Available online at http://journals.math.tku.edu.tw/

FUGLEDE-PUTNAM THEOREM AND QUASI-NILPOTENT PART OF *n*-POWER NORMAL OPERATORS

J. STELLA IRENE MARY AND P. VIJAYALAKSHMI

Abstract. In this article we show that the following properties hold for *n*-power normal operators *T*:

(i) *T* has the Bishop's property(β).

(ii) *T* is isoloid.

(iii) T is invariant under tensor product.

(iv) T satisfies the Fuglede-Putnam theorem.

(v) T is of finite ascent and descent.

(vi) The Quasi-nilpotent part of *T* reduces *T*.

1. Introduction

In this introductory section, we indicate the main trend of the ideas to be developed in this paper. Let *H* and *K* be complex Hilbert spaces and *T* a bounded linear operator on *H*, whose domain, range and null space lie in *H*. Let L(H) denote the algebra of all bounded linear operators acting on *H*. An operator *T* is said to be *n*-power normal if $T^*T^n = T^nT^*$ where $n \in \mathbb{N}$. The class of *n*-power normal operators is denoted by [nN]. The class [nN] was introduced by A. S. Jibril [15] and he characterized several properties of class [nN]. One of the properties frequently used in this paper is that $T \in [nN]$ if and only if T^n is normal. The normality of T^n enable us to study several properties of class [nN]. For example, in section 2 we give matrix representation for *T* and prove property(β).

Definition 1.1. An operator $T \in B(H)$ is said to have the property(β) at $\lambda \in \mathbb{C}$ if the following assertion holds:-

If $D \subset \mathbb{C}$ is an open neighbourhood of λ and if $f_n : D \to H(n = 1, 2, ...)$ are vector valued analytic functions such that $(T - \mu)f_n(\mu) \to 0$ uniformly on every compact subset of D, then $f_n(\mu) \to 0$, again uniformly on every compact subset of D, for all $\mu \in D$.

Received May 15, 2014, accepted October 21, 2014.

2010 Mathematics Subject Classification. 47B20.

Key words and phrases. Bishop's property(β), isoloid, Fuglede-Putnam Theorem, quasi-nilpotent part. Corresponding author: J. Stella Irene Mary.

Property(β) has been proved for several operators such as hyponormal operators [21], (p, k)-quasi-hyponormal operators [26], class A operators [5], class A(k) operators [19], paranormal operators [27], *-paranormal operators [7] and k-quasi-M-hyponormal operators [24].

Definition 1.2. An operator $T \in L(H)$ is said to be isoloid if every isolated point of $\sigma(T)$ is an eigen value of *T*.

Throughout this paper, the range, null space and the closure of the range of a bounded linear operator *T*, are denoted by ran T, ker T and [ranT] respectively. For convenience we write $(T - \lambda)$ in the place of $(T - \lambda I)$.

Two important subspaces in local spectral theory are $\chi_T(F)$, the glocal spectral subspace and $\chi_T(\mathbb{C} - \{\lambda\})$.

Definition 1.3. For $T \in B(H)$ and a closed subset F of \mathbb{C} the glocal spectral subspace $\chi_T(F)$ is defined as the set of all $x \in H$ such that there is an analytic H-valued function $f : \mathbb{C} \setminus F \to H$ for which $(T - \lambda)f(\lambda) = x$ for all $\lambda \in \mathbb{C} \setminus F$.

The quasinilpotent part of $(T - \lambda)$ is denoted by $H_0(T - \lambda)$ and defined as follows:

Definition 1.4.

$$H_0(T-\lambda) = \left\{ x \in H : \lim_{n \to \infty} \left\| (T-\lambda)^n x \right\|^{\frac{1}{n}} = 0 \right\}.$$

Note that the subspace $\chi_T(\{\lambda\})$ coincides with the quasinilpotent part of $(T - \lambda)$ while $\chi_T(\mathbb{C} - \{0\})$ coincides with the analytic core K(T) defined as the set $K(T-\lambda)$ of all $x \in H$ such that there exists c > 0 and a sequence $\{x_n\} \in H$ for which $(T-\lambda)x_1 = x$, $(T-\lambda)x_{n+1} = x_n$ and $||x_n|| \le c^n ||x||$ for all $n \in \mathbb{N}$.

Vrbova' [28] introduced the subspace K(T) which is the analytic counter part of the algebraic core C(T). Saphar [25] introduced the subspace C(T) in purely algebraic terms.

Definition 1.5. Let *T* be a linear operator on *H*. The algebraic core C(T) is defined to be the greatest subspace *M* of *H* for which T(M) = M.

We note that $T^n(M) = M$ for all $n \in \mathbb{N}$.

The class of all upper semi-Fredholm operators is denoted by $\Phi_+(H)$ and is defined as,

 $\Phi_+(H) = \{T \in L(H) : \alpha(T) < \infty \text{ and } T(H) \text{ is closed}\}$

and the class of all lower semi-Fredholm operators is denoted by $\Phi_{-}(H)$ and is defined as,

$$\Phi_{-}(H) = \left\{ T \in L(H) : \beta(T) < \infty \right\}$$

where $\alpha(T)$ and $\beta(T)$ denote the dimension of the kernel of *T* and the codimension of the range of *T*. The class of all semi-Fredholm operators is denoted by $\Phi_{\pm}(H)$ and is defined as $\Phi_{\pm}(H) = \Phi_{+}(H) \cup \Phi_{-}(H)$ and the class of Fredholm operators is denoted by $\Phi(H)$ and is defined as $\Phi(H) = \Phi_{+}(H) \cap \Phi_{-}(H)$.

