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AN EXPLICIT VISCOSITY ITERATIVE ALGORITHM
FOR FINDING THE SOLUTIONS OF
A GENERAL EQUILIBRIUM PROBLEM SYSTEMS

H. R. SAHEBI AND S. EBRAHIMI

Abstract. We suggest an explicit viscosity iterative algorithm for finding a common ele-
ment of the set of solutions for an general equilibrium problem system (GEPS) involving
a bifunction defined on a closed, convex subset and the set of fixed points of a nonex-
pansive semigroup on another one in Hilbert’s spaces. Furthermore, we present some
numerical examples(by using MATLAB software) to guarantee the main result of this pa-
per.

1. Preliminaries

Let H be a real Hilbert space with norm |.|| and inner product {.,.) Let C be a nonempty
closed convex subset of H. Then, for any x € H, there exists a unique nearest point in C,
denoted by Pcx, such that

lx—Pcxll <llx—yll, forallyeC.

Such P¢ is called the metric projection of H onto C. We know that P is nonexpansive. The
strongly (weak) convergent of {x,} to x is written by x,, — x (x, — x) as n — co. Moreover, H
satisfies the Opial’s condition [15], if for any sequence {x,} with x;, — x, the inequality

liminf||x, — x|l <liminf|lx, — yll,
n—oo n—oo

holds for every y € H with x # y.

Recall that a mapping T : C — C is said to be nonexpansive, if |[Tx — Ty| < ||x — y| for all
x,y € C. F(T) denotes the set of fixed points of T. Let {T(s) : s € [0,00)} be a nonexpansive
semigroup on a closed convex subset C, that is,
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1) TO)x=x,forall xeC;

) T(s+0)=T(s)T(r),foralls, t=0;
i) 1TS)x—=TS)yll<llx—yl, forall x,ye Cand s=0;
(iv) s— T(s)xis continuous for all x e C.

Denote by F(S) = Ns=0 F(T(s)). It is well known that F(S) is closed and convex subset in H
and F(S) # @ if C is bounded [1]. Recall that a self mapping f : H — H is a contraction if there
exists p € (0,1) such that || f(x) — f() I < pllx—yl foreach x,y € H.

A mapping B: C — H is called a—inverse strongly monotone [14, 20] if there exists a positive

real number a > 0 such thatforall x,ye C
(Bx—By,x—y) = alBx - By|>.

Shimizu and Takahashi [18] studied the strongly convergent of the sequence {x,} which is
defined by:

1 In
Koot = A+ (1= @) — f T(8)xnds, x€C,
n JO

in a real Hilbert space, where {T'(s) : s € [0,00)} is a strongly continuous semigroup of non-
expansive mappings on a closed convex subset C of a Hilbert space and nhnolo t, = oco. Later,
Plubtieng and Punpaeng [17] introduced the following iterative method:

1 [
Xn+1 :anf(xn)+ﬂnxn+(1_an_ﬁn)t_f T(s)xpds,
n Jo
where {a,},{B,} are the sequences in (0,1), {s,} is a positive real divergent sequence and
[e.e]
f:C — Cis a contraction. Under the conditions ) a, = 0o, @, + fn < 1,r}im a, =0 and
n=1 o

lim B, =0, they proved the strong convergence of the sequence.
n—oo

Also, Plubtieng and Punpaeng [16] introduced the following iterative scheme:

Let S: C — H be a nonexpansive mapping, defined sequences {x,} and {u,} by

Fttn, y)+ 3-Y = tny Un — Xn) = 0;
Xne1=anyf(xp)+(I—a,A)Su,,Vye H.

They proved, under the certain appropriate conditions, the sequence {x,} converges strongly

to the unique solution of the variational inequality
(A-=vf)z,x—2)=0,Yx e F(S)n EP(F),
which is the optimality condition for the minimization problem

1
min —(Ax, x) — h(x),
X€F(S)NEP(F) 2
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where h is a potential function for y f.
A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mappings on a real Hilbert space H:

1
min 5(Ax, x) — h(x),

where A is strongly positive linear bounded operator and # is a potential function for v f, i.e.,
h'(x)=vf, forall x€ H.

Let A: H — H be an inverse strongly monotone mapping and F : C x C — R be a bifunction.
Then we consider the following GEPS

Find X € C such that F(%,y) + (Ax,y—x) =0, forall ye C. (1.1
The set of such x € C is denoted by GEPS(F, A), i.e.,
GEPS(FFA)={xeC:F(x,y)+{Ax,y—x)=0,YVye C}.

To study the generalized equilibrium problem (1.1), let F satisfies the following conditions:

(Al) F(x,x)=0,forall xe C;
(A2) Fismonotone,i.e., F(x,y)+F(y,x)<0forall x,yeC;
(A3) foreachx,y,ze C,limsup,_q F(tz+ (1 -10)x,y) < F(x,y);

(A4) foreach xe C y— F(x,y) is convex and weakly lower semi-continuous.

Recently, Kamraska and Wangkeeree [8] introduced a new iterative by viscosity approxi-
mation methods in a Hilbert space. To be more precisely, they proved the following result:

Theorem 1.1. Let S = (T(s))s=0 be a nonexpansive semigroup on a real Hilbert space H. Let
[+ H— H be an a-contraction, A: H — H a strongly positive linear bounded self-adjoint
operator with coefficienty. Lety be a real number such that 0 <y < %. LetG: HxH—R
be a mapping satisfying hypotheses (A1)-(A4) and ¥ : H — H an inverse-strongly monotone
mapping with coefficients 6 > 0 such that F(S) N GEP(G,¥) # ¢. Let the sequences {xn}, {u,}
and {y,} be generated by

x1 € H chosen arbitrary,
GUn, Y) + (W Xn, ¥ = Un) + 7Y = ) Un — Xn),

Yn = BnXn+ A= Br) i fo" T(S)tnds, xpe1 = @ny f(xn) + (= @A) yn,Vn=1.
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Under the certain appropriate conditions, they proved that the sequences {x,}, {u,} and
{yn} is strongly convergent to z, which is a unique solution in F(S) "N GEP(G, ¥) of the varia-
tional inequality
((yf-Az,p—2)<0,VYpe F(S N GEP(G,¥).

