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INEQUALITIES OF QUERMASSINTEGRALS ABOUT
MIXED BLASCHKE MINKOWSKI HOMOMORPHISMS

YIBIN FENG, WEIDONG WANG AND JUN YUAN

Abstract. In this article, we establish some inequalities of quermassintegrals associated
with mixed Blaschke Minkowski homomorphisms. In particular, Minkowski and Brunn-
Minkowski type inequalities for quermassintegrals differences of mixed Blaschke Minkowski
homomorphisms are established. In addition, we also give an isolated form of Brunn-
Minkowski type inequality of quermassintegrals established by Schuster.

1. Introduction and Main Results

Let K n denote the set of convex bodies (compact, convex subsets with nonempty inte-

riors) in Euclidean space Rn . Let Sn−1 denote the unit sphere in Rn , and V (K ) denotes the

n-dimensional volume of a body K . For the standard unit ball B in Rn , we denote ωn =V (B).

If K ∈ K n , then its support function, hK = h(K , ·) : Rn → (−∞,∞), is defined by (see

[4, 16])

h(K , x) = max{x · y : y ∈ K }, x ∈Rn ,

where x · y denotes the standard inner product of x and y .

The projection body ΠK of K ∈ K n is the convex body whose support function is given

for u ∈ Sn−1 by (see [4, 16])

h(ΠK ,u) =Vn−1(K |u⊥),

where Vn−1 denotes (n−1)-dimensional volume and K |u⊥ is the image of orthogonal projec-

tion of K onto the subspace orthogonal to u.

Important volume inequalities for the polars of projection bodies are the Petty projection

inequalities (see [14]). Among bodies of given volume the polar projection bodies have max-

imal volume precisely for ellipsoids and minimal volume precisely for simplices. The corre-

sponding results for the volume of projection body itself are major open problems in convex
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geometry (see [9]). Projection bodies and their polars have received considerable attention

over the last decades (see [2]−[8], [10, 11, 18]).

The notion of the classical projection body is extended to the mixed projection body by

Lutwak (see [11, 12]). For each K ∈K n and i = 0, . . . ,n−1, the mixed projection body, Πi K , of

K is the origin-symmetric convex body whose support function is defined by

h(Πi K ,u) = wi (K |u⊥),

for all u ∈ Sn−1, where wi (K |u⊥) denotes the (n −1)-dimensional quermassintegral of K |u⊥,

and Π0K = ΠK . Besides, Lutwak, Yang and Zhang also gave the definition of Lp -projection

body in [8]. With regard to the study of Lp -projection body, see [8, 15], [19]−[22]. Recently,

Wang and Leng in [23] gave the notion of the Lp -mixed projection body and got many impor-

tant results.

Further, according to the well know properties of the projection operator Π : K n → K n

established in [11] and [10], Schuster in [18] gave the definition of Blaschke Minkowski homo-

morphism as follows:

A map Φ : K n → K n is called Blaschke Minkowski homomorphism if it satisfies the

following conditions

(a) Φ is continuous.

(b) Φ is Blaschke Minkowski additive, i.e., for all K ,L ∈K n

Φ(K uL) =ΦK +ΦL.

(c) Φ intertwines rotation, i.e., for all K ∈K n and ϑ ∈ SO(n)

Φ(ϑK ) =ϑΦK .

Here ΦK +ΦL denotes the Minkowski sum (see (2.1)) of the Blaschke Minkowski homo-

morphisms ΦK and ΦL and K uL is the Blaschke sum of the convex bodies K and L (see

(2.4)). SO(n) is the group of rotation in n dimensions.

By the above definition of Blaschke Minkowski homomorphism, Schuster in [18] ob-

tained the following result which generalizes the notion of mixed projection bodies, and call

it as mixed Blaschke Minkowski homomorphisms.

