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FUGLEDE-PUTNAM THEOREM AND QUASI-NILPOTENT PART

OF n-POWER NORMAL OPERATORS

J. STELLA IRENE MARY AND P. VIJAYALAKSHMI

Abstract. In this article we show that the following properties hold for n-power normal
operators T :
(i) T has the Bishop’s property(β).
(ii) T is isoloid.
(iii) T is invariant under tensor product.
(iv) T satisfies the Fuglede-Putnam theorem.
(v) T is of finite ascent and descent.
(vi) The Quasi-nilpotent part of T reduces T .

1. Introduction

In this introductory section, we indicate the main trend of the ideas to be developed in

this paper. Let H and K be complex Hilbert spaces and T a bounded linear operator on H ,

whose domain, range and null space lie in H . Let L(H) denote the algebra of all bounded

linear operators acting on H . An operator T is said to be n-power normal if T ∗T n = T nT ∗

where n ∈N. The class of n-power normal operators is denoted by [nN ]. The class [nN ] was

introduced by A. S. Jibril [15] and he characterized several properties of class [nN ]. One of

the properties frequently used in this paper is that T ∈ [nN ] if and only if T n is normal. The

normality of T n enable us to study several properties of class [nN ]. For example, in section 2

we give matrix representation for T and prove property(β).

Definition 1.1. An operator T ∈ B(H) is said to have the property(β) at λ ∈ C if the following

assertion holds:-

If D ⊂ C is an open neighbourhood of λ and if fn : D → H(n = 1,2, . . .) are vector valued

analytic functions such that (T −µ) fn(µ) → 0 uniformly on every compact subset of D , then

fn(µ) → 0, again uniformly on every compact subset of D , for all µ ∈ D .
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Property(β) has been proved for several operators such as hyponormal operators [21],

(p,k)-quasi-hyponormal operators [26], class A operators [5], class A(k) operators [19], para-

normal operators [27], ∗-paranormal operators [7] and k-quasi-M-hyponormal operators

[24].

Definition 1.2. An operator T ∈ L(H) is said to be isoloid if every isolated point of σ(T ) is an

eigen value of T .

Throughout this paper, the range, null space and the closure of the range of a bounded

linear operator T , are denoted by ran T, ker T and [r anT ] respectively. For convenience we

write (T −λ) in the place of (T −λI ).

Two important subspaces in local spectral theory are χT (F ), the glocal spectral subspace

and χT (C− {λ}).

Definition 1.3. For T ∈ B(H) and a closed subset F of C the glocal spectral subspace χT (F ) is

defined as the set of all x ∈ H such that there is an analytic H-valued function f : C\F → H for

which (T −λ) f (λ) = x for all λ ∈C\F .

The quasinilpotent part of (T −λ) is denoted by H0(T −λ) and defined as follows:

Definition 1.4.

H0(T −λ) =
{

x ∈ H : lim
n→∞

∥∥(T −λ)n x
∥∥ 1

n = 0
}

.

Note that the subspace χT ({λ}) coincides with the quasinilpotent part of (T −λ) while χT (C−
{0}) coincides with the analytic core K (T ) defined as the set K (T−λ) of all x ∈ H such that there

exists c > 0 and a sequence {xn} ∈ H for which (T −λ)x1 = x, (T −λ)xn+1 = xn and ∥xn∥ ≤ cn ∥x∥
for all n ∈N.

Vrbova’ [28] introduced the subspace K (T ) which is the analytic counter part of the alge-

braic core C (T ). Saphar [25] introduced the subspace C (T ) in purely algebraic terms.

Definition 1.5. Let T be a linear operator on H . The algebraic core C (T ) is defined to be the

greatest subspace M of H for which T (M) = M .

We note that T n(M) = M for all n ∈N.

The class of all upper semi-Fredholm operators is denoted by Φ+(H) and is defined as,

Φ+(H) = {T ∈ L(H) : α(T ) <∞ and T (H) is closed}

and the class of all lower semi-Fredholm operators is denoted by Φ−(H) and is defined as,

Φ−(H) = {
T ∈ L(H) : β(T ) <∞}
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where α(T ) and β(T ) denote the dimension of the kernel of T and the codimension of the

range of T . The class of all semi-Fredholm operators is denoted by Φ±(H) and is defined

as Φ±(H) = Φ+(H)∪Φ−(H) and the class of Fredholm operators is denoted by Φ(H) and is

defined as Φ(H) =Φ+(H)∩Φ−(H).