Recall that the ascent p(T) of an operator T is the smallest non-negative integer p such that ker $T^p = ker T^{p+1}$ and if such an integer does not exist then we put $p(T) = \infty$. Analogously, descent q(T) of the operator T is the smallest non-negative integer q such that $ran T^q = ran T^{q+1}$ and if such an integer does not exist then we put $q(T) = \infty$. If p(T) and q(T) are finite then p(T) = q(T) [12, Proposition 38.3].

The class of all Weyl operators denoted by W(H) is defined by,

$$W(H) = \left\{ T \in \Phi(H) : \text{ind } T = 0 \text{ where ind } T = \alpha(T) - \beta(T) \right\}.$$

2. Main results

We begin with the matrix representation for $T \in [nN]$.

Lemma 2.1 ([15]). $T \in [nN]$ if and only if T^n is normal.

Lemma 2.2. Suppose $T \in [nN]$ then $[ranT^n]$ reduces T.

Proof. Since $T \in [nN]$, $T^nT^* = T^*T^n$. $[ranT^n]$ is invariant under *T* is obvious. We shall show that $[ranT^n]$ is invariant under T^* . Let $x \in ranT^n$. Then $x = T^ny$ for some $y \in H$ and $T^*x = T^*T^ny = T^nT^*y \in ranT^n$.

Suppose *z* is a limit point of ran T^n , then there is a sequence $\{z_n\}$ in ran (T^n) such that $z_n \to z$. Since $\{z_n\}$ is a sequence in ran T^n , $z_n = T^n x_n$, $n = 1, 2, ..., n \in \mathbb{N}$, $x_n \in H$. $T^* z_n = T^* T^n x_n = T^n T^* x_n \in ran T^n$.

So $\{T^*z_n\}$ is a sequence in ran T^n . By the continuity of T^* , the sequence $\{T^*z_n\} \to T^*z \in [ranT^n]$. Thus $[ranT^n]$ is invariant under T^* and $[ranT^n]$ reduces T.

Theorem 2.3. If *T* is *n*-power normal then *T* has the following matrix representation, $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$ on $H = [ranT^n] \oplus ker T^{*n}$ where $T_1 = T|_{[ranT^n]}$ is also an *n*-power normal operator and T_2 is a nilpotent operator with nilpotency *n*. Furthermore $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. By Lemma 2.2, $[ranT^n]$ reduces *T*. Hence *T* has the matrix representation, $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$ on $H = [ranT^n] \oplus kerT^{*n}$. Let *P* be the orthogonal projection onto $[ranT^n]$. Then

$$\begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix} = TP = PT = PTP.$$

$$P(T^n T^*)P = \begin{pmatrix} T_1^n T_1^* & 0 \\ 0 & 0 \end{pmatrix}.$$
Also $P(T^* T^n)P = \begin{pmatrix} T_1^* T_1^n & 0 \\ 0 & 0 \end{pmatrix}.$
Since $T \in [nN], P(T^n T^*)P = P(T^* T^n)P$, implying $T_1^n T_1^* = T_1^* T_1^n$. Hence $T_1 \in [nN].$
For any $z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in H$,
$$\langle T_2^n z_2, z_2 \rangle = \langle T^n (I - P) z, (I - P) z \rangle$$

$$= \langle (I - P) z, T^{*n} (I - P) z \rangle$$

$$= 0.$$

Therefore $T_2^n = 0$. Since $[ranT^n]$ reduces $T, \sigma(T) = \sigma(T_1) \cup \sigma(T_2) = \sigma(T_1) \cup \{0\}$.

Lemma 2.4. If T is an n-power normal operator and M is a reducing subspace of T then $T|_M$ is also an n-power normal operator.

Proof. Since *M* is a reducing subspace of *T*, it has the matrix representation, $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$ on $H = M \oplus M^{\perp}$. Let *P* be the orthogonal projection onto *M*. Then $\begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix} = TP = PT = PTP$. $P(T^nT^*)P = \begin{pmatrix} T_1^nT_1^* & 0 \\ 0 & 0 \end{pmatrix}$. $P(T^*T^n)P = \begin{pmatrix} T_1^*T_1^n & 0 \\ 0 & 0 \end{pmatrix}$. Since $T \in [nN]$, $T_1^nT_1^* = T_1^*T_1^n$. Therefore $T_1 \in [nN]$. Hence $T|_M$ is n-power normal.

Theorem 2.5. *If* $T \in [nN]$ *then* T *has the property*(β).

Proof. Consider an open neighbourhood $D \subset \mathbb{C}$ of $\lambda \in \mathbb{C}$ and $f_m(m = 1, 2, ...)$, the vector valued analytic functions on D such that $(T - \mu)f_m(\mu) \to 0$ uniformly on every compact subset of D.

Decompose *H* as $H = [ranT^n] \oplus kerT^{*n}$, by Theorem 2.3, $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$ where $T_1 \in [nN]$ and T_2 is a nilpotent operator with nilpotency *n*.

 $(T-\mu)f_m(\mu) \rightarrow 0$ implies,

$$\begin{pmatrix} T_1-\mu & 0\\ 0 & T_2-\mu \end{pmatrix} \begin{pmatrix} f_{m_1}(\mu)\\ f_{m_2}(\mu) \end{pmatrix} = \begin{pmatrix} (T_1-\mu)f_{m_1}(\mu)\\ (T_2-\mu)f_{m_2}(\mu) \end{pmatrix} \to 0.$$

Since T_2 is nilpotent, it has property(β) and therefore $f_{m_2}(\mu) \rightarrow 0$.