The problem studied in this paper is formulated as follows (By intuition from [6], [7], [8]):
Let C; and C, be closed convex subsets in H. Suppose that F(x,y) be a bifunction satisfy
conditions (A1) — (A4) with C replaced by C; and let {T(S) : s € [0,00)} be a nonexpansive

semigroup on C,. Find an element

k
x* € [ GEPS(F;, ¥))[F(S),
i=1

where GEPS(F;,¥;) and F(S) the set of solutions of an general equilibrium problem sys-
tem(GEPS) involving by a bifunction Fk(ug), y) on C; x C; and the fixed point set of a non-
expansive semigroup {T'(S) : s € [0,00)} on a closed convex subset C,, respectively.

2. Preliminaries and Lemmas

The following lemmas will be useful for proving the main results of this article. Let A be a

strongly positive linear bounded operator on H: that is, there exists a constant ¥ > 0 such that
(Ax,x) =7l x| forall xe H.

Lemma 2.1 ([13]). Assume A is a strongly positive linear bounded operator on a Hilbert space
H with coefficient’y >0 and0 < p < IAl~Y. Then || I- pAl <1-py.

Lemma 2.2 ([2]). Let C be a nonempty closed convex subset of H and F : C x C — R be a bifunc-
tion satisfying (A1)— (A4). Then, for anyr >0 and x € H there exists z € C such that

1
F(Z,y)+;<y—z,z—x> >0,VyeC.

Further, define
T, x={zeC:F(z,¥) +%<y—z,z—x) =>0,VyeC}
forallr >0 andxe H. Then
(@) T, is single-valued;
(b) Ty is firmly nonexpansive, i.e., forany x,y € H

I Trx = Tryl* < (Trx— Ty, x - y);

(c) F(Ty) =GEP(F);
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d ITsx-Trxll < S;srll Tsx — xll;
(e) GEP(F) is closed and convex.

Remark 2.3. It is clear that for any x € H and r > 0, by Lemma 2.2(a), there exists z € H such
that

1
F(z,y)+—(y—2,z—x)=0, forall ye H. 2.1)
-
Replacing x with x — r¥x in (2.1), we obtain
1
F(z,y)+(¥x,y—2) + ;(y—z,z—x) >0, forall ye H.

Lemma 2.4 ([19]). Let {x,} and {y,} be bounded sequences in a Banach space E and {,,} be a

sequence in [0,1] with0 < li’?ﬁnfﬂn <limsupf, < 1. Suppose
-0 n—oo
Xn+1 = (1= Bn)Yn+ Bnxn for all integers n = 1 andlimsup(|| Yn+1 — Ynll = | Xn+1 — Xnl) < 0. Then
n—oo
lim ||y, — x,ll = 0.
n—oo

Lemma 2.5 ([18]). Let C be a nonempty bounded closed convex subset of H and let S = {T(s) :

s € [0,00)} be a nonexpansive semigroup on C. Then for any h € [0,00),

limsup
[—oo xeC

1 [t 1 ¢t
|— f T(s)xds— T(h)(= f T(s)xds)” -0,
rJo tJo

forxeCandt>0.

Lemma 2.6 ([23]). Assume {ay} is a sequence of nonnegative numbers such that
ans1<= (1 —ap)an+6y,

where {a,} is a sequence in (0,1) and {6 ,} is a sequence in real number such that

o0
1) lima,=0, Zan =00,
n—oo —
n=1
o0

- 0
(ii) hmsup—n <0or ) |0, <oo;
n—oo Up n=1

Then lim a, = 0.
n—oo

Lemma 2.7 ([4]). IfC is a closed convex subset of H, T is a nonexpansive mapping on C, {x,}

is a sequence in C such that x, — x€ C and x, — Tx, — 0, thenx—Tx =0
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3. Explicit viscosity iterative algorithm

The viscosity method has been successfully applied to various problems coming from
calculus of variations, minimal surface problems, plasticity theory and phase transition. It
plays a central role too in the study of degenerated elliptic and parabolic second order equa-
tions [9], [11], [12]. First abstract formulation of the properties of the viscosity approximation
have been given by Tykhonov [22] in 1963 when studying ill-posed problems (see [3] for de-
tails). The concept of viscosity solution for Hamilton-Jacobi equations, which plays a crucial
role in control theory, game theory and partial differential equations has been introduced by
Crandall and Lions [5]. In this section, we introduce a explicit viscosity iterative algorithm
for finding a common element of the set of solution for an equilibrium problem involving a
bifunction defined on a closed convex subset and the set of fixed points for a nonexpansive
semigroup.

In this section, we introduce a new iterative for finding a common element of the set of so-
lution for an equilibrium problem involving a bifunction defined on a closed convex subset
and the set fixed points for a nonexpansive semigroup.

