)*, it follows by Lemma 2.13 that T" is of class[nN]. The hypothesis AX = X B implies that
I'X = X and also by Lemma 2.15, T € [nN] for all n = 2, it follows that,

e x|* = (rxrx)
(T'1"X,T*1"X)
(IT*"T*1"X, X)
(FF*"“F”X,X)
_ (F*”“FF”X,X)
— (F”“X,F”“X)
112,

The above equality gives,

IT*x-x||” = (T*X-X,T*X-X)
(T*X,T"X)—(T" X, X) = (X, T" X) + (X, X)
[T X||* = <X, TX) = (T X, X) + | X |12

IX1% = (X, X) — (X, X) + | X |2
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Therefore I'* X = X and hence A*X = XB*. O
Ascent and Descent

The non-negative integers p(T) and g(T) known as the ascent and descent of T respec-
tively play a vital role to generate several classes of Browder operators and related spectrum.
So we may anticipate if an n-power normal operator T have finite ascent(descent) or not.

Infact, T" has finite ascent since it is normal. Indeed, the following Lemma shows that the

ascent and descent of T € [nN] are finite.

Lemma 2.17. For any operator T € L(H) with T" normal, the following assertions hold:
i) p(T)=q(T)=n.

(i) N®°(T)=kerT" and T®(H) = ranT", where N°°(T) = Uren ker T* and
T (H) = Nien TX(H) are the hyper kernel and hyper range respectively.

Proof. (i) It is well known that, for any normal operator A, ker A% = ker A and [ranA?] =

[ranAl.

Since T" is normal, ker T?>" = ker T" and [ranT?"] = [ranT"]. Consequently, from the
chainrelations kerT S kerT><---C kerT" S kerT""' c---C ker T?" = ker T" < ker T?>"*! ...
and ---[ranT™ = [ranT?"| € [ranT?*" Y c --- € [ranT""'| € [ranT"™ < [ranT" ' < --- C
[ranT], we obtain, ker T" = ker T"*! and ranT" = ranT"*!. By the definition of p(T) and

q(T),we have p(T) < nand g(T) < n. Since both are finite p(T) = q(T) [12].
(ii) Also

N®(T) = | ker TF = ker ", T®(H) = () T*(H) = ranT". O
keN keN

Nullity and Deficiency

The role of nullity a(T) and deficiency B(T) of an operator T are crucial in the class of
Fredholm operators and Weyl operators. The following Theorem concerning a(7) and B(7) is
useful to explore if T € [n V] fit into the class of Weyl operators or not. Infact, Aiena [1] proved

a Theorem connecting ascent and descent with nullity and deficiency, which is stated below.

Theorem 2.18 ([1],Theorem 3.4). If T is a linear operator on a vector space X and if p(T) =
q(T) < oo then a(T) = B(T) (possibly infinity).

Theorem 2.19. Suppose T € [nN] such that a(T) or B(T) is finite and T (H) is closed then T is
a Weyl operator.
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Proof. We have p(T) = q(T) < n by Lemma 2.17. It immediately follows from Theorem 2.18
that a(T) = B(T) < co.

Consequently T is a Fredholm operator with ind T=0 and hence Weyl. O
Theorem 2.20. Suppose that C(T) is the algebraic core of T € [nN] then the following assertions
hold:

() C(T) is invariant under T*".

(i) T*(C(T) < C(T™.

Proof. (i) Since T € [uN], T*T" = T"T* or T*"T = TT*". Also by the definition of alge-
braic core of T, T(C(T)) = C(T) or T*(C(T)) = C(T) for all n e N. T**T = TT*" implies
T*"T(C(T))=TT*(C(D) or T**(C(T))=TT*™"(C(T)).

C(T) being the greatest subspace satisfying T(C(T)) = C(T), we have T*"(C(T)) < C(T).
Thus C(T) is invariant under T*".
(ii) T € [nN] implies T*T"C(T)=T"T*C(T) or T*(C(T)) = T"T*(C(T)). It follows that
T*(C(T)) € C(T™), the algebraic core of T". O
A. S.Jibril [15] proved thatif T € [2N] n [3N], then T € [nN] for all positive integers n = 4.

Theorem 2.21. IfT € [2N] N [3N], then

(i) Ho(T) is a reducing subspace of T .
(i) xe Ho(T) ifand only if T*x € Hy(T) where

1
Ho(T) = {x e H: lim | T"x]| " =0}
n—oo

(iii) ker(T —A)n Hy(T) = {0} for every A #0.

Proof. (i) Let F c C be a closed set. The glocal spectral subspace yr(F) is defined as, yr(F) =
{xe H:J analytic f(2): (T —z) f(z) = x on C\F}. By Theorem 2.20 [1], we have Hy(T - A) =
x1r{A}). By Theorem 2.5, T has property(f). Also by Proposition 1.2.19 [17], yr(F) is closed
and o(Tly,m) © F. Hence Hyo(T — A) is closed for A € C, which implies Hy(T) is closed. If
X € Hy(T) then from the inequality [| T" Tx|| < || T|| | T" x|, it is easily seen that Tx € Hy(T) and

Hy(T) is invariant under T.

|7 T*x|* = (T"T*x, T"T*x)
= (TT""T"T"x,x)
(T, T )
= | T”“x”zsince 7" is normal
7] = 7l 29
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n+l
1

If x € Hy(T) then, || T" T* x| = (|| T+ W)T by (2.3). It follows that T* x € Ho(T) and

Hy(T) is invariant under T*.