Also since T_1^n is normal, it has property(β) and therefore by Theorem 3.39 [17], *T* has property(β).

Corollary 2.6. If $T \in [nN]$ then T has the single-valued extension property.

The following two Examples show that for a *n*- power normal operator *T*, the corresponding eigenspaces need not be reducing subspaces of *T*.

Example 2.7.
$$T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. Clearly *T* is a 2-power normal operator and the eigenspace of *T* is $\begin{pmatrix} x \\ 0 \end{pmatrix}$ but it is not a reducing subspace of *T*.

Example 2.8. $T = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$. Here *T* is a 2-power normal operator and the corresponding eigenspaces of *T* are $\begin{pmatrix} x \\ 0 \end{pmatrix}$ and $\begin{pmatrix} x \\ -x \end{pmatrix}$ but these are not reducing subspaces of *T*.

Also the *n*-power normal operators are not semiregular. For example consider the multiplication operator *T* defined by (Tf)(t) = tf(t) for $f \in L^2[0,1]$ and $t \in [0,1]$. Then *T* is normal, injective and has dense range. Since the range of *T* is not closed, *T* is not semiregular.

Lemma 2.9. Let $T \in [nN]$ and $\lambda \in \sigma(T)$ be an isolated point. Then λ^n is an isolated point of $\sigma(T^n)$.

Proof. Since $\lambda \in \sigma(T)$ is an isolated point there is a neighbourhood *V* of λ with radius δ which contains no point of $\sigma(T)$ other than λ . By Spectral mapping Theorem, $\lambda^n \in \sigma(T^n)$. Suppose $\lambda^n \in \sigma(T^n)$ is not an isolated point of $\sigma(T^n)$, then every neighbourhood of λ^n contains atleast one point of $\sigma(T^n)$ other than λ^n . Consequently, let μ^n in $\sigma(T^n)$ be a point in a neighbourhood *V*_n of λ^n with radius $\frac{\delta}{2}\rho$ where $\rho = |\sum_{k=0}^{n-1} \lambda^{n-k-1} \mu^k|$. It follows from Spectral mapping Theorem that $\mu \in \sigma(T)$. Then

$$\begin{aligned} |\lambda^{n} - \mu^{n}| &\leq \frac{\delta}{2}\rho \end{aligned} \tag{2.1} \\ |\lambda^{n} - \mu^{n}| &= |\lambda - \mu| \left| \sum_{k=0}^{n-1} \lambda^{n-k-1} \mu^{k} \right| \\ &= |\lambda - \mu| \rho \end{aligned}$$

Consequently, $|\lambda - \mu| &\leq \frac{\delta}{2}$ by (2.1).

This shows that $\mu \neq \lambda$ is a point in *V*, contradicting the hypothesis that λ is an isolated point of $\sigma(T)$. Thus, λ^n is an isolated point of $\sigma(T^n)$.

Lemma 2.10. Let $T \in [nN]$ then T is isoloid.

Proof. Let $\lambda \in \sigma(T)$ be an isolated point. By Lemma 2.9, λ^n is an isolated point of $\sigma(T^n)$. Since T^n is normal, it is isoloid. Therefore λ^n is in the point spectrum of T^n . This implies that $(\lambda^n - T^n)^{-1}$ does not exist.

$$(\lambda^n - T^n)^{-1} = \frac{1}{\lambda^n} \left(I - \frac{T^n}{\lambda^n} \right)^{-1} = \mu^n (I - \mu^n T^n)^{-1} \text{ where } \mu = \frac{1}{\lambda}.$$

Recall the identity,

$$(I - \mu^{n} T^{n})^{-1} = \frac{1}{n} [(I - \mu T)^{-1} + (I - \mu w T)^{-1} + (I - \mu w^{2} T)^{-1} + \dots + (I - \mu w^{n-1} T)^{-1}]$$

$$(I - \mu^{n} T^{n})^{-1} = \frac{1}{n} [(I - \mu T)^{-1} + \sum_{k=1}^{n-1} (I - \mu w^{k} T)^{-1}]$$
(2.2)

where *w* is the primitive root of unity. Since $(I - \mu^n T^n)^{-1}$ does not exist, at least one term of the expression on the righthand side of (2.2) does not exist. Hence there exist two cases.

Case(i):

Suppose $(I - \mu T)^{-1}$ does not exist. Since $\mu = \frac{1}{\lambda}$, $(\lambda I - T)^{-1}$ does not exist, which implies $\lambda \in P_{\sigma}(T)$.

Case(ii):

Suppose $(I - \mu w^k T)^{-1}$ does not exist for some k = 1, 2, 3, ..., n - 1. From (2.2),

$$n(I - \mu^{n} T^{n})^{-1} - (I - \mu w^{k} T)^{-1} = (I - \mu T)^{-1} + \dots + (I - \mu w^{k-1} T)^{-1} + (I - \mu w^{k+1} T)^{-1} + \dots + (I - \mu w^{n-1} T)^{-1}$$

Since $n(I - \mu^n T^n)^{-1} - (I - \mu w^k T)^{-1}$ does not exist the expression on the otherside also does not exist. In that expression atleast one term does not exist. On repeating a similar argument as above, we arrive at a stage where $(I - \mu T)^{-1}$ does not exist. That is $\frac{1}{\lambda}(\lambda I - T)^{-1}$ does not exist, hence $\lambda \in P_{\sigma}(T)$. It follows that *T* is isoloid.