Theorem 1.A. There is a continuous operator

Φ : K n ×·· ·×K n︸ ︷︷ ︸
n−1

→K n ,
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symmetric in its arguments such that, for K1, . . . ,Km ∈K n and λ1, . . . ,λm ≥ 0,

Φ(λ1K1 +·· ·+λmKm) =
∑

i1,...,in−1

λi1 · · ·λin−1Φ(Ki1 , . . . ,Kin−1 ), (1.1)

where the sum is with respect to Minkowski addition. If K1 = ·· · = Kn−i−1 = K , Kn−i = ·· · =
Kn−1 = B, we write Φi K for Φ(K , . . . ,K ,B , . . . ,B). For 0 ≤ i < n, we write Φi (K ,L) for

Φ(K , . . . ,K︸ ︷︷ ︸
n−i−1

,L, . . . ,L︸ ︷︷ ︸
i

) and write Φ0K as ΦK .

Schuster in [18] also gave the following Minkowski and Brunn-Minkowski type inequali-

ties of quermassintegrals of mixed Blaschke Minkowski homomorphisms.

Theorem 1.B. If K ,L ∈K n and 0 ≤ i ≤ n −1, 1 ≤ j < n −1, then

Wi (Φ j (K ,L))n−1 ≥Wi (ΦK )n− j−1Wi (ΦL) j , (1.2)

with equality if and only if K and L are homothetic. For M ∈ K n , Wi (M) denotes the quer-

massintegrals of M.

Theorem 1.C. If K ,L ∈K n and 0 ≤ i ≤ n −1, 0 ≤ j < n −2, then

Wi (Φ j (K +L))
1

(n−i )(n− j−1) ≥Wi (Φ j K )
1

(n−i )(n− j−1) +Wi (Φ j L)
1

(n−i )(n− j−1) , (1.3)

with equality if and only if K and L are homothetic.

In this article, we shall continuously study the mixed Blaschke Minkowski homomor-

phisms. Our results were stated as follows: Firstly, corresponding to Theorem 1.B, we give a

Minkowski type inequality of quermassintegrals differences with regard to the mixed Blaschke

Minkowski homomorphisms.

Theorem 1.1. Let K , L, D and D ′ be convex bodies in Rn , D ⊆ K , D ′ ⊆ L, D ′ is a homothetic of

D, then for 0 ≤ i ≤ n −1, 1 ≤ j < n −1,[
Wi (Φ j (K ,L))−Wi (Φ j (D,D ′))

]n−1

≥ [Wi (ΦK )−Wi (ΦD)]n− j−1 [
Wi (ΦL)−Wi (ΦD ′)

] j ,

with equality if and only if K and L are homothetic and Wi (ΦK )/Wi (ΦD) =Wi (ΦL)/Wi (ΦD ′).

Secondly, associated with Theorem 1.C, we obtain a Brunn-Minkowski type inequality

for quermassintegrals differences of mixed Blaschke Minkowski homomorphisms.

Theorem 1.2. Let K , L, D and D ′ be convex bodies in Rn , D ⊆ K , D ′ ⊆ L, and let D ′ be a

homothetic of D, then for 0 ≤ i < n, 0 ≤ j < n −2,[
Wi (Φ j (K +L))−Wi (Φ j (D +D ′))

] 1
(n−i )(n− j−1)
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≥ [
Wi (Φ j K )−Wi (Φ j D)

] 1
(n−i )(n− j−1) + [

Wi (Φ j L)−Wi (Φ j D ′)
] 1

(n−i )(n− j−1) ,

with equality if and only if K and L are homothetic and (Wi (Φ j K ),Wi (Φ j L)) = v(Wi (Φ j D),

Wi (Φ j D ′)), where v is a constant.

Further, the following result is an isolated form of Theorem 1.C.

Theorem 1.3. If K ,L ∈K n , 0 ≤ i ≤ n −1 and 0 ≤ j < n −1, then for 0 ≤α≤ 1

Wi (Φ j (K +L))
1

(n−i )(n− j−1)

≥ Wi (Φ j ((1−α)K +αL))
1

(n−i )(n− j−1) +Wi (Φ j (αK + (1−α)L))
1

(n−i )(n− j−1)

≥ Wi (Φ j K )
1

(n−i )(n− j−1) +Wi (Φ j L)
1

(n−i )(n− j−1) ,

there is equality in the left inequality if and only if (1−α)K+αL andαK+(1−α)L are homothetic

and equality in the right inequality if and only if K and L are homothetic.

