ON THE SECOND GAUSSIAN CURVATURE OF RULED SURFACES
IN EUCLIDEAN 3-SPACE

DAE WON YOON

Abstract. In this paper, we mainly investigate non-developable ruled surface in a 3-dimensional
Euclidean space satisfying the equation $K_{II} = KH$ along each ruling, where K is the Gaussian
curvature, H is the mean curvature and K_{II} is the second Gaussian curvature.

1. Introduction

The inner geometry of the second fundamental form has been a popular research
topic for ages. It is readily seen that the second fundamental form of a surface is non-
degenerate if and only if a surface is non-developable.

On a non-developable surface M, we can consider the Gaussian curvature K_{II} of the
second fundamental form which is regarded as a new Riemannian metric. The curvature K_{II} will be called the second Gaussian curvature of the surface M (cf. [2]).

For the study of the second Gaussian curvature, D. Koutroufiotis ([9]) has shown that
a closed ovaloid is a sphere if $K_{II} = cK$ for some constant c or if $K_{II} = \sqrt{K}$, where K is
the Gaussian curvature. Th. Koufogiorgos and T. Hasanis ([8]) proved that the sphere
is the only closed ovaloid satisfying $K_{II} = H$, where H is the mean curvature. Also,
W. Kühnel ([10]) studied surfaces of revolution satisfying $K_{II} = H$. One of the natural
generalizations of surfaces of revolution is the helicoidal surfaces. In [1] C. Baikoussis
and Th. Koufogiorgos proved that the helicoidal surfaces satisfying $K_{II} = H$ are locally
characterized by constancy of the ratio of the principal curvatures. On the other hand,
D. E. Blair and Th. Koufogiorgos ([2]) investigated a non-developable ruled surface in a
3-dimensional Euclidean space \mathbb{E}^3 satisfying the condition

$$aK_{II} + bH = \text{constant}, \quad 2a + b \neq 0,$$ \hspace{1cm} (1.1)

along each ruling. Also, they proved that a ruled surface with vanishing second Gaussian
curvature is a helicoid.

Received January 21, 2005.
2000 Mathematics Subject Classification. 53A05, 53A10, 53B25.
Key words and phrases. Helicoid, minimal surface, ruled surface, Second Gaussian curvature,
Mean curvature, Gaussian curvature.
This work was supported by Korea Research Foundation Grant(KRF-2004-041-C00039).
Recently, the present author ([16]) studied a non-developable ruled surface in a 3-dimensional Euclidean space \mathbb{E}^3 satisfying the conditions

\begin{align}
aH + bK &= \text{constant}, \quad a \neq 0, \\
aK_{II} + bK &= \text{constant}, \quad a \neq 0,
\end{align}

(1.2) (1.3)

along each ruling.

In particular, if it satisfies the condition (1.2), then a surface is called a linear Wein- garten surface (see [11]).

On the other hand, in [7] Y. H. Kim and the present author investigated a non-developable ruled surface in a 3-dimensional Lorentz-Minkowski space \mathbb{L}^3 satisfying the conditions (1.1), (1.2) and (1.3). In [13] W. Sodsiri studied a non-developable ruled surface in \mathbb{L}^3 with non-null rulings such that the linear combination $aK_{II} + bH + cK$ is constant along ruling.

In this article, we investigate a non-developable ruled surface in a Euclidean 3-space \mathbb{E}^3 satisfying the condition

\begin{equation}
K_{II} = KH,
\end{equation}

(1.4)

along each ruling.

On the other hand, many geometers have been interested in studying submanifolds of Euclidean and pseudo-Euclidean space in terms of the so-called finite type immersion ([3]). Also, such a notion can be extended to smooth maps on submanifolds, namely the Gauss map ([4]). The Gauss map G on a submanifold M of a Euclidean space or pseudo-Euclidean space is said to be of pointwise 1-type if $\Delta G = fG$ for some smooth function f on M where Δ denotes the Laplace operator defined on M ([6]).

In [5] M. Choi and Y. H. Kim proved the following theorem which will be useful to prove our theorems in this paper.

Theorem 1.1. ([5]) Let M be a non-cylindrical ruled surface in a 3-dimensional Euclidean space. Then, the Gauss map is of pointwise 1-type if and only if M is an open part of a helicoid.