Tensor product of class[nN] operators

For $A, B \in L(H)$, a number of authors have considered variously, the tensor product $A \otimes B$, on the product space $H \otimes H$. The operation of taking tensor products $A \otimes B$ preserves many a property of $A, B \in L(H)$, but by no means all of them. For instance the normaloid property is invariant under tensor products, whereas the spectroloid property is not [23, pp.623 and 631]. H. Jinchuan [16] proved that $A \otimes B$ is normal if and only if A and B are so, where A and B are non-zero operators. Similar results were proved for subnormal operators [18], hyponormal operators [13], p- hyponormal operators [6], class A operators [14] and p- quasihyponormal operators [9]. But there exists paranormal operators A and B such that $A \otimes B$ is not paranormal [3]. We show that if A and B are of class n-power normal then $A \otimes B$ is also of the class n-power normal. **Lemma 2.11** ([13]). *If* $A \in L(H)$ *and* $B \in L(K)$ *are non-zero operators, then* $A \otimes B$ *is normal if and only if so are* A *and* B.

Theorem 2.12. $T_1 \otimes T_2$ is an *n*-power normal operator if and only if T_1 and T_2 are so.

Proof. First we begin with the observations that $(T_1 \otimes T_2)^* (T_1 \otimes T_2) = T_1^* T_1 \otimes T_2^* T_2$ and $(T_1 \otimes T_2)^n = T_1^n \otimes T_2^n$. Suppose T_1 and T_2 are n-power normal operators, then

$$(T_1 \otimes T_2)^n (T_1 \otimes T_2)^* = T_1^n T_1^* \otimes T_2^n T_2^*$$

= $T_1^* T_1^n \otimes T_2^* T_2^n$
= $(T_1 \otimes T_2)^* (T_1 \otimes T_2)^n$.

Therefore $T_1 \otimes T_2$ is an n-power normal operator. Conversely, suppose $T_1 \otimes T_2$ is an n-power normal operator, then $(T_1 \otimes T_2)^n$ is normal. By Lemma 2.11, we have T_1^n and T_2^n are normal. Then by Lemma 2.1, T_1 and T_2 are n-power normal operators.

Fuglede-Putnam Theorem for n-power normal operators

Fuglede-Putnam Theorem is well known in operator theory. It affirms that if *A* and *B* are normal operators and AX = XB for some operator *X* then $A^*X = XB^*$. First, Fuglede [10] proved it in the case when A = B and then Putnam [22] proved it in a general case. There exists many generalizations of this Theorem of which most of them go into unwinding the normality of *A* and *B* (see [11, 20] and some of the references cited in these papers).

Berbarian [4] unwinds the hypothesis on *A* and *B* by assuming *A* and B^* are hyponormal operators and *X* to be a Hilbert-Schmidt class. The operators in *H* which are of Hilbert-Schmidt class form an ideal \mathbb{H} in the algebra L(H) of all operators in *H*. \mathbb{H} itself is a Hilbert space for the inner product

$$\langle X, Y \rangle = \sum \langle X e_i, Y e_i \rangle = Tr(Y^*X) = Tr(XY^*),$$

where $\{e_i\}$ is any orthonormal basis of H. For each pair of operators $A, B \in L(H)$, there is an operator Γ defined on $L(\mathbb{H})$ via the formula $\Gamma(X) = AXB$ as in [4]. Obviously, $\|\Gamma\| \le \|A\| \|B\|$. The adjoint of Γ is given by the formula $\Gamma^*(X) = A^*XB^*$. Also if $A \ge 0, B \ge 0$ then $\Gamma \ge 0$ [4].

Lemma 2.13. If A and B^* are of class[nN] then the operator Γ is of class[nN].

Proof. By hypothesis, $A^*A^n = A^nA^*$, $BB^{*^n} = B^{*^n}B$. Since, $\Gamma(X) = AXB$ and $\Gamma^*(X) = A^*XB^*$ for any pair $A, B \in L(H)$,

$$(\Gamma^*\Gamma^n - \Gamma^n\Gamma^*)X = \Gamma^*\Gamma^nX - \Gamma^n\Gamma^*X$$
$$= \Gamma^*(A^nXB^{*^n}) - \Gamma^n(A^*XB)$$

$$= A^{*}A^{n}XB^{*^{n}}B - A^{n}A^{*}XBB^{*^{n}}$$

= A^{*}A^{n}XB^{*^{n}}B - A^{*}A^{n}XB^{*^{n}}B
= 0.

The above equality shows that $\Gamma \in [nN]$.

Lemma 2.14. If $A \in [nN]$ and A is invertible, then $A^{-1} \in [nN]$.

Proof. By hypothesis $A^*A^n = A^nA^*$, we need to prove that $A^{*^{-1}}A^{n^{-1}} = A^{n^{-1}}A^{*^{-1}}$.

$$A^{*^{-1}}A^{n^{-1}} = (A^n A^*)^{-1} = (A^* A^n)^{-1} = A^{n^{-1}}A^{*^{-1}}$$

Hence $A^{-1} \in \text{class}[nN]$.

Lemma 2.15 ([15]). Let $T \in L(H)$ such that $T \in [2N] \cap [3N]$, then $T \in [nN]$ for all positive integers $n \ge 4$.

Theorem 2.16. Let A and B^* be in class $[2N \cap 3N]$ such that B^* is invertible and X be a Hilbert-Schmidt operator. Suppose that AX = XB then $A^*X = XB^*$.