Finally, together with the definition of mixed Blaschke Minkowski homomorphisms, we

extend an inequality of Lutwak.

Theorem 1.4. For K ∈K n , and 0 ≤ i < j < n −1. If 0 ≤ m < n, then

Wm(Φ j K )n−i−1 ≥ r (n−m)( j−i )
Φ ω

j−i
n Wm(Φi K )n− j−1,

with equality if and only if Φi K and Φ j K are both balls and they are homothetic. Here rΦ

denotes the radius of the ball ΦB.

2. Preliminaries

In this section, we collect some basic notion and notation that are needed in the proofs

of the main theorems, and they can be found in the books [4] and [16].

For K1,K2 ∈ K n and λ1,λ2 ≥ 0 (not both zero), the support function of the Minkowski

linear combination λ1K1 +λ2K2 is

h(λ1K1 +λ2K2, ·) =λ1h(K1, ·)+λ2h(K2, ·). (2.1)

The volume of Minkowski linear combination λ1K1 +·· ·+λmKm of convex bodies K1, . . . ,Km

was given by

V (λ1K1 +·· ·+λmKm) = ∑
i1,...,in

V (Ki1 , . . . ,Kin )λi1 · · ·λin . (2.2)
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The coefficients V (Ki1 , . . . ,Kin ) are called mixed volumes of Ki1 , . . . ,Kin . These functions are

nonnegative, symmetric and translation invariant. Moreover, they are monotone (with re-

spect to set inclusion), multilinear with respect to Minkowski addition and their diagonal

form is ordinary volume, i.e., V (K , . . . ,K ) =V (K ).

Denote by Vi (K ,L) the mixed volume V (K , . . . ,K ,L, . . . ,L), where K appears n−i times and

L appears i times. For 0 ≤ i ≤ n−1, write Wi (K ,L) for the mixed volume V (K , . . . ,K ,B , . . . ,B ,L),

where K appears n − i − 1 times and the unit ball B appears i times. The mixed volume

Wi (K ,K ) will be written as Wi (K ) and is called the quermassintegrals of K .

For K1, . . . ,Kn−1 ∈K n , a Borel measure on Sn−1, S(K1, . . . ,Kn−1, ·), is called the mixed sur-

face area measure of K1, . . . ,Kn−1. It is symmetric and has the property that, for each K ∈K n ,

V (K ,K1, . . . ,Kn−1) = 1

n

∫
Sn−1

h(K ,u)dS(K1, . . . ,Kn−1,u). (2.3)

The measures S j (K , ·) = S(K , . . . ,K ,B , . . . ,B , ·), where K appears j times and B appears n− j −1

times, are called the surface area measures of order j of K . If j = n −1, then write Sn−1(K , ·)
for S(K , ·), and is called the surface area measure of K .

If K1,K2 ∈K n and λ1,λ2 ≥ 0 (not both zero), then there exists a convex body λ1 ·K1uλ2 ·
K2, such that

S(λ1 ·K1 uλ2 ·K2, ·) =λ1S(K1, ·)+λ2S(K2, ·). (2.4)

This addition and scalar multiplication are called Blaschke addition and scalar multiplication.

For K ∈K n and λ≥ 0, we have λ ·K =λ
1

n−1 K .

One of the most general and fundamental inequality for mixed volumes is Aleksandrov-

Fenchel inequality: If K1, . . . ,Kn ∈K n and 1 ≤ m ≤ n, then

V (K1, . . . ,Kn)m ≥
m∏

j=1
V (K j , . . . ,K j︸ ︷︷ ︸

m

,Km+1, . . . ,Kn). (2.5)

An important special case of inequality (2.5) is the following Minkowski type inequality:

If K ,L ∈K n , 0 ≤ i ≤ n −2, then

Wi (K ,L)n−i ≥Wi (K )n−i−1Wi (L), (2.6)

with equality if and only if K and L are homothetic.