2. Preliminaries

Let \mathbb{E}^3 be a 3-dimensional Euclidean space with the metric $<,> = dx_1^2 + dx_2^2 + dx_3^2$, where (x_1, x_2, x_3) is a standard rectangular coordinate system of \mathbb{E}^3.

We denote a surface M in \mathbb{E}^3 by

$$x(s, t) = \{x_1(s, t), x_2(s, t), x_3(s, t)\}.$$

Then the first fundamental form I of the surface M is defined by

\begin{equation}
I = Eds^2 + 2Fdsdt + Gdt^2,
\end{equation}

$$E = <x_s, x_s>, \quad F = <x_s, x_t>, \quad G = <x_t, x_t>, \quad x_s = \frac{\partial x(s, t)}{\partial s}.$$
We define the second fundamental form II of M by

$$II = eds^2 + 2f ds dt + g dt^2,$$

$$e = \frac{1}{\sqrt{EG-F^2}} \det(x_s x_t x_{ss}),$$

$$f = \frac{1}{\sqrt{EG-F^2}} \det(x_s x_t x_{st}),$$

$$g = \frac{1}{\sqrt{EG-F^2}} \det(x_s x_t x_{tt}).$$

Using classical notation above, the Gaussian curvature K is defined by (See, [14, p. 112])

$$K = \frac{1}{(EG-F^2)^2} \left\{ \begin{array}{ccc} -\frac{1}{2}E_{tt} + F_{st} - \frac{1}{2}G_{ss} & \frac{1}{2}E_s F_s - \frac{1}{2}E_t F_t & 0 \frac{1}{2}E_t + \frac{1}{2}G_s \\ \frac{1}{2}G_t & F & E \\ F & G & \frac{1}{2}G_s & E F \end{array} \right\}, \quad (2.1)$$

or equivalently,

$$K = \frac{eg - f^2}{EG - F^2}.$$

On the other hand, the mean curvature H is given by

$$H = \frac{1}{2} \frac{Eg - 2Ff + Gc}{EG - F^2}.$$

At this stage we are able to compute the second Gaussian curvature K_{II} of a non-developable surface in \mathbb{E}^3 by replacing E, F, G by the components of the second fundamental form e, f, g respectively in (2.1). Thus, the second Gaussian curvature K_{II} is given by

$$K_{II} = \frac{1}{(eg-f^2)^2} \left\{ \begin{array}{ccc} -\frac{1}{2}E_{tt} + f_{st} - \frac{1}{2}g_{ss} & \frac{1}{2}E_s f_s - \frac{1}{2}E_t f_t & 0 \frac{1}{2}E_t + \frac{1}{2}g_s \\ f_t - \frac{1}{2}g_s & e & f \\ \frac{1}{2}g_t & f & g \end{array} \right\}, \quad (2.2)$$

It is well known that a minimal surface has vanishing second Gaussian curvature but that a surface with vanishing second Gaussian curvature need not be minimal.

3. Main Results

In this section we classify a non-developable ruled surface in a Euclidean 3-space \mathbb{E}^3 satisfying the equations (1.4). It is well known that a cylindrical ruled surface is developable, i.e., the Gaussian curvature K is identically zero. Therefore, the second fundamental form II is degenerate. Thus, non-cylindrical ruled surfaces are meaningful for our study.
Theorem 3.1. A non-developable ruled surface in a Euclidean 3-space \(\mathbb{E}^3 \) satisfying the condition \(K_{II} = KH \) along each ruling is a piece of a helicoid.

Proof. Let \(M \) be a non-developable ruled surface in \(\mathbb{E}^3 \). Then the parametrization for \(M \) is given by

\[
x = x(s,t) = \alpha(s) + t\beta(s)
\]

such that \(< \beta, \beta > = 1, < \beta', \beta' > = 1 \) and \(< \alpha', \beta' > = 0 \). In this case \(\alpha \) is the striction curve of \(x \), and the parameter is the arc-length on the spherical curve \(\beta \). And we have the natural frame \(\{ x_s, x_t \} \) given by

\[
x_s = \alpha' + t\beta' \quad \text{and} \quad x_t = \beta.
\]

Then, the first fundamental form of the surface is given by

\[
E = < \alpha', \alpha' > + t^2, \quad F = < \alpha', \beta >, \quad G = 1.
\]