Proof. Let Γ be the Hilbert-Schmidt operator defined by, $\Gamma Y = AYB^{-1}$, where $Y \in L(H)$. By hypothesis *A* and *B*^{*} are of class[*nN*], by Lemma 2.14 (*B*^{*})⁻¹ is of class[*nN*]. Since (*B*^{*})⁻¹ = $(B^{-1})^*$, it follows by Lemma 2.13 that Γ is of class[*nN*]. The hypothesis AX = XB implies that $\Gamma X = X$ and also by Lemma 2.15, $T \in [nN]$ for all $n \ge 2$, it follows that,

$$\|\Gamma^*X\|^2 = \langle \Gamma^*X, \Gamma^*X \rangle$$

= $\langle \Gamma^*\Gamma^nX, \Gamma^*\Gamma^nX \rangle$
= $\langle \Gamma\Gamma^{*n}\Gamma^*\Gamma^nX, X \rangle$
= $\langle \Gamma\Gamma^{*n+1}\Gamma^nX, X \rangle$
= $\langle \Gamma^{*n+1}\Gamma\Gamma^nX, X \rangle$
= $\langle \Gamma^{n+1}X, \Gamma^{n+1}X \rangle$
= $\|X\|^2$.

The above equality gives,

$$\begin{split} \left\| \Gamma^* X - X \right\|^2 &= \left\langle \Gamma^* X - X, \Gamma^* X - X \right\rangle \\ &= \left\langle \Gamma^* X, \Gamma^* X \right\rangle - \left\langle \Gamma^* X, X \right\rangle - \left\langle X, \Gamma^* X \right\rangle + \left\langle X, X \right\rangle \\ &= \left\| \Gamma^* X \right\|^2 - \left\langle X, \Gamma X \right\rangle - \left\langle \Gamma X, X \right\rangle + \|X\|^2 \\ &= \|X\|^2 - \left\langle X, X \right\rangle - \left\langle X, X \right\rangle + \|X\|^2 \end{split}$$

Therefore $\Gamma^* X = X$ and hence $A^* X = XB^*$.

Ascent and Descent

The non-negative integers p(T) and q(T) known as the ascent and descent of T respectively play a vital role to generate several classes of Browder operators and related spectrum. So we may anticipate if an n-power normal operator T have finite ascent(descent) or not. Infact, T^n has finite ascent since it is normal. Indeed, the following Lemma shows that the ascent and descent of $T \in [nN]$ are finite.

Lemma 2.17. For any operator $T \in L(H)$ with T^n normal, the following assertions hold:

- (i) $p(T) = q(T) \le n$.
- (ii) $N^{\infty}(T) = \ker T^n$ and $T^{\infty}(H) = \operatorname{ran} T^n$, where $N^{\infty}(T) = \bigcup_{k \in \mathbb{N}} \ker T^k$ and $T^{\infty}(H) = \bigcap_{k \in \mathbb{N}} T^k(H)$ are the hyper kernel and hyper range respectively.

Proof. (i) It is well known that, for any normal operator *A*, $kerA^2 = kerA$ and $[ranA^2] = [ranA]$.

Since T^n is normal, $kerT^{2n} = kerT^n$ and $[ranT^{2n}] = [ranT^n]$. Consequently, from the chain relations $kerT \subseteq kerT^2 \subseteq \cdots \subseteq kerT^n \subseteq kerT^{n+1} \subseteq \cdots \subseteq kerT^{2n} = kerT^n \subseteq kerT^{2n+1} \cdots$ and $\cdots [ranT^n] = [ranT^{2n}] \subseteq [ranT^{2n-1}] \subseteq \cdots \subseteq [ranT^{n+1}] \subseteq [ranT^n] \subseteq [ranT^{n-1}] \subseteq \cdots \subseteq [ranT^n]$, we obtain, $kerT^n = kerT^{n+1}$ and $ranT^n = ranT^{n+1}$. By the definition of p(T) and q(T), we have $p(T) \le n$ and $q(T) \le n$. Since both are finite p(T) = q(T) [12].

(ii) Also

$$N^{\infty}(T) = \bigcup_{k \in \mathbb{N}} \ker T^k = \ker T^n, T^{\infty}(H) = \bigcap_{k \in \mathbb{N}} T^k(H) = \operatorname{ran} T^n.$$

Nullity and Deficiency

The role of nullity $\alpha(T)$ and deficiency $\beta(T)$ of an operator *T* are crucial in the class of Fredholm operators and Weyl operators. The following Theorem concerning $\alpha(T)$ and $\beta(T)$ is useful to explore if $T \in [nN]$ fit into the class of Weyl operators or not. Infact, Aiena [1] proved a Theorem connecting ascent and descent with nullity and deficiency, which is stated below.

Theorem 2.18 ([1], Theorem 3.4). *If T is a linear operator on a vector space X and if* $p(T) = q(T) < \infty$ *then* $\alpha(T) = \beta(T)$ (*possibly infinity*).

Theorem 2.19. Suppose $T \in [nN]$ such that $\alpha(T)$ or $\beta(T)$ is finite and T(H) is closed then T is a Weyl operator.

Proof. We have $p(T) = q(T) \le n$ by Lemma 2.17. It immediately follows from Theorem 2.18 that $\alpha(T) = \beta(T) < \infty$.

Consequently *T* is a Fredholm operator with ind T=0 and hence Weyl.

Theorem 2.20. Suppose that C(T) is the algebraic core of $T \in [nN]$ then the following assertions *hold*:

- (i) C(T) is invariant under T^{*n} .
- (ii) $T^*(C(T)) \subseteq C(T^n)$.