3. The Proofs of Theorems

In this section, we complete the proofs of Theorems 1.1−1.4. For the proof of Theorem

1.1, we require a Lemma as follows:
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Lemma 3.1 ([24]). If a,b,c,d > 0, 0 <α< 1, 0 <β< 1 and α+β= 1. Let a > b and c > d, then

aαcβ−bαdβ ≥ (a −b)α(c −d)β, (3.1)

with equality if and only if a/b = c/d.

Proof of Theorem 1.1. Using inequality (1.2), we have for 0 ≤ i ≤ n −1 and 1 ≤ j < n −1

Wi (Φ j (K ,L)) ≥Wi (ΦK )
n− j−1

n−1 Wi (ΦL)
j

n−1 , (3.2)

with equality if and only if K and L are homothetic. Since D ′ is a homothetic of D ,

Wi (Φ j (D,D ′)) =Wi (ΦD)
n− j−1

n−1 Wi
(
ΦD ′) j

n−1 . (3.3)

Combine with (3.2) and (3.3), apply inequality (3.1) to get

Wi (Φ j (K ,L))−Wi (Φ j (D,D ′))

≥ Wi (ΦK )
n− j−1

n−1 Wi (ΦL)
j

n−1 −Wi (ΦD)
n− j−1

n−1 Wi
(
ΦD ′) j

n−1

≥ [Wi (ΦK )−Wi (ΦD)]
n− j−1

n−1 [Wi (ΦL)−Wi (ΦD ′)]
j

n−1 ,

i.e.,

[Wi (Φ j (K ,L))−Wi (Φ j (D,D ′))]n−1

≥ [Wi (ΦK )−Wi (ΦD)]n− j−1[Wi (ΦL)−Wi (ΦD ′)] j . (3.4)

According to the equality conditions of inequalities (3.1) and (3.2), we see that equality

holds in (3.4) if and only if K and L are homothetic and Wi (ΦK )/Wi (ΦD) =Wi (ΦL)/Wi (ΦD ′).

Taking i = 0, j = 1 in inequality (3.4), inequality (3.4) changes to the following result.

Corollary 3.1. Let K , L, D and D ′ be convex bodies in Rn , D ⊆ K , D ′ ⊆ L, D ′ is a homothetic of

D, then [
V (Φ1(K ,L))−V (Φ1(D,D ′))

]n−1

≥ [V (ΦK )−V (ΦD)]n−2 [
V (ΦL)−V (ΦD ′)

]
,

with equality if and only if K and L are homothetic and V (ΦK )/V (ΦD) =V (ΦL)/V (ΦD ′).

Lemma 3.2 ([1]). Let a = (a1, . . . , an) and b = (b1, . . . ,bn) be two series of positive real numbers

and let p > 1. If ap
1 −∑n

i=2 ap
i > 0 and bp

1 −∑n
i=2 bp

i > 0, then

(
ap

1 −
n∑

i=2
ap

i

) 1
p

+
(

bp
1 −

n∑
i=2

bp
i

) 1
p

≤
(

(a1 +b1)p −
n∑

i=2
(ai +bi )p

) 1
p

, (3.5)

with equality if and only if a = vb, where v is a constant.
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Proof of Theorem 1.2. From Theorem 1.C, we have for 0 ≤ i < n and 0 ≤ j < n −2

Wi (Φ j (K +L)) ≥ [Wi (Φ j K )
1

(n−i )(n− j−1) +Wi (Φ j L)
1

(n−i )(n− j−1) ](n−i )(n− j−1), (3.6)

with equality if and only if K and L are homothetic. In view of D ′ is a homothetic of D , then

Wi (Φ j (D +D ′)) = [Wi (Φ j D)
1

(n−i )(n− j−1) +Wi (Φ j D ′)
1

(n−i )(n− j−1) ](n−i )(n− j−1), (3.7)

From (3.6) and (3.7), it follows from inequality (3.5) that[
Wi (Φ j (K +L))−Wi (Φ j (D +D ′))

] 1
(n−i )(n− j−1)

≥ {[Wi (Φ j K )
1

(n−i )(n− j−1) +Wi (Φ j L)
1

(n−i )(n− j−1) ](n−i )(n− j−1)

−[Wi (Φ j D)
1

(n−i )(n− j−1) +Wi (Φ j D ′)
1

(n−i )(n− j−1) ](n−i )(n− j−1)}
1

(n−i )(n− j−1)

≥ [
Wi (Φ j K )−Wi (Φ j D)

] 1
(n−i )(n− j−1) + [

Wi (Φ j L)−Wi (Φ j D ′)
] 1

(n−i )(n− j−1) .