(ii) x € Hy(T) implies T*x € Hy(T) follows by (i). Conversely let T*x € Hy(T). Since by (2.3)
[T x| = 1T"T*xI,

lim || T 1x
n—oo

1 n

= lim (| 77 2] 7)™ =0.

Thus x € Hy(T).

(iii) Suppose x Z0 € ker (T — A) N Hy(T). Then x € ker (T — A) implies,
(T-Mx=0=>Tx=Ax=>T"x=21"x.

By (ii) x € Hy(T) if and only if T* (x) € Hy(T) and hence,

1
n

0

lim || T"T* x

n—oo

lim || T*T"x

n—oo

= lim |T*A"x

n—oo

1
n

1
n

1
n

= lim M| T"x
n—oo

1
n

= |Al lim || T"x
n—o0

= |Al.

Which is a contradiction and therefore T*x ¢ Hy(T) = x ¢ Hy(T). Hence ker(T —A)n Hy(T) =
{0} for every A # 0. O

Remark 2.22. For T € [nN] the restriction T"|); of T" to a closed invariant subspace M is a
hyponormal operator, since T"|; is subnormal.

Theorem 2.23. Suppose T € [2N]n [3N], then for every m =2, m € N the following properties
hold:

(i) Ho(T™ - M) is a reducing subspace of T.
(i) Ho(T™—-A) =ker(T™—A) =ker(T*™ —A). In particular Hy(T™) = ker T" = ker T*™.
(iii) If M is an invariant subspace of T and Ty = Tlpy on H =M & M~ then Ho(Tlm -A) =
ker(T" —A) c ker(T{" = 1)*.
(iv) Ho(T™-A") > Hy(T-A) and Hy(T™—A"™) = Hy(T—A) if S= T 1+ AT™ 2 4. -4 A2 T+
A=V s invertible.
(V) Ho(T—-A)cker(T™—A") and Hy(T — A) = ker(T — A) if S is invertible.
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Proof. (i)

Ho(T" = 1) = {xe H: lim |7 - 1)" x| =0}

n—oo
Since T € [2N] N [3N], T is n-power normal for all n = 2. Therefore (T")"T* = T*(T"™)" for
all m=2,n= 1. Consequently, (T™ - A)"T* = T*(T™ - 1)" and hence for x € Hy(T™ - 1), we
have

1 1
n n

lim [[(T™-A)"T*x
n—oo

lim | T*(T™-1)"x
n—oo

1
n

< lim |77 |7 lim [[(7™ - A)"x
n—oo n—oo
= 0.

Thus T*x € Hy(T™ — A). That Tx € Hy(T™ — A) is obvious.

(ii) It is well known that for a totally paranormal operator T, Hy(T—A) = ker(T—A) forallA e C
[2]. The class of totally paranormal operators includes the class of hyponormal operators and

hence normal operators. Since 7" is normal for all m = 2, we have
Ho(T"™ - A) =ker(T™ - A) = ker(T™ - 1)*.
For A =0, Hy(T™) = ker(T™) = ker(T*™).

(iii) By Remark 2.22, Tlm = T™|p is hyponormal and hence HO(TI’” -A) = ker(Tl’" -A) c
ker(T" - A)*.

(iv) Let x € Hy(T — A) then

1
n=0.

lim |[(T-2A)"x
n—oo

Since T™ — A" = (T=A)(T™ V4 AT 2 4.4 A" 27 4 AM 1y = (T - 1) S, where S = (T™ ! +
AT™ 2 4.4 A™M=2T 4 A™m~1) we have,

1 1
n n

lim ||(T™-A"™)"x lim |[(T-1)"S"x
n—oo n—0o

1
n

IN

lim ||S"
n—oo

ISI lim_ ||(T - 2A)"x
n—oo
0.

" lim [(T-1"x
n—oo

1
n

I\

Therefore x € Hy(T™ — A™) and Ho(T — A) € Hy(T™ — A™).
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On the otherhand if S is invertible then (T — A) = S~1(T™ — A™). For x € Hy(T™ - A™), we
have,

1
n

lim [(T—A)"x|" = lim |$"(T™ - A™)"x
n—oo n—oo
< 571 lim ™= Ay

= 0.
Consequently, Hy(T™ — A™) = Hy(T — A) for all m = 2.
(V) Hy(T = A) < ker(T™ — A™) follows from (ii) and (iv).
That S is invertible yields ker(T™ — A™) = ker(T — ). Again by (ii) and (iv) Ho(T — 1) =

ker(T - Q). O
In general T € [nN] is not translation invariant.
. . 1
Example 2.24. It is easily seen that, for T = ( 0 ) € [3N],
s w [—6i-8 —4i+7
(T-)(T-0)" = . ) .
10i -1 —-4i-7

(T iy (i o [ B8 100+
4i-7 —4i-7

Therefore (T — i) ¢ [3N]. Thus T € [nN] is not translation invariant.

Naturally in view of the above statement, the following question arises: What could be
the nature of class [nN] operators satisfying the translation invariant property?

In [8] Eungil Ko proved that if the k*"* root of a hyponormal operator is translation invari-
ant then it is hyponormal. We use the same technique to prove the following Theorem.

Theorem 2.25. Suppose T € [nN] is translation invariant then T is normal.
Proof.

(T-)"(T-1"
0

(T-D)"(T-)"
(T-D(T-N)"—(T-)"(T-1"

" In " (n
k i—o\k

k=0

0 (T-1)" (T-A1)" (2.4

Put A= peig, p>0,0=<60 <27, in (2.4) and dividing the simplified equation by p"_l gives,

. 1
0=n(T*T-TT*e™ V¥ 1 ~(the other terms).
0

Taking limit as p — oo gives, TT* = T*T. O
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