Proof. (i) Since $T \in [nN]$, $T^*T^n = T^nT^*$ or $T^{*n}T = TT^{*n}$. Also by the definition of algebraic core of T, T(C(T)) = C(T) or $T^n(C(T)) = C(T)$ for all $n \in \mathbb{N}$. $T^{*n}T = TT^{*n}$ implies $T^{*n}T(C(T)) = TT^{*n}(C(T))$ or $T^{*n}(C(T)) = TT^{*n}(C(T))$.

C(T) being the greatest subspace satisfying T(C(T)) = C(T), we have $T^{*n}(C(T)) \subseteq C(T)$. Thus C(T) is invariant under T^{*n} .

(ii) $T \in [nN]$ implies $T^*T^nC(T) = T^nT^*C(T)$ or $T^*(C(T)) = T^nT^*(C(T))$. It follows that $T^*(C(T)) \subseteq C(T^n)$, the algebraic core of T^n .

A. S. Jibril [15] proved that if $T \in [2N] \cap [3N]$, then $T \in [nN]$ for all positive integers $n \ge 4$.

Theorem 2.21. *If* $T \in [2N] \cap [3N]$ *, then*

- (i) $H_0(T)$ is a reducing subspace of T.
- (ii) $x \in H_0(T)$ if and only if $T^* x \in H_0(T)$ where

$$H_0(T) = \left\{ x \in H : \lim_{n \to \infty} \| T^n x \|^{\frac{1}{n}} = 0 \right\}.$$

(iii) $ker(T - \lambda) \cap H_0(T) = \{0\}$ for every $\lambda \neq 0$.

Proof. (i) Let $F \subset \mathbb{C}$ be a closed set. The glocal spectral subspace $\chi_T(F)$ is defined as, $\chi_T(F) = \{x \in H : \exists \text{ analytic } f(z) : (T - z) f(z) = x \text{ on } \mathbb{C} \setminus F\}$. By Theorem 2.20 [1], we have $H_0(T - \lambda) = \chi_T(\{\lambda\})$. By Theorem 2.5, *T* has property(β). Also by Proposition 1.2.19 [17], $\chi_T(F)$ is closed and $\sigma(T|_{\chi_T(F)}) \subset F$. Hence $H_0(T - \lambda)$ is closed for $\lambda \in \mathbb{C}$, which implies $H_0(T)$ is closed. If $x \in H_0(T)$ then from the inequality $||T^nTx|| \leq ||T|| ||T^nx||$, it is easily seen that $Tx \in H_0(T)$ and $H_0(T)$ is invariant under *T*.

$$\|T^{n}T^{*}x\|^{2} = \langle T^{n}T^{*}x, T^{n}T^{*}x \rangle$$

$$= \langle TT^{*n}T^{n}T^{*}x, x \rangle$$

$$= \langle T^{*n+1}x, T^{*n+1}x \rangle$$

$$= \|T^{n+1}x\|^{2} since T^{n+1} is normal$$

$$\|T^{n}T^{*}x\| = \|T^{n+1}x\| \qquad (2.3)$$

If $x \in H_0(T)$ then, $||T^n T^* x||^{\frac{1}{n}} = \left(||T^{n+1} x||^{\frac{1}{n+1}} \right)^{\frac{n+1}{n}}$ by (2.3). It follows that $T^* x \in H_0(T)$ and $H_0(T)$ is invariant under T^* .

(ii) $x \in H_0(T)$ implies $T^*x \in H_0(T)$ follows by (i). Conversely let $T^*x \in H_0(T)$. Since by (2.3) $||T^{n+1}x|| = ||T^nT^*x||$,

$$\lim_{n \to \infty} \|T^{n+1}x\|^{\frac{1}{n+1}} = \lim_{n \to \infty} \left(\|T^n T^*x\|^{\frac{1}{n}} \right)^{\frac{n}{n+1}} = 0.$$

Thus $x \in H_0(T)$.

(iii) Suppose $x \neq 0 \in ker(T - \lambda) \cap H_0(T)$. Then $x \in ker(T - \lambda)$ implies,

$$(T - \lambda)x = 0 \Rightarrow Tx = \lambda x \Rightarrow T^n x = \lambda^n x.$$

By (ii) $x \in H_0(T)$ if and only if $T^*(x) \in H_0(T)$ and hence,

$$0 = \lim_{n \to \infty} \|T^n T^* x\|^{\frac{1}{n}}$$
$$= \lim_{n \to \infty} \|T^* T^n x\|^{\frac{1}{n}}$$
$$= \lim_{n \to \infty} \|T^* \lambda^n x\|^{\frac{1}{n}}$$
$$= \lim_{n \to \infty} |\lambda| \|T^* x\|^{\frac{1}{n}}$$
$$= |\lambda| \lim_{n \to \infty} \|T^* x\|^{\frac{1}{n}}$$
$$= |\lambda|.$$

Which is a contradiction and therefore $T^* x \notin H_0(T) \Rightarrow x \notin H_0(T)$. Hence $ker(T - \lambda) \cap H_0(T) = \{0\}$ for every $\lambda \neq 0$.

Remark 2.22. For $T \in [nN]$ the restriction $T^n|_M$ of T^n to a closed invariant subspace M is a hyponormal operator, since $T^n|_M$ is subnormal.