For later use, we define the smooth functions \(Q, J \) and \(D \) as follows:

\[
Q = < \alpha', \beta \times \beta' >, \quad J = < \beta'', \beta' \times \beta >, \quad D = \sqrt{EG - F^2}.
\]

In terms of the orthonormal basis \(\{ \beta, \beta', \beta \times \beta' \} \) we obtain

\[
\alpha' = F\beta + Q\beta \times \beta', \quad \beta'' = -\beta - J\beta \times \beta', \quad \alpha \times \beta = Q\beta',
\]

which imply \(EG - F^2 = Q^2 + t^2 \) and the unit normal vector \(N \) is given by

\[
N = \frac{1}{D}(\alpha' \times \beta + t\beta' \times \beta) = \frac{1}{D}(Q\beta' - t\beta \times \beta').
\]

Therefore, the components \(e, f \) and \(g \) of the second fundamental form are expressed as

\[
e = \frac{1}{D}(Q(F + QJ) - Q't + Jt^2), \quad f = \frac{Q}{D} \ne 0, \quad g = 0.
\]

Thus, using the dates described above and (2.2), we obtain

\[
K_{II} = \frac{1}{f^4} \left(fJ(f_s - \frac{1}{2}e_t) - f^2(-\frac{1}{2}e_{tt} + f_{st}) \right) = \frac{1}{2Q^2D^2} \left(Jt^4 + Q(F + 2QJ)t^2 - 2Q^2Q't + Q^3(QJ - F) \right). \tag{3.1}
\]

Furthermore, the mean curvature \(H \) and the Gaussian curvature \(K \) are given respectively by

\[
H = \frac{1}{2D^3} \left(Jt^2 - Q't + Q(QJ - F) \right), \tag{3.2}
\]

and

\[
K = \frac{Q^2}{D^4}. \tag{3.3}
\]

We now differentiate \(K_{II}, H \) and \(K \) with respect to \(t \), the results are

\[
(K_{II})_t = \frac{1}{2Q^2D^5} \left(Jt^5 + Q(2QJ - F)t^3 + 4Q^2Q't^2 + Q^3(5F + QJ)t - 2Q^4Q' \right), \tag{3.4}
\]

\[
H_t = \frac{1}{2D^5} \left(-Jt^3 + 2Q^2t^2 + Q(-QJ + 3F)t - Q^2Q' \right) \tag{3.5}
\]

and
\[K_t = \frac{4Q^2}{D^6} t. \]

(3.6)

Suppose that the surface satisfies the condition (1.4). Then, by (3.1)-(3.6) we can show that the coefficients of the power of \(t \) are as follows:

- \(t^9 \): \(J = 0 \),
- \(t^7 \): \(4Q^2J - QF = 0 \),
- \(t^6 \): \(4Q^2Q' = 0 \),
- \(t^5 \): \(6Q^4J + 3Q^3F = 0 \),
- \(t^4 \): \(6Q^4Q' = 0 \),
- \(t^3 \): \(4Q^6J + 9Q^5F - 5Q^4J = 0 \),
- \(t^2 \): \(6Q^4Q' = 0 \),
- \(t^1 \): \(5Q^7F + Q^8J + 7Q^5F - 5Q^6J = 0 \),
- \(t^0 \): \(Q^8Q' + Q^6Q' = 0 \),

which imply \(J = F = Q' = 0 \). Thus, from (3.1) and (3.2) the second Gaussian curvature and the mean curvature are identically zero. Consequently, the surface is locally a helicoid. This completes the proof.

Combining the results of Theorem 1.1, our Theorem 3.1 and main Theorems in [16], we have

Theorem 3.2. Let \(M \) be a non-developable ruled surface in a Euclidean 3-space. Then, the following are equivalent:

1. \(M \) is piece of a helicoid.
2. \(M \) has pointwise 1-type Gauss map.
3. \(M \) satisfies the equation \(aK_{II} + bK + c = 0 \), \(a \neq 0 \), \(b, c \in \mathbb{R} \) along each ruling.
4. \(M \) satisfies the equation \(aH + bH + c = 0 \), \(a \neq 0 \), \(b, c \in \mathbb{R} \) along each ruling.
5. \(M \) satisfies the equation \(K_{II} = KH \) along each ruling.

References

Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 660-701, South Korea.

E-mail: dwyoon@gsnu.ac.kr