Recall that the ascent p(T ) of an operator T is the smallest non-negative integer p such

that ker T p = ker T p+1 and if such an integer does not exist then we put p(T ) = ∞. Anal-

ogously, descent q(T ) of the operator T is the smallest non-negative integer q such that

r an T q = r an T q+1 and if such an integer does not exist then we put q(T ) =∞. If p(T ) and

q(T ) are finite then p(T ) = q(T ) [12, Proposition 38.3].

The class of all Weyl operators denoted by W (H) is defined by,

W (H) = {
T ∈Φ(H) : ind T = 0 where ind T =α(T )−β(T )

}
.

2. Main results

We begin with the matrix representation for T ∈ [nN ].

Lemma 2.1 ([15]). T ∈ [nN ] if and only if T n is normal.

Lemma 2.2. Suppose T ∈ [nN ] then [r anT n] reduces T .

Proof. Since T ∈ [nN ], T nT ∗ = T ∗T n . [r anT n] is invariant under T is obvious. We shall

show that [r anT n] is invariant under T ∗. Let x ∈ r anT n . Then x = T n y for some y ∈ H and

T ∗x = T ∗T n y = T nT ∗y ∈ r anT n .

Suppose z is a limit point of ran T n , then there is a sequence {zn} in ran(T n) such that

zn → z. Since {zn} is a sequence in ran T n , zn = T n xn ,n = 1,2, . . . ,n ∈ N, xn ∈ H . T ∗zn =
T ∗T n xn = T nT ∗xn ∈ r anT n .

So
{
T ∗zn

}
is a sequence in ranT n . By the continuity of T ∗, the sequence

{
T ∗zn

}→ T ∗z ∈
[r anT n]. Thus [r anT n] is invariant under T ∗ and [r anT n] reduces T . ���

Theorem 2.3. If T is n-power normal then T has the following matrix representation, T =(
T1 0

0 T2

)
on H = [r anT n]⊕ker T ∗n where T1 = T |[r anT n ] is also an n-power normal operator

and T2 is a nilpotent operator with nilpotency n. Futhermore σ(T ) =σ(T1)∪ {0}.

Proof. By Lemma 2.2, [r anT n] reduces T . Hence T has the matrix representation, T =(
T1 0

0 T2

)
on H = [r anT n]⊕ker T ∗n . Let P be the orthogonal projection onto [r anT n]. Then
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T1 0

0 0

)
= T P = PT = PT P .

P (T nT ∗)P =
(

T n
1 T ∗

1 0

0 0

)
.

Also P (T ∗T n)P =
(

T ∗
1 T n

1 0

0 0

)
.

Since T ∈ [nN ],P (T nT ∗)P = P (T ∗T n)P, implying T n
1 T ∗

1 = T ∗
1 T n

1 . Hence T1 ∈ [nN ].

For any z =
(

z1

z2

)
∈ H ,

⟨
T n

2 z2, z2
⟩ = ⟨

T n(I −P )z, (I −P )z
⟩

= ⟨
(I −P )z,T ∗n(I −P )z

⟩
= 0.

Therefore T n
2 = 0. Since [r anT n] reduces T , σ(T ) =σ(T1)∪σ(T2) =σ(T1)∪ {0} . ���

Lemma 2.4. If T is an n-power normal operator and M is a reducing subspace of T then T |M
is also an n-power normal operator.

Proof. Since M is a reducing subspace of T , it has the matrix representation, T =
(

T1 0

0 T2

)
on

H = M ⊕M⊥. Let P be the orthogonal projection onto M . Then

(
T1 0

0 0

)
= T P = PT = PT P .

P (T nT ∗)P =
(

T n
1 T ∗

1 0

0 0

)
. P (T ∗T n)P =

(
T ∗

1 T n
1 0

0 0

)
.