Theorem 3.1. Let H be a real Hilbert space. Asuume that
* C1,C, are two nonempty convex closed subsets H,
e F1,F,,...,Fy be bifunctions from Cy x C; to R satisfying (A1) — (A4),

o ¥, Wy,..., Yy is uj—inverse strongly monotone mapping on H,

e f:H— H isap—contraction,

A is a strongly positive linear bounded operator on H with coefficient A and 0 <y < %,

F(S) ={T(s):s€[0,00)} is a nonexpansive semigroup on C, such thcu‘ﬂi.‘:1 F(S)NGEPS(F;,
Vi) #,

{xn} is a sequence generated in the following manner:

x1€ H, and ul € Cy,

Fl(u(” Y+ Vixn,y— un >+ L (v - ug),un —Xn)y =0, forally e Cy,

Fz(u(z) V) +(Voxn,y— un >+ L -y - ug),un — Xy =0, forally e Cy,

Fk(u(k) y)+(‘l’kxn,y u! By 4+ 1(y uﬁlk),unk —Xp) 20, forallye Cy,

Xpa1 = anyf(xn) +Bnxn+ (1= ) - an A+ [¢" T(s)Pc,wyds,

where {a,},{B,} are the sequences in [0, 1] and {r,} c (0,00) is a real sequence which satisfy
the following conditions:
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[e.@]
(CY lim a, =0, n;an =00;

(C2) 0< lirgninfﬁn <limsupf, <1,
—00

n—oo

(C3) nlim [rhe1—Tnl=0and0<b<ry<a<2u;foriefl,2,...,k};
— 00

(Ca) r}im tp =00, and sup |t,+1 — ty| is bounded.
—00

Then

(i) thesequence {xy} is bounded;

(ii) r}im IWix,—W¥;x*| =0, forie{l,2,...,k}, x* € ﬂf_l GEPS(F;,Y;)NF(S),
— 00 -

(iii) lim
n—oo n—o0

1 (i 1

Xn— —[ T(s)Pczwnds” =0and lim Hwn - —[ T(s)Pczwnds” =0.
tn 0 t}’l 0

Proof. (i) By the same argument in [7, 10],

I1-B)I—-an,Al<1-p,—ayl.

Letge ﬂi.czl F(S)NGEPS(F;,V¥;). Observe that I —r,¥; foranyi =1,2,..., k is anonexpansive
mapping. Indeed, for any x, y € H,
1= ¥)x— I —r,¥)YlI* = [(x—p) - rp(Pix - ¥ ))|1°
= lx=ylI* =2rp(x—y, ¥ix =¥ y) + rall ¥ix— ¥yl
< llx=yl* = rp@ui — r) 1 x = ¥; 112

< llx-yl?
So
Iy = gl < llxn - qll, 3.1
and hence
lwn—qll < llxn— qll. (3.2)
Thus

1 In
0= 1l = Iy £ o) + Bt + (1= ) =t A)— fo T($)Pe,onds - gl
n
< anlly f(n) = AGll+ Bl xn - g1

1 [
HI0= BT - @ AVl fo T($)Pe,onds - gl
n
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< anllly fen) =y @I+ 1y (@) = Aqll} + Brllxn — 4l
+(1—ﬁn—anmt—1n | " 1T Pe,wn - Pe,qlids

< anpYllxn =gl +anly f(q) = Agll + Bnlxn -4l
+(1=Bn—apMlw, -4l

< anpylxn—qll+anlyf(q)— Aqll+ Brllxn,—ql
+(1 = Bn—anDllxp—ql

= (- anA—yp)lxn— gl +anlly f(q) — Aql

_ v flg) - Aqll
< max{l - g, =,
By induction
lyf(@) - Aql
10 — gl < max{|x, — g, L@ = Agll,

A=vp
Therefore, the sequence {x,} is bounded and also {f(x,)}, {w,} and {t—ln Ot” T(s)Pc,wnds} are
bounded.
(ii) Note that ug) can be written as ugf) = T,0 (xp = 1,¥ixp). By Lemma 2.2, for any i =
1L,2,...,k,

Nty = u | < W70 (I=Tner ¥ ) xner = Ty (1= rn¥ )2
+|| Tr(iJ)rl I-r,¥Y))x,— Tr,(,i) (I=rp¥i)xnl
S U -1V xpe1 — U =¥V xgll
HIT,0 T=rn¥)Xn = T0 (I —ra¥i)xnll
< 1 xp41 = Xnll +1rpe1 — ol ixgll
Tne1—T
+ T (=¥ ) — Ty (= 1 W) Xl
Tnsl nil n
Then
1 = w1l < 11 = Xnll + 2Mi | i = Tl (3.3)
|| Tr(i) (I— rn\I’i)xn - Tr(i) (I— rn‘{’i)xn ||
where  pr — maxsup{—2 " sup{ ¥ x, 111
n+1
Also
T+l 1 [
f T(5)Pc,wns1ds— —f T(s)Pc,wnds|
In+1 Jo InJo
1 In+1 1 1 In
= f [T(S)wpns1— T(S)wylds+( - —)f [T(S)w,—T(s)qlds
In+1 Jo Tn+1 In Jo

+

Tn+1
f [T(S)w, - T(s) q]ds”

In+1 ty
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2|tn+1_ tn'
< w1 —wpll+ ———llwn — gl
n+1

k
Let M = %Z M; < oo, since

1.k ) .
lons1—wnll < 231 u = Ul < xps1 = Xnll + MITnir = 1al,
i=1

hence

A [ T Pe,0nsads = & f3" T(9)Pe,wpds|
2‘[n+1 Iy

(3.4)

< Xpe1 = Xpll + MIryey — 1yl + Alm=lnly e — gy,

any f ) +H((A=Bp) [-an AN,
1_ﬁn

Suppose z;, =
(3.4)

, where A, := t_n O” T(s)PCzwnds. It follows from (3.3),

A1 Y f (X)) + (L= Bre)) I — ap1 ANy
1_ﬁn+1
anyf(xp)+((A—B)l—anAA,
- l_ﬁn |
= Ap+1Y f(Xn+1) + (1= Bn+1)An+1 _ An+1 AN+
1_ﬁn+1 1_:Bn+1 1_ﬁn+1
_ anyf(xn) _ (1= PBn)An + anAlp I
1-6, 1-6, 1- ﬁn