That is [
Wi (Φ j (K +L))−Wi (Φ j (D +D ′))

] 1
(n−i )(n− j−1)

≥ [
Wi (Φ j K )−Wi (Φ j D)

] 1
(n−i )(n− j−1) + [

Wi (Φ j L)−Wi (Φ j D ′)
] 1

(n−i )(n− j−1) . (3.8)

By the equality conditions of inequalities (3.5) and (3.6), equality holds in (3.8) if and

only if K and L are homothetic and (Wi (Φ j K ),Wi (Φ j L)) = v(Wi (Φ j D),Wi (Φ j D ′)), where v is

a constant.

Let i = 0, j = 0 in inequality (3.8), we obtain the following result.

Corollary 3.2. Let K , L, D and D ′ be convex bodies in Rn , D ⊆ K , D ′ ⊆ L, and let D ′ be a

homothetic of D, then[
V (Φ(K +L))−V (Φ(D +D ′))

] 1
n(n−1)

≥ [V (ΦK )−V (ΦD)]
1

n(n−1) + [
V (ΦL)−V (ΦD ′)

] 1
n(n−1) ,

with equality if and only if K and L are homothetic and (V (ΦK ),V (ΦL)) = v(V (ΦD),V (ΦD ′)),

where v is a constant.

Lemma 3.3 ([18]). If Φ : K n → K n is a Blaschke Minkowski homomorphism, then there is a

function g ∈C (Sn−1, ê) such that

h(ΦK , ·) = Sn−1(K , ·)∗ g ,

where C (Sn−1, ê) denotes the set of continuous zonal functions on Sn−1 and the notation “∗"

denotes the convolution.
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As a consequence of Lemma 3.3, we have for mixed Blaschke Minkowski homomorphism

induced by Φ

h(Φi K , ·) = Sn−i−1(K , ·)∗ g . (3.9)

Proof of Theorem 1.3. For 0 ≤α≤ 1, from (2.1), we have for any u ∈ Sn−1

h(K +L,u) = h(K ,u)+h(L,u) = (1−α)h(K ,u)+αh(K ,u)+ (1−α)h(L,u)+αh(L,u)

= h((1−α)K +αL+αK + (1−α)L,u),

i.e.,

K +L = (1−α)K +αL+αK + (1−α)L. (3.10)

Thus it follows from inequality (1.3) that

Wi (Φ j (K +L))
1

(n−i )(n− j−1)

= Wi (Φ j ((1−α)K +αL+αK + (1−α)L))
1

(n−i )(n− j−1)

≥ Wi (Φ j ((1−α)K +αL))
1

(n−i )(n− j−1) +Wi (Φ j (αK + (1−α)L))
1

(n−i )(n− j−1) . (3.11)

From the equality condition in inequality (1.3), we know that equality holds in (3.11) if and

only if (1−α)K +αL and αK + (1−α)L are homothetic.

Further, we prove the right inequality in Theorem 1.3. From formula (3.9), it follows that

Wi (Φ j ((1−α)K +αL))
1

(n−i )(n− j−1)

≥ Wi (Φ j ((1−α)K ))
1

(n−i )(n− j−1) +Wi (Φ j (αL))
1

(n−i )(n− j−1)

= (1−α)Wi (Φ j K )
1

(n−i )(n− j−1) +αWi (Φ j L)
1

(n−i )(n− j−1) . (3.12)

By the equality condition of (1.3), we know that with equality in (3.12) if and only if (1−α)K

and αL are homothetic, that is K and L are homothetic. Similarly,

Wi (Φ j (αK + (1−α)L))
1

(n−i )(n− j−1)

≥ αWi (Φ j K )
1

(n−i )(n− j−1) + (1−α)Wi (Φ j L)
1

(n−i )(n− j−1) , (3.13)

with equality if and only if K and L are homothetic. Combining with (3.12) and (3.13), this

gets the desired inequality.