Since T ∈ [nN ], T n
1 T ∗

1 = T ∗
1 T n

1 . Therefore T1 ∈ [nN ]. Hence T |M is n-power normal. ���

Theorem 2.5. If T ∈ [nN ] then T has the property(β).

Proof. Consider an open neighbourhood D ⊂C ofλ ∈C and fm(m = 1,2, . . .), the vector valued

analytic functions on D such that (T −µ) fm(µ) → 0 uniformly on every compact subset of D .

Decompose H as H = [r anT n]⊕ker T ∗n , by Theorem 2.3, T =
(

T1 0

0 T2

)
where T1 ∈ [nN ]

and T2 is a nilpotent operator with nilpotency n.

(T −µ) fm(µ) → 0 implies,(
T1 −µ 0

0 T2 −µ

)(
fm1 (µ)

fm2 (µ)

)
=

(
(T1 −µ) fm1 (µ)

(T2 −µ) fm2 (µ)

)
→ 0.

Since T2 is nilpotent, it has property(β) and therefore fm2 (µ) → 0.
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Also since T n
1 is normal, it has property(β) and therefore by Theorem 3.39 [17], T has

property(β). ���

Corollary 2.6. If T ∈ [nN ] then T has the single-valued extension property.

The following two Examples show that for a n- power normal operator T , the correspond-

ing eigenspaces need not be reducing subspaces of T .

Example 2.7. T =
(

0 1

0 0

)
. Clearly T is a 2-power normal operator and the eigenspace of T is(

x

0

)
but it is not a reducing subspace of T .

Example 2.8. T =
(

1 2

0 −1

)
. Here T is a 2-power normal operator and the corresponding

eigenspaces of T are

(
x

0

)
and

(
x

−x

)
but these are not reducing subspaces of T .

Also the n-power normal operators are not semiregular. For example consider the multi-

plication operator T defined by (T f )(t ) = t f (t ) for f ∈ L2[0,1] and t ∈ [0,1]. Then T is normal,

injective and has dense range. Since the range of T is not closed, T is not semiregular.

Lemma 2.9. Let T ∈ [nN ] and λ ∈ σ(T ) be an isolated point.Then λn is an isolated point of

σ(T n).

Proof. Since λ ∈σ(T ) is an isolated point there is a neighbourhood V of λ with radius δ which

contains no point of σ(T ) other than λ. By Spectral mapping Theorem, λn ∈σ(T n). Suppose

λn ∈σ(T n) is not an isolated point of σ(T n), then every neighbourhood of λn contains atleast

one point of σ(T n) other than λn . Consequently, let µn in σ(T n) be a point in a neighbour-

hood Vn of λn with radius δ
2ρ where ρ = ∣∣∑n−1

k=0 λ
n−k−1µk

∣∣. It follows from Spectral mapping

Theorem that µ ∈σ(T ). Then

∣∣λn −µn
∣∣ ≤ δ

2
ρ (2.1)

∣∣λn −µn
∣∣ = ∣∣λ−µ

∣∣ ∣∣∣∣∣n−1∑
k=0

λn−k−1µk

∣∣∣∣∣
= ∣∣λ−µ

∣∣ρ
Consequently,

∣∣λ−µ
∣∣ ≤ δ

2
by (2.1).

This shows that µ ̸= λ is a point in V , contradicting the hypothesis that λ is an isolated

point of σ(T ). Thus, λn is an isolated point of σ(T n). ���
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Lemma 2.10. Let T ∈ [nN ] then T is isoloid.

Proof. Let λ ∈ σ(T ) be an isolated point. By Lemma 2.9, λn is an isolated point of σ(T n).

Since T n is normal, it is isoloid. Therefore λn is in the point spectrum of T n . This implies that

(λn −T n)−1 does not exist.

(λn −T n)−1 = 1

λn

(
I − T n

λn

)−1

=µn(I −µnT n)−1 where µ= 1

λ
.

Recall the identity,

(I −µnT n)−1 = 1

n
[(I −µT )−1 + (I −µwT )−1 + (I −µw2T )−1 +·· ·+ (I −µwn−1T )−1]

(I −µnT n)−1 = 1

n
[(I −µT )−1 +

n−1∑
k=1

(I −µwk T )−1] (2.2)

where w is the primitive root of unity. Since (I −µnT n)−1 does not exist, atleast one term of

the expression on the righthand side of (2.2) does not exist. Hence there exist two cases.