Zn+1 = zull = |

[04
= 2y f(xns1) — AD 1) + (AAy =Y (X)) + (M ps1 — ARl
1- ﬁn+1 _,Bn
< I Fen) = A |+ — 2 AN =¥ F G+ | At — Anll
1- ﬁn+l 1- ﬁ
An+1
< Iy — Al + 5 IAA, =y F )l + X4 — Xl
1- ﬂn+l ﬁn
2|t — 1]
+M|rn+1—rn|+ann—qn.
n+l

(C1), (C3) and (C4) implies that

limsup(llzp+1 — znll = 1 Xp+1 — x5l 0.

n—oo
By Lemma 2.4
lim ||z, — x,l =0
n—oo
Consequently
lim [|x,41 —xxll = lim (1 - ,Bn) lzp — xnll = 0. (3.5)
n—oo n—oo

Moreover, for any i € {1,2,..., k},

1 — gl < 1 — @) = (¥ 1260 — ¥ I
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= 10— glI* = 27n(xn— g, ¥ ixn = Vi @) + 12|V 0 — Vi q1?
< 1, — glI* = rn@pi — T I %, — Wi g1I%,

and then
lul - ql?
1 (3.6)

k
< ||xn—q||2—%zlrn(2ui )W ixy =il
1=

lwn—qll?*= ||f1(u”'>—q)||25 1y
k" k&

i=1 i

By (3.6), we have

I%n41 = GII* = lan(y f(xn) = AG) + Bn(xn — @) + (L= Bp) ] — an A (Ap — @)1
< anlly f(xn) = AGI* + Bullxn — g1* + (1= B — an DA, — ql®
< anlly f(xn) = AqII° + Bl xn — qlI* + 1= B — anMlwn — ql°
< anlly f(xn) = AGI° + Bullxn — g1* + (A = B — an Ml x, — ql®

1 k
—%Zrn@ui — ) IWix,—¥iq) 1)
i=1

< anlyf(xn) — Aql? + llxn — qlI?

1 k
—(1—-Bn - anm%zrntzui —r)lI¥ix, —¥;iql?,
i=1

and hence

k
A-Brn—ant Y bQui— a)ll¥ix,—¥ql*
i=1
< anlly f(xn) — Aql? + 1 xn — glI> = | xp41 — g2

< anlyf(xn) — Al + 1 xne1 — Xpll (1 X041 = gl = llxn — g 1.
Since a,; — 0 and || x;41 — x| — 0, it follows that

lim |¥V;x,-Y¥;qll=0,Vi=1,2,...,k. (3.7
n—oo

(iii) By Lemma 2.2, forany i = 1,2,..., k,

I = qI° < (= ra¥)xn— U = ra¥0q,ulf) - )

1

= SUT=ra¥Dxn = U =¥ )12 + tni = g1
_”(I_ rn“lji)xn - (I— rn\lfi)q_ (ugzl) _ q) ”2}
1 . .

< Sl = ql* + ey’ = g1 =12 = 1) = (¥ i = Wi )%}
1 ] o

= S llbn =gl + 1l = g1 — e — 1

27 (X — U Wi x, = Wiq) + T2 WX — g2,
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This implies
2 )2 ]
Iul — gl < llxp — qll> =l xn — 1% + 2l 00 — P11V X — Wigll, (3.8)

and hence

k1o
lw, — gl = ||Z%(u§;) —- I
i:I

IA

%Z I - qI? (59

I/\

k . 1k .
lxn — gl - %Z lu) = xnll* + 72 2rnll%n - us i, = Piqll.
i=1 i=1

Observe that

IXn+1 = qlI* < anly f(xn) — AGI* + Bullxn — qI* + (1 = B — anM)llw, — qlI*
< anlyf(xn) — AqI? + Bullxn — ql* + (1 = Br— an Wil x, — gl

1k 1k .
—— YUl = xp P+ = 21520 — uL NN 160 — P g}
ki:l ki:l

It follows that
k i 2 2 2 2
A= Bn—anV)7 L Nud = xnll® < anlyfxn) = Agl? + X0 = glI* = 1 X541 — g
i=1

k .
+(L=Pn—an)t Y 2rullxy— uP 11¥ix, - ¥iqll
i=1
< anlly f(xn) = Al + I xpe1 = Xnl (1 xn = Il = | Xps1 — g1)
k

+(L=Bn—anDt Y 2rallxn — uP 11¥ixn — ¥iqll.
i=1

Since a,; — 0 and || x;+1 — Xl — 0, we have

lim [z — x| = 0. (3.10)
n—oo

It is easy to prove
lim ||w, — x,| = 0. (3.11)
n—oo

The definition of {x;} shows

AR = xpll < X041 — Xnll + 1 X041 — Agll
< [[Xp+1— Xnll + ”an)’f(xn) +Bnxn+ (A=)l —an, AN, — Ayl
< | Xps1 — Xnll + an”)’f(xn) — ANyl + Bullxn — Agll.
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That is

1 ay
| xne1 — Xnll +

1-6, 1- By

The condition (C1) together (3.5) implies that

AR —xpll =

lim || A, — x| =0.
n—oo

Moreover, o, — Ayl < lwn — Xl + |1 x5, — Anll, we get
lim |A;, —wyll =0.
n—oo

Then,

lim
n—oo

1 [
Xp — —f T(s)Pczwnds” =0,
InJo

1 [in
lim ||, - —f T(5)Pc,0nds| = 0.
InJo

n—oo

||Yf(xn) — AN,

(3.12)

(3.13)

a

Theorem 3.2. Suppose all assumptions of Theorem 3.1 are hold. Then the sequence {x,} is

strongly convergent to a point X, where X € ﬂle F(S) N GEPS(F;,¥;), which solves the varia-

tional inequality
(A=yfx,x—x) =0.

