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ON THE SECOND GAUSSIAN CURVATURE OF RULED SURFACES

IN EUCLIDEAN 3-SPACE

DAE WON YOON

Abstract. In this paper, we mainly investigate non-developable ruled surface in a 3-dimensional

Euclidean space satisfying the equation KII = KH along each ruling, where K is the Gaussian

curvature, H is the mean curvature and KII is the second Gaussian curvature.

1. Introduction

The inner geometry of the second fundamental form has been a popular research

topic for ages. It is readily seen that the second fundamental form of a surface is non-

degenerate if and only if a surface is non-developable.

On a non-developable surface M , we can consider the Gaussian curvature KII of the

second fundamental form which is regarded as a new Riemannian metric. The curvature

KII will be called the second Gaussian curvature of the surface M (cf. [2]).

For the study of the second Gaussian curvature, D. Koutroufiotis ([9]) has shown that

a closed ovaloid is a sphere if KII = cK for some constant c or if KII =
√

K, where K is

the Gaussian curvature. Th. Koufogiorgos and T. Hasanis ([8]) proved that the sphere

is the only closed ovaloid satisfying KII = H , where H is the mean curvature. Also,

W. Kühnel ([10]) studied surfaces of revolution satisfying KII = H . One of the natural

generalizations of surfaces of revolution is the helicoidal surfaces. In [1] C. Baikoussis

and Th. Koufogiorgos proved that the helicoidal surfaces satisfying KII = H are locally

characterized by constancy of the ratio of the principal curvatures. On the other hand,

D. E. Blair and Th. Koufogiorgos ([2]) investigated a non-developable ruled surface in a

3-dimensional Euclidean space E
3 satisfying the condition

aKII + bH = constant, 2a + b 6= 0, (1.1)

along each ruling. Also, they proved that a ruled surface with vanishing second Gaussian

curvature is a helicoid.
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Recently, the present author ([16]) studied a non-developable ruled surface in a 3-
dimensional Euclidean space E

3 satisfying the conditions

aH + bK = constant, a 6= 0, (1.2)

aKII + bK = constant, a 6= 0, (1.3)

along each ruling.
In particular, if it satisfies the condition (1.2), then a surface is called a linear Wein-

garten surface (see [11]).
On the other hand, in [7] Y. H. Kim and the present author investigated a non-

developable ruled surface in a 3-dimensional Lorentz-Minkowski space L
3 satisfying the

conditions (1.1), (1.2) and (1.3). In [13] W. Sodsiri studied a non-developable ruled
surface in L

3 with non-null rulings such that the linear combination aKII + bH + cK is
constant along ruling.

In this article, we investigate a non-developable ruled surface in a Euclidean 3-space
E

3 satisfying the condition
KII = KH, (1.4)

along each ruling.
On the other hand, many geometers have been interested in studying submanifolds

of Euclidean and pseudo-Euclidean space in terms of the so-called finite type immersion
([3]). Also, such a notion can be extended to smooth maps on submanifolds, namely
the Gauss map ([4]). The Gauss map G on a submanifold M of a Euclidean space or
pseudo-Euclidean space is said to be of pointwise 1-type if ∆G = fG for some smooth
function f on M where ∆ denotes the Laplace operator defined on M ([6]).

In [5] M. Choi and Y. H. Kim proved the following theorem which will be useful to
prove our theorems in this paper.

Theorem 1.1.([5]) Let M be a non-cylindrical ruled surface in a 3-dimensional Eu-

clidean space. Then, the Gauss map is of pointwise 1-type if and only if M is an open

part of a helicoid.

2. Preliminaries

Let E
3 be a 3-dimensional Euclidean space with the metric <, >= dx2

1 + dx2
2 + dx2

3,

where (x1, x2, x3) is a standard rectangular coordinate system of E
3.

We denote a surface M in E
3 by

x(s, t) = {x1(s, t), x2(s, t), x3(s, t)}.

Then the first fundamental form I of the surface M is defined by

I = Eds2 + 2Fdsdt + Gdt2,

E =< xs, xs >, F =< xs, xt >, G =< xt, xt >, xs =
∂x(s, t)

∂s
.
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We define the second fundamental form II of M by

II = eds2 + 2fdsdt + gdt2,

e =
1√

EG − F 2
det(xs xt xss),

f =
1√

EG − F 2
det(xs xt xst),

g =
1√

EG − F 2
det(xs xt xtt).

Using classical notation above, the Gaussian curvature K is defined by (See, [14, p.

112])

K =
1

(EG − F 2)2
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, (2.1)

or equivalently,

K =
eg − f2

EG − F 2
.

On the other hand, the mean curvature H is given by

H =
1

2

Eg − 2Ff + Ge

EG − F 2
.