Case(i):

Suppose (I −µT )−1 does not exist. Since µ = 1
λ , (λI −T )−1 does not exist, which implies λ ∈

Pσ(T ).

Case(ii):

Suppose (I −µwk T )−1 does not exist for some k = 1,2,3, . . . ,n −1. From (2.2),

n(I −µnT n)−1 − (I −µwk T )−1 = (I −µT )−1 +·· ·+ (I −µwk−1T )−1

+(I −µwk+1T )−1 +·· ·+ (I −µwn−1T )−1.

Since n(I −µnT n)−1 − (I −µwk T )−1 does not exist the expression on the otherside also does

not exist. In that expression atleast one term does not exist. On repeating a similar argument

as above, we arrive at a stage where (I −µT )−1 does not exist. That is 1
λ (λI −T )−1 does not

exist, hence λ ∈ Pσ(T ). It follows that T is isoloid. ���
Tensor product of class[nN] operators

For A,B ∈ L(H), a number of authors have considered variously ,the tensor product A⊗B ,

on the product space H ⊗H . The operation of taking tensor products A⊗B preserves many a

property of A,B ∈ L(H), but by no means all of them. For instance the normaloid property is

invariant under tensor products, whereas the spectroloid property is not [23, pp.623 and 631].

H. Jinchuan [16] proved that A ⊗B is normal if and only if A and B are so, where A and B are

non-zero operators. Similar results were proved for subnormal operators [18], hyponormal

operators [13], p− hyponormal operators [6], class A operators [14] and p− quasihyponormal

operators [9]. But there exists paranormal operators A and B such that A⊗B is not paranormal

[3]. We show that if A and B are of class n-power normal then A⊗B is also of the class n-power

normal.
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Lemma 2.11 ([13]). If A ∈ L(H) and B ∈ L(K ) are non-zero operators, then A ⊗B is normal if

and only if so are A and B.

Theorem 2.12. T1 ⊗T2 is an n-power normal operator if and only if T1 and T2 are so.

Proof. First we begin with the observations that (T1 ⊗T2)∗(T1 ⊗T2) = T ∗
1 T1 ⊗T ∗

2 T2 and (T1 ⊗
T2)n = T n

1 ⊗T n
2 . Suppose T1 and T2 are n-power normal operators, then

(T1 ⊗T2)n(T1 ⊗T2)∗ = T n
1 T ∗

1 ⊗T n
2 T ∗

2

= T ∗
1 T n

1 ⊗T ∗
2 T n

2

= (T1 ⊗T2)∗(T1 ⊗T2)n .

Therefore T1 ⊗T2 is an n-power normal operator. Conversely, suppose T1 ⊗T2 is an n-power

normal operator, then (T1 ⊗T2)n is normal. By Lemma 2.11, we have T n
1 and T n

2 are normal.

Then by Lemma 2.1, T1 and T2 are n-power normal operators. ���
Fuglede-Putnam Theorem for n-power normal operators

Fuglede-Putnam Theorem is well known in operator theory. It affirms that if A and B are

normal operators and AX = X B for some operator X then A∗X = X B∗. First, Fuglede [10]

proved it in the case when A = B and then Putnam [22] proved it in a general case. There

exists many generalizations of this Theorem of which most of them go into unwinding the

normality of A and B (see [11, 20] and some of the references cited in these papers).

Berbarian [4] unwinds the hypothesis on A and B by assuming A and B∗ are hyponor-

mal operators and X to be a Hilbert-Schmidt class. The operators in H which are of Hilbert-

Schmidt class form an ideal H in the algebra L(H) of all operators in H . H itself is a Hilbert

space for the inner product

〈X ,Y 〉 =
∑〈X ei ,Y ei 〉 = Tr (Y ∗X ) = Tr (X Y ∗),

where {ei } is any orthonormal basis of H . For each pair of operators A,B ∈ L(H), there is an

operator Γ defined on L(H) via the formula Γ(X ) = AX B as in [4]. Obviously, ∥Γ∥ ≤ ∥A∥∥B∥.