Proof. For all x, y € H, we have

1Pe | rsyncepsE, vy I = A+ Y = Pre psngepse,wy = A+ HWI

S U-A+yHix)—U-A+y I
< H=Alllx=yl+ylf() - fWI
< A =Mllx=yl+ypllx-yl
=1-A=-yp)lx-yl.

This implies that Pﬂf—il F(S)NGEPS(E, W) (I- A+7vf) is a contraction of H into itself. Since H is

complete, then there exists a unique element x € H such that

X= Py pncepsE,wy I~ A+

Next, we prove

1 [
limsup((A-yf)x,x— t_f T(s)Pc,wnds) <0.
n Jo

n—oo
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Let X = Pmik:l F(S)NGEPS(F;,w;) X1, Set

_ oL _o o Y f(X) — Ax|l
Z={yeC:lly-xl<lx - X+ ——}
A=vyp

It is clear, X is nonempty closed bounded convex subset of C, and S = {T'(s) : s € [0,00)} is a

nonexpansive semigroup on X.

Let A, = i Ot” T(s)Pc,wnds, since {A,} < X is bounded, there is a subsequence {An;} of
{A;} such that

limsup{(A-yf)x,x—Ap) = lim((A-y[f)x, x - Anj). (3.14)
j—oo

n—oo

As{wy,} is also bounded, there exists a subsequence {w n, }of {w n such that Wn;, = ¢. Without
loss of generality, let Wn; — ¢. From (iii) in Theorem 3.1, we have Ap, — é.

Since {w;} c C; and {A,} € C, and C;, C, are two closed convex subsets in H, we obtain that
e CinCy.

Now, we prove the following items:

(i) $eF(S)=Ns=1F(T(s).
Since {A,} c C,, we have

AR _PCzwn” = ”PCzAn _PCZ(UH”

< [[Ay —wpll.
By (iii) in Theorem 3.1, we have
lim || A, — Pc,wnll =0. (3.15)
n—oo
By using (i7i) in Theorem 3.1 and (3.15), we obtain
lim [|lw,, — Pc,w,ll = 0. (3.16)
n—oo

This shows that the sequence Pc,wy, i ¢asj— oo.

For each h > 0, we have

IT(h)Pc,wn— Pe,wnll < IT(W)Pc,wn—TW Al + I T(MAp— Anll + |1 Ap — Pc,wnll
< 2| An—Pe,wnll + I T(R) Ay — Anll.

The lemma 2.5 implies that

lim | T(R)A,, — Apll =0, 3.17)
n—o00
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the equalities (3.15, 3.16) and (3.17)implies that
lim ||T(h)Pc,wy, —wxll =0.
n—oo

Note that F(TP¢) = F(T) for any mapping T : C — C. The Lemma 2.7 implies that
¢ € F(T(h)Pc,) = F(T(h)) for all h > 0. This shows that ¢ € F(S).

&eNk  GEPS(F;,¥)).

Since {w,} is bounded and as respects (3.13), there exists a subsequence {w,;} of {w,}

such that w,, i ¢. By intuition from [8],

1
F,(u(” )+ (VX y—uy+ —(y— (’) —x,) =0, forall ye C;.
y y—u, r y

n

By (A2), we have

(Vixn,y— u(”>+ —(y- un),u(” xn>2Fi(y,u(,f)).

'n

Substitute n by n;, we get

(@)
. Uy — Xp, ,
(W idny, y = U)) +(y = ), ———) = Fi(y, ). (3.18)

nj

ForO</l<land yeCy,sety;=1y+(1-1)¢. We have y; € C; and

iy, ViyD = (yi—uy), Wiy = (Vixn, yi— )
(@

Uy — X, .

_<yl_u§1’;,—jr ]>+Fi(y1,uf,f})

nj
= (yi— ), Yy =Yig) + (yi— ), Wity = ¥ixn)
(1)
U, — Xn, .
—(y1 - (l) fr—f>+pl.(yl,u$1’j?)_

nj

The condition (A4), monotonicity of ¥; and (3.10) implies that
(y1 - un Wiy -V unl)) =0and ||¥; u(’) Vx|l — 0as j— oco. Hence

yi—¢,Yiyn = Fi(y;,6). (3.19)
Now, (A1) and (A4) together (3.19) show

0=F;i(y,y) < lFi(y, )+ A - DFi(y;,¢)
<IFi(y,+A-Dyi— &Yy
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=IlFi(y,N+A-DKy—-&Yiyn,

which yields F;(y;, y) + (1= D{y =& ¥;y;) = 0.
By taking / — 0, we have
Fi€, ) +{y—¢ ¥i) =0.

This shows ¢ € GEPS(F;,¥;), forall i =1,2,..., k. Then, { e N GEPS(F;, V).
Now, in view of (3.14), we see

limsup{(A-yf)x,x—Ap)={(A-7fx,x—¢) <0. (3.20)

n—oo

Finally, we prove {x,} is strongly convergent to X.

Ixps1 — X012 = lany f(xn) + Buin + (A= B) I — an AN, — X2

= llan(y f(xn) = AD) + Bp(xn— %) + (1= Bu) [ — @y A (A — D

= 1Bn(xn = 2) + (1= B) = an A (A = ) 1* + a3y f (xp) — AXII*
+2a,Bn{xn — X%, f(x,) — AX)
+2an{(1 = )] — anA)(Ap — X), 7 f(x) — A%)

< {1 = Bn—anMlIAy— Xl + Bnllxy — X1} + a5 Iy f (xn) - AZ|?
+2a,Bny{xn—X, f(xn) = fX)) +2apBn{xy,—X,7f(X) — AX)
+2(1 = Br)yan{Ay— %, f(xp) — f(X))
+2(1 - Br)an{A,— X,y f(X) — AX) —Zai(A(An - X),yf(x,) — AX).