At this stage we are able to compute the second Gaussian curvature KII of a non-

developable surface in E
3 by replacing E, F, G by the components of the second funda-

mental form e, f, g respectively in (2.1). Thus, the second Gaussian curvature KII is

given by

KII =
1

(eg−f2)2
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. (2.2)

It is well known that a minimal surface has vanishing second Gaussian curvature but

that a surface with vanishing second Gaussian curvature need not be minimal.

3. Main Results

In this section we classify a non-developable ruled surface in a Euclidean 3-space

E
3 satisfying the equations (1.4). It is well known that a cylindrical ruled surface is

developable, i.e., the Gaussian curvature K is identically zero. Therefore, the second

fundamental form II is degenerate. Thus, non-cylindrical ruled surfaces are meaningful

for our study.
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Theorem 3.1. A non-developable ruled surface in a Euclidean 3-space E
3 satisfying

the condition KII = KH along each ruling is a piece of a helicoid.

Proof. Let M be a non-developable ruled surface in E
3. Then the parametrization

for M is given by
x = x(s, t) = α(s) + tβ(s)

such that < β, β >= 1, < β′, β′ >= 1 and < α′, β′ >= 0. In this case α is the striction
curve of x, and the parameter is the arc-length on the spherical curve β. And we have
the natural frame {xs, xt} given by xs = α′+tβ′ and xt = β. Then, the first fundamental
form of the surface is given by E =< α′, α′ > +t2, F =< α′, β > and G = 1. For later
use, we define the smooth functions Q, J and D as follows :

Q =< α′, β × β′ > 6= 0, J =< β′′, β′ × β >, D =
√

EG − F 2.

In terms of the orthonormal basis {β, β′, β × β′} we obtain

α′ = Fβ + Qβ × β′, β′′ = −β − Jβ × β′, α′ × β = Qβ′,

which imply EG − F 2 = Q2 + t2 and the unit normal vector N is given by

N =
1

D
(α′ × β + tβ′ × β) =

1

D
(Qβ′ − tβ × β′).

Therefore, the components e, f and g of the second fundamental form are expressed as

e =
1

D
(Q(F + QJ) − Q′t + Jt2), f =

Q

D
6= 0, g = 0.

Thus, using the dates described above and (2.2), we obtain

KII =
1

f4

(

fft(fs −
1

2
et) − f2(−1

2
ett + fst)

)

=
1

2Q2D3

(

Jt4 + Q(F + 2QJ)t2 − 2Q2Q′t + Q3(QJ − F )
)

. (3.1)

Furthermore, the mean curvature H and the Gaussian curvature K are given respectively
by

H =
1

2D3

(

Jt2 − Q′t + Q(QJ − F )
)

, (3.2)

and

K = −Q2

D4
. (3.3)

We now differentiate KII , H and K with respect to t, the results are

(KII)t =
1

2Q2D5

(

Jt5 + Q(2QJ − F )t3 + 4Q2Q′t2 + Q3(5F + QJ)t − 2Q4Q′
)

,(3.4)

Ht =
1

2D5
(−Jt3 + 2Q′t2 + Q(−QJ + 3F )t − Q2Q′) (3.5)

and



ON THE SECOND GAUSSIAN CURVATURE OF RULED SURFACES 225

Kt =
4Q2

D6
t. (3.6)

Suppose that the surface satisfies the condition (1.4). Then, by (3.1)-(3.6) we can show

that the coefficients of the power of t are as follows:

t9 : J = 0,

t7 : 4Q2J − QF = 0,

t6 : 4Q2Q′ = 0,

t5 : 6Q4J + 3Q3F = 0,

t4 : 6Q4Q′ = 0,

t3 : 4Q6J + 9Q5F − 5Q4J = 0,

t2 : 6Q4Q′ = 0,

t1 : 5Q7F + Q8J + 7Q5F − 5Q6J = 0,

t0 : Q8Q′ + Q6Q′ = 0,

which imply J = F = Q′ = 0. Thus, from (3.1) and (3.2) the second Gaussian curva-

ture and the mean curvature are identically zero. Consequently, the surface is locally a

helicoid. This completes the proof.

Combining the results of Theorem 1.1, our Theorem 3.1 and main Theorems in [16],

we have

Theorem 3.2. Let M be a non-developable ruled surface in a Euclidean 3-space.

Then, the following are equivalent :

1. M is piece of a helicoid.

2. M has pointwise 1-type Gauss map.

3. M satisfies the equation aKII + bK + c = 0, a 6= 0, b, c ∈ R along each ruling.

4. M satisfies the equation aH + bH + c = 0, a 6= 0, b, c ∈ R along each ruling.

5. M satisfies the equation KII = KH along each ruling.
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