The adjoint of Γ is given by the formula Γ∗(X ) = A∗X B∗. Also if A ≥ 0,B ≥ 0 then Γ≥ 0 [4].

Lemma 2.13. If A and B∗ are of class[nN ] then the operator Γ is of class[nN ].

Proof. By hypothesis, A∗An = An A∗,BB∗n = B∗n
B .

Since, Γ(X ) = AX B and Γ∗(X ) = A∗X B∗ for any pair A,B ∈ L(H),

(Γ∗Γn −ΓnΓ∗)X = Γ∗Γn X −ΓnΓ∗X

= Γ∗(An X B∗n
)−Γn(A∗X B)
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= A∗An X B∗n
B − An A∗X BB∗n

= A∗An X B∗n
B − A∗An X B∗n

B

= 0.

The above equality shows that Γ ∈ [nN ]. ���

Lemma 2.14. If A ∈ [nN ] and A is invertible, then A−1 ∈ [nN ].

Proof. By hypothesis A∗An = An A∗, we need to prove that A∗−1
An−1 = An−1

A∗−1
.

A∗−1
An−1 = (An A∗)−1 = (A∗An)−1 = An−1

A∗−1
.

Hence A−1 ∈ class[nN ]. ���

Lemma 2.15 ([15]). Let T ∈ L(H) such that T ∈ [2N ] ∩ [3N ], then T ∈ [nN ] for all positive

integers n ≥ 4.

Theorem 2.16. Let A and B∗ be in class[2N∩3N ] such that B∗ is invertible and X be a Hilbert-

Schmidt operator. Suppose that AX = X B then A∗X = X B∗.

Proof. Let Γ be the Hilbert-Schmidt operator defined by, ΓY = AY B−1, where Y ∈ L(H). By

hypothesis A and B∗ are of class[nN ], by Lemma 2.14 (B∗)−1 is of class[nN ]. Since (B∗)−1 =
(B−1)∗, it follows by Lemma 2.13 that Γ is of class[nN ]. The hypothesis AX = X B implies that

ΓX = X and also by Lemma 2.15, T ∈ [nN ] for all n ≥ 2, it follows that,∥∥Γ∗X
∥∥2 = ⟨

Γ∗X ,Γ∗X
⟩

= ⟨
Γ∗Γn X ,Γ∗Γn X

⟩
= ⟨

ΓΓ∗nΓ∗Γn X , X
⟩

= ⟨
ΓΓ∗n+1Γn X , X

⟩
= ⟨

Γ∗n+1ΓΓn X , X
⟩

= ⟨
Γn+1X ,Γn+1X

⟩
= ∥X ∥2 .

The above equality gives,∥∥Γ∗X −X
∥∥2 = ⟨

Γ∗X −X ,Γ∗X −X
⟩

= ⟨
Γ∗X ,Γ∗X

⟩−⟨
Γ∗X , X

⟩−⟨
X ,Γ∗X

⟩+〈X , X 〉
= ∥∥Γ∗X

∥∥2 −〈X ,ΓX 〉−〈ΓX , X 〉+∥X ∥2

= ∥X ∥2 −〈X , X 〉−〈X , X 〉+∥X ∥2



FUGLEDE-PUTNAM THEOREM AND QUASI-NILPOTENT PART OF n-POWER NORMAL OPERATORS 159

= 0.

Therefore Γ∗X = X and hence A∗X = X B∗. ���
Ascent and Descent

The non-negative integers p(T ) and q(T ) known as the ascent and descent of T respec-

tively play a vital role to generate several classes of Browder operators and related spectrum.

So we may anticipate if an n-power normal operator T have finite ascent(descent) or not.

Infact, T n has finite ascent since it is normal. Indeed, the following Lemma shows that the

ascent and descent of T ∈ [nN ] are finite.

Lemma 2.17. For any operator T ∈ L(H) with T n normal, the following assertions hold:

(i) p(T ) = q(T ) ≤ n.

(ii) N∞(T ) = ker T n and T ∞(H) = r anT n , where N∞(T ) =∪
k∈N ker T k and

T ∞(H) =∩
k∈N T k (H) are the hyper kernel and hyper range respectively.