Consequently

601 = FI2 = {(1= @p )+ 20@0 By +20(1 = Br)y cabl X = EI?

+a2 1y f (xn) — AZI? + 2an B (Xn — X,y f (%) — A%)
+2,(1 = ) (Ap— X,y f(2) — AZ) = 205 (AN = 8), 7. (xn) — AT)

< (1=2an(d = pY))lxn = ZI* + A% 0 lln = X2 + a1y f (o) — AZI®
+2a P xn — %,y (%) — AZ) + 2, (1= Bp){Ay — X,y f(X) — AX)
+202 | Al — D)y f (xn) — AZI

= (=2, (A= pY) I xn — XI° + @p{@n (Al x, — X1
+ly f(xn) — AZN? + 21 AN, — DIy f () — AZ|
+2Bn(xn — X,y f(%) — AX) +2(1 = Bp)(Ap — X,y f (%) — AX)}.

Since {x,}, {f(x,)} and {A,} are bounded, one can take a constant I" > 0 such that

[ = A2)x, = X1 + Iy f () = AZIZ + 21l A(A = D)1y f(x0) — AZ.
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Let
En=2Pn(xn = X,7f(X) - A% +2(1 = Bp){(Ap— %,y f(X) — AX) + Tap.

Hence
I Xps1 — %I < A =20, (A - py) X — I + @ E,. (3.21)

With respect to (3.20), imsupZ,, < 0 and so all conditions of Lemma 2.6 are satisfied for (3.21).
n—oo
Consequently, the sequence {x,} is strongly convergent to x. a

As aresult, by intuition from [8], the following mean ergodic theorem for a nonexpansive
mapping in Hilbert space is proved.

Corollary 3.3. Suppose all assumptions of Theorem 3.1 are holds. Let {T"} be a family of non-
expansive mappings on Cy for all i =1,2,...,k such that ﬂle F(TYYNGEPS(F;,¥;) # @. Let
{x,,} and {ug)} c Cy be sequences generated in the following manner:

x1 € H choosen arbitrary,

Fl(ug),y) +(V1xp,y— uﬁll)) + %ﬂ(y— uﬁ,”, u%” —Xxp) 20, forallye Cy,

Ful, y) + (¥oxn, y— ul) + - u?, u® —x,) =0, forallye C,

Fk(uqu),J/) +(WVixn,y— uﬁlk)) + %(y— uqu), u;’“) —Xp)y =0, forallye C,

_1lyvk @
Wp = kZiZI Un

Xpe1 = Y Fn) + Prxn + (1= ) - apA) 7 X1 Po, T wy,

’

where {a,},{Bn} are the sequences in [0,1] and {r,} < (0,00) is a real sequence. Suppose the
following conditions are satisfied:

o0
(CY lim a, =0, n;an = 00;

(C2) 0<liminff, <limsupf, <1;
n—oo n—oo
(C3) nlim [rhe1—Tnl=0and0<b<rp<a<2u;forief{l,2,...,k}.
—00
Then the sequence {x,} is strongly convergent to a point X, where
X = Pﬂ{.;l FrnGEPs(E, vy = A+Y(E),

is the unique solution of the variational inequality

ko
(A-yf)%, X—-x)<0,Yxe | F(T")nGEPS(F;,¥;).
i=1
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4. Application

If T(s) =T forall s >0 and C; = C; = C, then we have the following corollary.

Corollary 4.1. Let H be a real Hilbert space, F,F>,..., Fy be bifunctions from C x C to R sat-
isfying (A1) — (A4), ¥1,Y¥s,..., ¥ be u;—inverse strongly monotone mapping on H, A be a
strongly positive linear bounded operator on H with coefficient A and 0 <y < %, f:H—H
be a p—contraction. Suppose that T be a nonexpansive mapping on C such that ﬂle F(T)n
GEPS(F;,¥;) # @. Define the sequence {x,} as follows.

x1 € H, and uﬁ,f) eC,

Fl(uﬁll),y) +(¥1x5,y— ug)> + rl—n(y— uﬁll), uﬁll) —Xxp) 20, forallyeC,

Fz(uﬁlz),y) +(¥oxu,y— uﬁf)> + rl—n(y— uﬁlz), uf) —Xxp) 20, forallyeC,

(k)

k k k
Fr(u)) (k) (k) (k)

P+ Viexn, y—uy, )+r—1n<y—un JUy —xp) 20, forallyeC,
Wpn = %Z;C:l uﬁ’ll);

Xne1=anYf(xp) + Brxn+ (=6l —-a,A)TPcw,ds,

where {a,},{Bn} < [0,1] and {r,} < (0,00) are the sequences satisfying the conditions (C1)—(C3)
in Theorem 3.2. Then the sequence {x,} converges strongly to a point X, where x € ﬂile F(T)n
GEPS(F;,V¥;) solves the variational inequality

(A=Y )% %~ x) <O0.

We apply Theorem 3.2 for finding a common fixed point of a nonexpansive semigroup
mappings and strictly pseudo-contractive mapping and inverse strongly monotone mapping.
Recall that, a mapping T : C — C is called strictly pseudo-contractive if there exists k with
0 < k =1 such that

ITx—Tyl*<llx=yl?>+kl(I-T)x—(I-T)yl? forall x,y€ C.