Theorem 2.23. Suppose $T \in [2N] \cap [3N]$, then for every $m \ge 2, m \in \mathbb{N}$ the following properties *hold*:

- (i) $H_0(T^m \lambda)$ is a reducing subspace of T.
- (ii) $H_0(T^m \lambda) = ker(T^m \lambda) = ker(T^{*m} \lambda)$. In particular $H_0(T^m) = kerT^m = kerT^{*m}$.
- (iii) If *M* is an invariant subspace of *T* and $T_1 = T|_M$ on $H = M \oplus M^{\perp}$ then $H_0(T_1^m \lambda) = ker(T_1^m \lambda) \subseteq ker(T_1^m \lambda)^*$.
- (iv) $H_0(T^m \lambda^m) \supset H_0(T \lambda)$ and $H_0(T^m \lambda^m) = H_0(T \lambda)$ if $S = T^{m-1} + \lambda T^{m-2} + \dots + \lambda^{m-2} T + \lambda^{m-1}$ is invertible.
- (v) $H_0(T-\lambda) \subset ker(T^m \lambda^m)$ and $H_0(T-\lambda) = ker(T-\lambda)$ if S is invertible.

Proof. (i)

$$H_0(T^m - \lambda) = \left\{ x \in H : \lim_{n \to \infty} \left\| (T^m - \lambda)^n x \right\|^{\frac{1}{n}} = 0 \right\}.$$

Since $T \in [2N] \cap [3N]$, *T* is n-power normal for all $n \ge 2$. Therefore $(T^m)^n T^* = T^* (T^m)^n$ for all $m \ge 2, n \ge 1$. Consequently, $(T^m - \lambda)^n T^* = T^* (T^m - \lambda)^n$ and hence for $x \in H_0(T^m - \lambda)$, we have

$$\begin{split} \lim_{n \to \infty} \left\| (T^m - \lambda)^n T^* x \right\|^{\frac{1}{n}} &= \lim_{n \to \infty} \left\| T^* (T^m - \lambda)^n x \right\|^{\frac{1}{n}} \\ &\leq \lim_{n \to \infty} \left\| T^* \right\|^{\frac{1}{n}} \lim_{n \to \infty} \left\| (T^m - \lambda)^n x \right\|^{\frac{1}{n}} \\ &= 0. \end{split}$$

Thus $T^* x \in H_0(T^m - \lambda)$. That $T x \in H_0(T^m - \lambda)$ is obvious.

(ii) It is well known that for a totally paranormal operator T, $H_0(T-\lambda) = ker(T-\lambda)$ for all $\lambda \in \mathbb{C}$ [2]. The class of totally paranormal operators includes the class of hyponormal operators and hence normal operators. Since T^m is normal for all $m \ge 2$, we have

$$H_0(T^m - \lambda) = ker(T^m - \lambda) = ker(T^m - \lambda)^*.$$

For $\lambda = 0$, $H_0(T^m) = ker(T^m) = ker(T^{*m})$.

(iii) By Remark 2.22, $T_1^m = T^m|_M$ is hyponormal and hence $H_0(T_1^m - \lambda) = ker(T_1^m - \lambda) \subseteq ker(T_1^m - \lambda)^*$.

(iv) Let $x \in H_0(T - \lambda)$ then

$$\lim_{n\to\infty} \left\| (T-\lambda)^n x \right\|^{\frac{1}{n}} = 0.$$

Since $T^m - \lambda^m = (T - \lambda)(T^{m-1} + \lambda T^{m-2} + \dots + \lambda^{m-2}T + \lambda^{m-1}) = (T - \lambda)S$, where $S = (T^{m-1} + \lambda T^{m-2} + \dots + \lambda^{m-2}T + \lambda^{m-1})$, we have,

$$\begin{split} \lim_{n \to \infty} \left\| (T^m - \lambda^m)^n x \right\|^{\frac{1}{n}} &= \lim_{n \to \infty} \left\| (T - \lambda)^n S^n x \right\|^{\frac{1}{n}} \\ &\leq \lim_{n \to \infty} \left\| S^n \right\|^{\frac{1}{n}} \lim_{n \to \infty} \left\| (T - \lambda)^n x \right\|^{\frac{1}{n}} \\ &\leq \|S\| \lim_{n \to \infty} \left\| (T - \lambda)^n x \right\|^{\frac{1}{n}} \\ &= 0. \end{split}$$

Therefore $x \in H_0(T^m - \lambda^m)$ and $H_0(T - \lambda) \subset H_0(T^m - \lambda^m)$.

On the other hand if *S* is invertible then $(T - \lambda) = S^{-1}(T^m - \lambda^m)$. For $x \in H_0(T^m - \lambda^m)$, we have,

$$\begin{split} \lim_{n \to \infty} \left\| (T - \lambda)^n x \right\|^{\frac{1}{n}} &= \lim_{n \to \infty} \left\| S^{-n} (T^m - \lambda^m)^n x \right\|^{\frac{1}{n}} \\ &\leq \left\| S^{-1} \right\| \lim_{n \to \infty} \left\| (T^m - \lambda^m)^n x \right\|^{\frac{1}{n}} \\ &= 0. \end{split}$$

Consequently, $H_0(T^m - \lambda^m) = H_0(T - \lambda)$ for all $m \ge 2$. (v) $H_0(T - \lambda) \subset ker(T^m - \lambda^m)$ follows from (ii) and (iv).

That *S* is invertible yields $ker(T^m - \lambda^m) = ker(T - \lambda)$. Again by (ii) and (iv) $H_0(T - \lambda) = ker(T - \lambda)$.

In general $T \in [nN]$ is not translation invariant.