Proof. (i) It is well known that, for any normal operator A, ker A2 = ker A and [r an A2] =
[r an A].

Since T n is normal, ker T 2n = ker T n and [r anT 2n] = [r anT n]. Consequently, from the

chain relations ker T ⊆ ker T 2 ⊆ ·· · ⊆ ker T n ⊆ ker T n+1 ⊆ ·· · ⊆ ker T 2n = ker T n ⊆ ker T 2n+1 · · ·
and · · · [r anT n] = [r anT 2n] ⊆ [r anT 2n−1] ⊆ ·· · ⊆ [r anT n+1] ⊆ [r anT n] ⊆ [r anT n−1] ⊆ ·· · ⊆
[r anT ], we obtain, ker T n = ker T n+1 and r anT n = r anT n+1. By the definition of p(T ) and

q(T ), we have p(T ) ≤ n and q(T ) ≤ n. Since both are finite p(T ) = q(T ) [12].

(ii) Also

N∞(T ) = ∪
k∈N

ker T k = ker T n ,T ∞(H) = ∩
k∈N

T k (H) = r anT n . ���

Nullity and Deficiency

The role of nullity α(T ) and deficiency β(T ) of an operator T are crucial in the class of

Fredholm operators and Weyl operators. The following Theorem concerning α(T ) and β(T ) is

useful to explore if T ∈ [nN ] fit into the class of Weyl operators or not. Infact, Aiena [1] proved

a Theorem connecting ascent and descent with nullity and deficiency, which is stated below.

Theorem 2.18 ([1],Theorem 3.4). If T is a linear operator on a vector space X and if p(T ) =
q(T ) <∞ then α(T ) =β(T ) (possibly infinity).

Theorem 2.19. Suppose T ∈ [nN ] such that α(T ) or β(T ) is finite and T (H) is closed then T is

a Weyl operator.
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Proof. We have p(T ) = q(T ) ≤ n by Lemma 2.17. It immediately follows from Theorem 2.18

that α(T ) =β(T ) <∞.

Consequently T is a Fredholm operator with ind T=0 and hence Weyl. ���

Theorem 2.20. Suppose that C (T ) is the algebraic core of T ∈ [nN ] then the following assertions

hold:

(i) C (T ) is invariant under T ∗n .

(ii) T ∗(C (T )) ⊆C (T n).

Proof. (i) Since T ∈ [nN ], T ∗T n = T nT ∗ or T ∗nT = T T ∗n . Also by the definition of alge-

braic core of T , T (C (T )) = C (T ) or T n(C (T )) = C (T ) for all n ∈ N. T ∗nT = T T ∗n implies

T ∗nT (C (T )) = T T ∗n(C (T )) or T ∗n(C (T )) = T T ∗n(C (T )).

C (T ) being the greatest subspace satisfying T (C (T )) = C (T ), we have T ∗n(C (T )) ⊆ C (T ).

Thus C (T ) is invariant under T ∗n .

(ii) T ∈ [nN ] implies T ∗T nC (T ) = T nT ∗C (T ) or T ∗(C (T )) = T nT ∗(C (T )). It follows that

T ∗(C (T )) ⊆C (T n), the algebraic core of T n . ���
A. S. Jibril [15] proved that if T ∈ [2N ]∩ [3N ], then T ∈ [nN ] for all positive integers n ≥ 4.

Theorem 2.21. If T ∈ [2N ]∩ [3N ], then

(i) H0(T ) is a reducing subspace of T .

(ii) x ∈ H0(T ) if and only if T ∗x ∈ H0(T ) where

H0(T ) =
{

x ∈ H : lim
n→∞

∥∥T n x
∥∥ 1

n = 0
}

.

(iii) ker (T −λ)∩H0(T ) = {0} for every λ ̸= 0.