If k =0, then T is nonexpansive. Put J = I- T, where T : C — Cis a strictly pseudo-contractive

mapping. J is 1;—k-inverse strongly monotone and J ~1(0) = F(T). Indeed, for all x, y € Cwe

have
I =Dx=U=Dyl* < lx=ylI*+klJx = Tyl>.
Also
1= Dx=U=Dyl* < lx=ylI>+1Tx =Tyl =2(x =y, Jx = Jy).
So, we have

1-k
(x—y,Jx—Jy)= TII]x—]yllz.
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Corollary 4.2. Let H be a real Hilbert space, Fy,F,..., Fy be bifunctions from C x C to R sat-
isfying (Al) — (A4), ¥1,¥s,..., VY be u;—inverse strongly monotone mapping on H, A be a
strongly positive linear bounded operator on H with coefficient A and 0 < y < %, f:H—H
be a p—contraction. Suppose that T : C — H be a k-strictly pseudo-contractive mapping for
some0 < k<1 such thatﬂf: F(T)nGEPS(F;,¥;) # @. Define the sequence {xy} as follows.

x1 € H, and ug) eC,

Fl(ugll),y) +{(V1xp,y— u,(qn) + %(y— u%l), uﬁll) — X 20, forallyeC,

Fg(uﬁlz),y) +(WVox,, y— u,(f)) + %(y— uf), uﬁlz) — Xy 20, forallyeC,
\:
Fk(uglk),y) +(Vixn,y— u(nk)> + %(y— u;’“, uﬁ,k) —Xny =0, forallyeC,

_lyk 00
Wn =g Liog Un s

Xn+l = an'}’f(xn) +Bnxn+((1-B)I—-a,APclw,ds,

where J : C — H is a mapping defined by Jx = kx+ (1 - k)Tx and {a,},{f,} < [0,1] and {r,} c
(0,00) are the sequences satisfying the conditions (C1)—(C3) in Theorem 3.1. Then the sequence
{xn} is strongly convergent to a point X, where X € ﬂle F(T)Nn GEPS(F;,¥Y;) solves the varia-
tional inequality

(A-yf)x,x—x) <0.

Proof. Note that S: C — H is a nonexpansinve mapping and F(T) = F(S). By Lemma 2.3 in
[24] and Lemma 2.2 in [21], we have P¢S : C; — C is a nonexpansive mapping and F(P¢S) =
F(S) = F(S). Therefore, the result follows from Corollary 4.1. O

5. Numerical Examples

In this section, we show numerical examples which grantee the main theorem. The pro-
gramming has been provided with Matlab according to the following algorithm.

Example 5.1. Suppose that H=R,C; =[-1,1],C> =[0,1] and
Fi(x,y) = -3x° +xy+2y2,F2(x, y) = —4x° +xy+3y2,F3(x,y) = —5x° +xy+4y2.

Also, we consider ¥ (x) = x, W = 2x and W3(x) = 1. Suppose that A = {5, f(x) = 75 with
coefficient y = 1 and T(s) = e™® is a nonexpansive semigroup on C,. It is easy to check that
V,,¥,,¥s3, A, f and T(s) satisfy all conditions in Theorem 3.1. For each y € C; there exists
z € Cy such that

1
FGe,p+Mix,y—-2)+—(y—2z,z—x)=0
r
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1
< —3z2+zy+2y2+x(y—z)+;(y—z)(z—x) =0

& 2ry? +((r+1)z—(r-1)x)y—3rz* — xzr — z° + zx 2 0.

Set G(y) =2ry?>+ ((r+1)z—(r—1)x)y—3rz? — xzr — z* + zx. Then G(y) is a quadratic function
of y with coefficients a =2r,b= (r +1)z— (r — 1)x and ¢ = =372z — xzr — z> + zx. So

A = b® -4ac
= [(r+1)z—(r—1)x]*>-8r(-3rz> — xzr — 2% + zx)
= x2(r—1%+2zx(r—1)(5r + 1)+ 2251 + 1)?

= [(x(r—-1) +z(r +1))]%

Since G(y) =0 for all y € Cy, if and only if A = [(x(r — 1) + 2(57 + 1))]? < 0. Therefore, z = 2= x,

5r+1
which yields T, = u})’ = 2=2% x,,. By the same argument, for F, and F3, one can conclude
1-2r,
T @ = u(z) = Xn»
T 1"
10—ry
T.¢ = u(g) =——Xp.
n " 90r,+107 "
Then
ud + ul? + ul
Wy = 3

== + + 1x5.
3 5rp+1 7rp+1 90r,+10
By choosing r, = 28, 1, = n, and a,, = 13-, Bn = 74—, we have the following algorithm for

the sequence {x,}

200n2—10n—81x 80012 -890n+81 1—e™ "
100n2-90n " 100012 —900n n

Jwy,.

Xn+1 =

Choose x; = 1000. By using MATLAB software, we obtain the following table and figure
of the result.

Example 5.2. Theorem 3.2 can be illustrated by the following numerical example where the

parameters are given as follows:

X
H= [_10)10] ’ Cl = [_1)1];C2 = [011];A: I)f(x) = g

X
Yix)=x,¥,=2x,¥3(x) = 1—0,‘1’4(36) =3x,¥s5(x) =4x

1 n _n+1

a, =— =1, =
" n'ﬁn 2n+1" " n
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n X5 n Xn n X5
1 1000 11 0.001780587335 21 0.0000000003224455074
2 1098.409511 12 0.0003806958425 22 0.00000000006766467135
3 305.4917461 13 0.00008116570943 23 0.00000000001418205647
4 73.2742215 14 0.00001726216226 24 0.000000000002969041259
5 16.71274356 15 0.000003663196562 25 0.0000000000006208956961
6 3.722532274 16 0.0000007758152752 26 | 0.000000000000007698339387
7 0.8179356809 17 0.0000001640073634 27 0.0000000000001297089212
8 0.1781302867 18 | 0.00000003461280635 | 28 | 0.00000000000002707018951
9 0.03854703081 | 19 | 0.000000007293416021 | 29 | 0.000000000000005644205174
10 | 0.008300951942 | 20 | 0.000000001534585156 | 30 | 0.000000000000001175770771
1200
1000} “f]
, soor ‘
; 600 | \
d 400 \
l
200 \
% \> 10 5 2 > 30 35
Iteration steps
T(s)=e*,y=1,t,=n.
Moreover,

Fi(x,y)= -3x% + xy+2y2 , Fa(x,y) = —6x2 +xy+5y2

F(x,y)= —4xz+xy+3y2 , Fs(x,y) = —8x? +xy+7y2

E(x,y) = —5x% + xy+4y2.