According to the equality conditions of (3.12) and (3.13), we see that equality holds in the

right inequality of Theorem 1.3 if and only if K and L are homothetic.

If we take the mixed projection body operator Πi as the mixed Blaschke Minkowski ho-

momorphism in Theorem 1.3, then we have the following
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Corollary 3.3. If K ,L ∈K n , 0 ≤ i ≤ n −1 and 0 ≤ j < n −1, then for 0 ≤α≤ 1

Wi (Π j (K +L))
1

(n−i )(n− j−1)

≥ Wi (Π j ((1−α)K +αL))
1

(n−i )(n− j−1) +Wi (Π j (αK + (1−α)L))
1

(n−i )(n− j−1)

≥ Wi (Π j K )
1

(n−i )(n− j−1) +Wi (Π j L)
1

(n−i )(n− j−1) ,

there is equality in the left inequality if and only if (1−α)K+αL andαK+(1−α)L are homothetic

and equality in the right inequality if and only if K and L are homothetic.

Lemma 3.4 ([18]). If K ,L ∈K n , and 0 ≤ i , j ≤ n −2, then

Wi (K ,Φ j L) =W j (L,Φi K ). (3.14)

Lemma 3.5 ([18]). If K ∈K n , and 0 ≤ i ≤ n −2, then

Wn−1(Φi K ) = rΦWi+1(K ). (3.15)

Lemma 3.6 ([11]). If K ∈K n , and 0 ≤ i < j < n, then

ω
j−i
n Wi (K )n− j ≤W j (K )n−i , (3.16)

with equality if and only if K is a ball.

Proof of Theorem 1.4. For the case m = n − 1 in inequality of Theorem 1.4, it follows from

Lemma 3.5 that it can reduce to (3.16). Let therefore m < n −1 and Q ∈ K n . From (3.14), we

have

Wm(Q,Φ j K ) =W j (K ,ΦmQ). (3.17)

Thus from (2.5), it follows that

W j (K ,ΦmQ)n−i−1 = V (K , . . . ,K︸ ︷︷ ︸
n− j−1

,B , . . . ,B︸ ︷︷ ︸
j−i

,B , . . . ,B︸ ︷︷ ︸
i

,ΦmQ)n−i−1

≥ Wn−1(ΦmQ) j−i Wi (K ,ΦmQ)n− j−1. (3.18)

It follows from Lemma 3.5 and Lemma 3.6 that

Wn−1(ΦmQ)n−m = r n−m
Φ Wm+1(Q)n−m ≥ r n−m

Φ ωnWm(Q)n−m−1, (3.19)

with equality if and only if Q is a ball. And from Lemma 3.4 and inequality (2.6), we obtain

Wi (K ,ΦmQ)n−m =Wm(Q,Φi K )n−m ≥Wm(Q)n−m−1Wm(Φi K ), (3.20)
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with equality if and only if Q and Φi K are homothetic. Therefore, from identity (3.17) and

inequalities (3.18), (3.19) and (3.20), this yields

Wm(Q,Φ j K )n−i−1 ≥ r j−i
Φ ω

j−i
n−m
n Wm(Q)

(n−i−1)(n−m−1)
n−m Wm(Φi K )

n− j−1
n−m . (3.21)

Now take Φ j K for Q in (3.21), we get

Wm(Φ j K )n−i−1 ≥ r (n−m)( j−i )
Φ ω

j−i
n Wm(Φi K )n− j−1. (3.22)

From the equality conditions of inequalities (3.19) and (3.20), we see that equality holds

in (3.22) if and only if Φi K and Φ j K are both balls and they are homothetic.

Since the mixed projection body operator Πi is a mixed Blaschke Minkowski homomor-

phism, we get the following result, and it was established by Lutwak in the reference [11].

Corollary 3.4. For K ∈K n , and 0 ≤ i < j < n −1. If 0 ≤ m < n, then

Wm(Π j K )n−i−1 ≥ω
(n−m)( j−i )
n−1 ω

j−i
n Wm(Πi K )n− j−1,

with equality if and only if K is a ball.
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