Proof. (i) Let F ⊂C be a closed set. The glocal spectral subspace χT (F ) is defined as, χT (F ) ={
x ∈ H : ∃ anal y ti c f (z) : (T − z) f (z) = x on C\F

}
. By Theorem 2.20 [1], we have H0(T −λ) =

χT ({λ}). By Theorem 2.5, T has property(β). Also by Proposition 1.2.19 [17], χT (F ) is closed

and σ(T |χT (F )) ⊂ F . Hence H0(T −λ) is closed for λ ∈ C, which implies H0(T ) is closed. If

x ∈ H0(T ) then from the inequality ∥T nT x∥ ≤ ∥T ∥∥T n x∥, it is easily seen that T x ∈ H0(T ) and

H0(T ) is invariant under T .∥∥T nT ∗x
∥∥2 = ⟨

T nT ∗x,T nT ∗x
⟩

= ⟨
T T ∗nT nT ∗x, x

⟩
= ⟨

T ∗n+1x,T ∗n+1x
⟩

= ∥∥T n+1x
∥∥2

si nce T n+1 i s nor mal∥∥T nT ∗x
∥∥ = ∥∥T n+1x

∥∥ (2.3)
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If x ∈ H0(T ) then, ∥T nT ∗x∥ 1
n =

(∥∥T n+1x
∥∥ 1

n+1

) n+1
n

by (2.3). It follows that T ∗x ∈ H0(T ) and

H0(T ) is invariant under T ∗.

(ii) x ∈ H0(T ) implies T ∗x ∈ H0(T ) follows by (i). Conversely let T ∗x ∈ H0(T ). Since by (2.3)∥∥T n+1x
∥∥= ∥T nT ∗x∥,

lim
n→∞

∥∥T n+1x
∥∥ 1

n+1 = lim
n→∞

(∥∥T nT ∗x
∥∥ 1

n

) n
n+1 = 0.

Thus x ∈ H0(T ).

(iii) Suppose x ̸= 0 ∈ ker (T −λ)∩H0(T ). Then x ∈ ker (T −λ) implies,

(T −λ)x = 0 ⇒ T x =λx ⇒ T n x =λn x.

By (ii) x ∈ H0(T ) if and only if T ∗(x) ∈ H0(T ) and hence,

0 = lim
n→∞

∥∥T nT ∗x
∥∥ 1

n

= lim
n→∞

∥∥T ∗T n x
∥∥ 1

n

= lim
n→∞

∥∥T ∗λn x
∥∥ 1

n

= lim
n→∞ |λ|∥∥T ∗x

∥∥ 1
n

= |λ| lim
n→∞

∥∥T ∗x
∥∥ 1

n

= |λ| .

Which is a contradiction and therefore T ∗x ∉ H0(T ) ⇒ x ∉ H0(T ). Hence ker (T −λ)∩H0(T ) =
{0} for every λ ̸= 0. ���

Remark 2.22. For T ∈ [nN ] the restriction T n |M of T n to a closed invariant subspace M is a

hyponormal operator, since T n |M is subnormal.

Theorem 2.23. Suppose T ∈ [2N ]∩ [3N ], then for every m ≥ 2,m ∈N the following properties

hold:

(i) H0(T m −λ) is a reducing subspace of T .

(ii) H0(T m −λ) = ker (T m −λ) = ker (T ∗m −λ). In particular H0(T m) = ker T m = ker T ∗m .

(iii) If M is an invariant subspace of T and T1 = T |M on H = M ⊕ M⊥ then H0(T m
1 −λ) =

ker (T m
1 −λ) ⊆ ker (T m

1 −λ)∗.

(iv) H0(T m−λm) ⊃ H0(T−λ) and H0(T m−λm) = H0(T−λ) if S = T m−1+λT m−2+·· ·+λm−2T+
λm−1 is invertible.

(v) H0(T −λ) ⊂ ker (T m −λm) and H0(T −λ) = ker (T −λ) if S is invertible.
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Proof. (i)

H0(T m −λ) =
{

x ∈ H : lim
n→∞

∥∥(T m −λ)n x
∥∥ 1

n = 0
}

.

Since T ∈ [2N ]∩ [3N ], T is n-power normal for all n ≥ 2. Therefore (T m)nT ∗ = T ∗(T m)n for

all m ≥ 2,n ≥ 1. Consequently, (T m −λ)nT ∗ = T ∗(T m −λ)n and hence for x ∈ H0(T m −λ), we

have

lim
n→∞

∥∥(T m −λ)nT ∗x
∥∥ 1

n = lim
n→∞

∥∥T ∗(T m −λ)n x
∥∥ 1

n

≤ lim
n→∞

∥∥T ∗∥∥ 1
n lim

n→∞
∥∥(T m −λ)n x

∥∥ 1
n

= 0.