Example 2.24. It is easily seen that, for $T = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in [3N],$ $(T-i)^3 (T-i)^* = \begin{pmatrix} -6i-8 & -4i+7 \\ 10i-1 & -4i-7 \end{pmatrix}.$ $(T-i)^* (T-i)^3 = \begin{pmatrix} -6i-8 & -10i+1 \\ 4i-7 & -4i-7 \end{pmatrix}.$

Therefore $(T - i) \notin [3N]$. Thus $T \in [nN]$ is not translation invariant.

Naturally in view of the above statement, the following question arises: What could be the nature of class [nN] operators satisfying the translation invariant property?

In [8] Eungil Ko proved that if the k^{th} root of a hyponormal operator is translation invariant then it is hyponormal. We use the same technique to prove the following Theorem.

Theorem 2.25. Suppose $T \in [nN]$ is translation invariant then T is normal.

Proof.

$$(T-\lambda)^{n}(T-\lambda)^{*} = (T-\lambda)^{*}(T-\lambda)^{n}$$

$$0 = (T-\lambda)^{*}(T-\lambda)^{n} - (T-\lambda)^{n}(T-\lambda)^{*}$$

$$0 = (T-\lambda)^{*} \left[\sum_{k=0}^{n} {n \choose k} T^{n-k}(-\lambda)^{k}\right] - \left[\sum_{k=0}^{n} {n \choose k} T^{n-k}(-\lambda)^{k}\right] (T-\lambda)^{*} \quad (2.4)$$

Put $\lambda = \rho e^{i\theta}$, $\rho > 0, 0 \le \theta < 2\pi$, in (2.4) and dividing the simplified equation by ρ^{n-1} gives, $0 = n(T^*T - TT^*)e^{(n-1)i\theta} + \frac{1}{\rho}$ (the other terms).

Taking limit as $\rho \rightarrow \infty$ gives, $TT^* = T^*T$.

Acknowledgement

The authors would like to thank the referee for the valuable comments which helped us to improve this manuscript.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.
- [2] P. Aiena, M. T. Biondi and F. Villafañe, Weyl's theorems and Kato spectrum, Divulgaciones Matemáticas, 15(2007), 123–142.
- [3] T. Ando, Operators with a norm condition, Acta Sci. Math. Szeged, 33(1972), 169–178.
- [4] S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Am. Math. Soc., 71(1978),113–114.
- [5] M. Cho and T. Yamazaki, *An operator transform from class A to the class of hyponormal operators and its application*, Integral Equ. Oper. Theory, **53** (2005), 497–508.
- [6] B. P. Duggal, *Tensor products of operators strong stability and p hyponormality*, Glasgow Math. J., **42**(2000), 371–381.
- [7] B. P. Duggal, I. H. Jeon and I. H. Kim, *On* *-*paranormal contractions and properties for* *-*class A operators*, Linear Algebra and its Applications, **436** (2012), 954–962.
- [8] Eungil Ko, Properties of a kth root of a hyponormal operator, Bull. Korean Math. Soc., 40(2003), 685–692.
- [9] D. R. Farenick and I. H. Kim, Tensor products of quasihyponormal operators, Proc. of Kotac, 4(2002), 113–119.
- [10] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. USA, **36**(1950), 35–40.
- [11] T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Am. Math. Soc., **81**(1981), 240–242.
- [12] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.
- [13] Jan Stochel, Seminormality of operators from their tensor product, Proc. Am. Math. Soc., 124(1996), 135–140.
- [14] I. H. Jeon and B. P. Duggal, *On operators with an absolute value condition*, J. Korean Math. Soc., **41**(2004), 617–627.
- [15] A. A. S. Jibril, *On n-Power normal operators*, The Arabian Journal for Science and Engineering, **33**(2008), 247–251.
- [16] H. Jinchuan, On the tensor product of operators, Acta Math. Sinica, 9(1993), 195–202.
- [17] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford Science Publications (London Math. Soc. Mono. new series 20), (2000).
- [18] B. Magajna, On subnormality of generalized derivations and tensor products, Bull. Austral. Math. Soc., 31(1985), 235–243.
- [19] J. S. I. Mary and S. Panayappan, *Some properties of class A(k) operators and their hyponormal transforms*, Glasgow Math. J., **49** (2007), 133–143.
- [20] S. Mecheri, K. Tanahashi and A. Uchiyama, *Fuglede-Putnam theorem for p-hyponormal or class Y operators*, Bull. Korean Math. Soc., **43**(2006), 747–753.
- [21] M. Putinar, Hyponormal operators are subscalar, J. Operator Theory, 12 (1984), 385–395.
- [22] C. R. Putnam, On normal operators in Hilbert spaces, Am. J. Math., 73(1951), 357–362.
- [23] T. Saito, Hyponormal operators and related topics, Lecture Notes in Mathematics No.247 (Springer-Verlag, 1971).
- [24] Salah Mecheri , On k-quasi-M-hyponormal operators, Mathematical Inequalities and Applications, **16**(2013), 895–902.
- [25] P. Saphar, Contribution á l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France, 92(1964), 363–384.

- [26] K. Tanahashi, I. H. Jeon, I. H. Kim and A. Uchiyama, *Quasinilpotent part of class A or* (*p*, *k*)*-quasihyponormal operators*, Operator Theory: Advances and Applications, **187** (2008), 199–210.
- [27] A. Uchiyama and K. Tanahashi, Bishop's property (β) for paranormal operators, Oper. Matrices, 3(2009), 517– 524.
- [28] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J., 23(1973), 483– 492.

Department Of Mathematics, PS.G College Of Arts And Science, Coimbatore, Tamilnadu, India 641014.

E-mail: stellairenemary@gmail.com

E-mail: sreevijis@gmail.com