By the same argument in Example 5.1, we compute ug) fori=1,2,3,4,5 as follows:

Trr(ll) = ug) = %xn,
o =uf = -,
Trﬁf‘) = uff’) = g(l)gn%xn,
Tr,(,‘” = u%” = %xn,
Tr,(,s) = ug’) = %xn.
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n Xn n Xn n Xn

1 10 11 0.004288752976 21 0.000003269796382

2 4.187523857 12 0.002073897432 22 0.000001606140362

3 1.810011289 13 0.001005587742 23 | 0.0000007895721035
4 0.8111798915 14 0.0004887121222 24 | 0.0000003884328747
5 0.37213169 15 0.0002379837774 25 0.000000191218571

6 0.173392393 16 0.0001160888527 26 | 0.00000009419138076
7 0.08167872103 | 17 | 0.00005671409128 | 27 | 0.00000004642361668
8 0.03878661445 | 18 | 0.00002774424594 | 28 | 0.00000002289261628
9 0.0185321898 19 | 0.00001358854452 | 29 | 0.0000000112944317
10 | 0.008897703796 | 20 | 0.000006662503243 | 30 | 0.00000000557482625

10

Squence value

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

¢¢¢¢¢

Iteration steps

1-2r, 10—r, 1-3r,

Then
ul +u? + o+ ul?
Wy, =
5
_1 1-r,

1-4r,

== + + + + X
55r,+1 7rp,+1 90r,+10 11r,+1 15r,+1

ne
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Choose x; = 10. The detailed results of proposed iterative in Theorem 3.2 are presented

in the following table and figure.

Example 5.3. Let

H=1[-10,10], C; = [0,1],Cs = [-1,1], A= —, f(x) = —
- y y U1 — y 1], L2 = y 1l _10) _10

Wy () = Wa(x) =0, Wa(x) = x, Wy (x) = 2%, W5 (x) = —
WYe(x)=3x,¥Y;(x) =4x

ay=—

1

» B

n n+1

= ,n=
3n+1" " n

10
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Moreover,

By the same argument in Example 5.1, we compute u'? for i = 1,2 as follows: For any y € C;
and r > 0, we have

This implies that 7 z>+z—r—x = 0. Therefore, z =

Also, we have

1
F(z,y)+;<y—z,z—x)20©—rzzy2+(2rz3+z—x)y—rz

Set J(y) = —rzzy2 +@2rz8+z- x)y— rz*—z% + zx. Then J(y) is a quadratic function of y with
coefficients a= —rz2, b=2rz3+z—xand c=-rz

H. R. SAHEBI AND S. EBRAHIMI

Ts)=e*,y=1t,=n.

Fi(x,y) = —4x% + xy +3)~°.

4

=1+V1+4r(r+x)
2r

whichyields T,.0) =

4

—z%2+2zx.So

A= [2rz3 + z—x]2 +4rz2(—rz4 -z° +2X)

=(z— x)z.

Fi(x,3)=0-x)(x—-y), Fs(x, ) = —5x% + xy +4y%;
Fo(x,y) = —x*(x - )?, Fo(x,y) = —6x° + xy+ 5%
F(x,y) = —3x? +xy+2y2 , Fr(x,y) = -8x% + xy+7y2;

1
F(z,y)+—(y—z,z—x)20©(y—z)(rz2+z—r—x) =>0.
r

—Z°+2zx=0.

Since J(y) =0forall ye H,ifand only if A = (z — x)2 = 0. Therefore, z = T.o=x.

Then

Trr(zl) =U,
Trr(lz) = uf)
Trf) = ugf)
Trr(l4) = uﬁf)
Trﬁf’) = ung)
Trﬁlﬁ) = u%ﬁ)
T.o= ug)

—1++1+4r,(r,+ x,)

21y

n»

—X
90r, +10
—X
11r,+1
1-4r,
—X
15r,+1

n»

ne

-1+ 1+4r,(r,+x,)

21y,
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n Xn n Xn n Xn

1 10 11 0.0239156544 21 0.00001930391707
2 7.414282455 12 0.01166047726 22 0.000009519419651
3 5.25738677 13 0.005695329069 23 0.000004697209017
4 3.188403646 14 0.002786256225 24 0.000002319056949
5 1.720431319 15 0.001365047089 25 0.000001145527389
() 0.8702902283 | 16 0.000669619601 26 | 0.0000005661151488
7 0.4279164132 | 17 | 0.0003288520367 | 27 | 0.0000002798942327
8 0.2082805371 | 18 | 0.0001616632095 | 28 0.000000138439269
9 0.1011375703 | 19 | 0.00007954524563 | 29 | 0.00000006849968096
10 | 0.04914122712 | 20 | 0.00003917150569 | 30 | 0.00000003390554052

10

sl

E or
2 F
\-!EF
0 M.‘H'..ff..f‘.’.“.'?‘.’?ffff‘.”
0 10 15 20 25 35
Iteration steps
Then
ull + u® o+ ul?
wn =
7
We have
2 2 _ —e
i = e, + B O o
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Choose x; = 10. The detailed results of proposed iterative in Theorem 3.2 are presented in the

following table and figure.
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