Thus T ∗x ∈ H0(T m −λ). That T x ∈ H0(T m −λ) is obvious.

(ii) It is well known that for a totally paranormal operator T , H0(T −λ) = ker (T −λ) for all λ ∈C

[2]. The class of totally paranormal operators includes the class of hyponormal operators and

hence normal operators. Since T m is normal for all m ≥ 2, we have

H0(T m −λ) = ker (T m −λ) = ker (T m −λ)∗.

For λ= 0, H0(T m) = ker (T m) = ker (T ∗m).

(iii) By Remark 2.22, T m
1 = T m |M is hyponormal and hence H0(T m

1 − λ) = ker (T m
1 − λ) ⊆

ker (T m
1 −λ)∗.

(iv) Let x ∈ H0(T −λ) then

lim
n→∞

∥∥(T −λ)n x
∥∥ 1

n = 0.

Since T m −λm = (T −λ)(T m−1 +λT m−2 +·· ·+λm−2T +λm−1) = (T −λ)S, where S = (T m−1 +
λT m−2 +·· ·+λm−2T +λm−1), we have,

lim
n→∞

∥∥(T m −λm)n x
∥∥ 1

n = lim
n→∞

∥∥(T −λ)nSn x
∥∥ 1

n

≤ lim
n→∞

∥∥Sn
∥∥ 1

n lim
n→∞

∥∥(T −λ)n x
∥∥ 1

n

≤ ∥S∥ lim
n→∞

∥∥(T −λ)n x
∥∥ 1

n

= 0.

Therefore x ∈ H0(T m −λm) and H0(T −λ) ⊂ H0(T m −λm).
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On the otherhand if S is invertible then (T −λ) = S−1(T m −λm). For x ∈ H0(T m −λm), we

have,

lim
n→∞

∥∥(T −λ)n x
∥∥ 1

n = lim
n→∞

∥∥S−n(T m −λm)n x
∥∥ 1

n

≤ ∥∥S−1
∥∥ lim

n→∞
∥∥(T m −λm)n x

∥∥ 1
n

= 0.

Consequently, H0(T m −λm) = H0(T −λ) for all m ≥ 2.

(v) H0(T −λ) ⊂ ker (T m −λm) follows from (ii) and (iv).

That S is invertible yields ker (T m −λm) = ker (T −λ). Again by (ii) and (iv) H0(T −λ) =
ker (T −λ). ���

In general T ∈ [nN ] is not translation invariant.

Example 2.24. It is easily seen that, for T =
(

1 1

−1 0

)
∈ [3N ],

(T − i )3(T − i )∗ =
(
−6i −8 −4i +7

10i −1 −4i −7

)
.

(T − i )∗(T − i )3 =
(
−6i −8 −10i +1

4i −7 −4i −7

)
.

Therefore (T − i ) ∉ [3N ]. Thus T ∈ [nN ] is not translation invariant.

Naturally in view of the above statement, the following question arises: What could be

the nature of class [nN ] operators satisfying the translation invariant property?

In [8] Eungil Ko proved that if the k th root of a hyponormal operator is translation invari-

ant then it is hyponormal. We use the same technique to prove the following Theorem.

Theorem 2.25. Suppose T ∈ [nN ] is translation invariant then T is normal.

Proof.

(T −λ)n(T −λ)∗ = (T −λ)∗(T −λ)n

0 = (T −λ)∗(T −λ)n − (T −λ)n(T −λ)∗

0 = (T −λ)∗
[

n∑
k=0

(
n

k

)
T n−k (−λ)k

]
−

[
n∑

k=0

(
n

k

)
T n−k (−λ)k

]
(T −λ)∗ (2.4)

Put λ= ρe iθ,ρ > 0,0 ≤ θ < 2π, in (2.4) and dividing the simplified equation by ρn−1 gives,

0 = n(T ∗T −T T ∗)e(n−1)iθ+ 1

ρ
(the other terms).

Taking limit as ρ→∞ gives, T T ∗ = T ∗T . ���
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