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TWO-DIMENSIONAL GENERALIZED WEYL FRACTIONAL CALCULUS

PERTAINING TO TWO-DIMENSIONAL H-TRANSFORMS

V. B. L. CHAURASIA AND AMBER SRIVASTAVA

Abstract. The aim of this paper is to establish a relation between the two-dimensional H-

transform involving a general polynomials and the Weyl type two-dimensional Saigo operator of

fractional integration.

1. Introduction

Our purpose of this paper is to establish a theorem on two-dimensional H-transforms

involving a general class of polynomials with Weyl type two-dimensional Saigo operators.

The results established here are basic in nature and include the results given earlier by

Saigo, Saxena and Ram [19], Saxena and Ram [22], Nishimoto and Saxena [12], Saxena

and Kiryakova [21], etc.

2. Fractional Integrals and Derivatives

An interesting and useful generalization of both the Riemann-Liouville and Erdélyi-

Kober fractional integration operators is introduced by Saigo [14], [15] in terms of Gauss’s

hypergeometric function as given below.

Assuming that a, b and c are complex numbers and let x ∈ R+ = (0,∞). Following

[14], [15] the fractional integral (Re(a) > 0) and derivative (Re(a) < 0) of the first kind

of a function f(x) on R+ are defined respectively in the forms

I
a,b,c
0,x f =

x−a−b

Γ(a)

∫ x

0

(x − t)a−1
2F1(a + b,−c; a; 1− t

x
)f(t)dt, Re(a) > 0 (1)

=
dn

dxn
I

a+n,b−n,c−n
0,x f, 0 < Re(a) + n ≤ 1 (n = 1, 2, . . .), (2)

where 2F1(α, β; γ; .) is Gauss’s hypergeometric function. The fractional integral (Re(a)>
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0) and derivative (Re(a) < 0) of the second kind are given by

Ja,b,c
x,∞ f =

1

Γ(a)

∫

∞

x

(t − x)a−1t−a−b
2F1(a + b,−c; a; 1 − x

t
)f(t)dt, Re(a) > 0 (3)

= (−1)n dn

dxn
Ia+n,b−n,c
x,∞ f, 0 < Re(a) + n ≤ 1 (n = 1, 2, . . .). (4)

The Riemann-Liouville, Weyl and Erdélyi-Kober fractional calculus operators follow as
special cases of the operators I and J as detailed below.

Ra
0,xf = I

a,−a,c
0,x f =

1

Γ(a)

∫ x

0

(x − t)a−1f(t)dt, Re(a) > 0 (5)

=
dn

dxn
Ra+n

0,x f, 0 < Re(a) + n ≤ 1 (n = 1, 2, . . .) (6)

W a
x,∞f = Ja,−a,c

x,∞ f =
1

Γ(a)

∫

∞

x

(t − x)a−1f(t)dt, Re(a) > 0 (7)

= (−1)n dn

dxn
W a+n

x,∞ f, 0 < Re(a) + n ≤ 1 (n = 1, 2, . . .) (8)

E
a,c
0,xf = I

a,0,c
0,x f =

x−a−c

Γ(a)

∫ x

0

(x − t)a−1tcf(t)dt, Re(a) > 0 (9)

Ka,c
x,∞f = Ja,0,c

x,∞ f =
xc

Γ(a)

∫

∞

x

(t − x)a−1t−a−cf(t)dt, Re(a) > 0 (10)

Following Miller [11, p.82], we denote the class of functions f(x) on R+, which are
infinitely differentiable with partial derivatives of any other behaving as 0(|x|−η) when
x → ∞ for all η, by U1. Similarly we denote the class of functions f(x, y) on R+ ×
R+, which are infinitely differentiable with partial derivatives of any order behaving as
0(|x|−η1 , |y|−η2) when x → ∞, y → ∞ for all ηi (i = 1, 2) by U2.

The two-dimensional Saige operator of Weyl type fractional integration of orders
Re(a) > 0, Re(γ) > 0 is defined in the class U2 by

Ja,b,c
x,∞ Jγ,σ,ρ

y,∞ [f(x, y)] =
xbyσ

Γ(a)Γ(γ)

∫

∞

x

∫

∞

y

(s − x)a−1(w − y)γ−1s−a−bw−γ−σ

× 2F1(a + b,−c; a; 1− x

s
) 2F1(γ + σ,−ρ; γ; 1 − y

w
)f(s, w)dsdw, (11)

where b, σ, c, ρ are real numbers. More generally, a Saigo operator of Weyl type ftactional
calculus in two-variables is defined by the differ-integral expression

Ja,b,c
x,∞ Jγ,σ,ρ

y,∞ [f(x, y)] =
(−1)m+nxbyσ

Γ(a + m)Γ(γ + n)

∂m+n

∂xm∂yn

{

∫

∞

x

∫

∞

y

(s−x)a+m−1(w−y)γ+n−1

×s−a−bw−γ−σ
2F1(a + b,−c; a; 1 − x

s
) 2F1(γ + σ,−ρ; γ; 1 − y

w
)f(s, w)dsdw

}

, (12)

for arbitrary real (complex) a and γ, m, n = 0, 1, . . .. For f(x, y) ∈ U2, this differ-integral
exists and also belongs to U2 [11, p.82].
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In particular, if Re(a) < 0, Re(γ) < 0 and m, n are positive integers such that
Re(a) + m > 0, Re(γ) + n > 0, then (12) yields the partial fractional derivative of
f(x, y).

Letting b = σ = 0, (12) yields the Weyl type Erdélyi-Kober operators in two-
dimensions:

Ka,c
x,∞Kγ,ρ

y,∞[f(x, y)] = Ja,0,c
x,∞ Jγ,0,ρ

y,∞ [f(x, y)]

=
(−1)m+nxcyρ

Γ(a + m)Γ(γ + n)

∂m+n

∂xm∂yn

×
{

∫

∞

x

∫

∞

y

(s−x)a+m−1(w−y)γ+n−1s−a−cw−γ−ρf(s, w)dsdw
}

. (13)

3. Two-dimensional Laplace Transform and H-Transforms Involoving a Gen-
eral Class of Polynomials

The Laplace transform ζ(g, h) of a function f(x, y) ∈ U2 is defined as

ζ(g, h) = L[f(x, y); g, h] =

∫

∞

0

∫

∞

0

e−gx−hyf(x, y)dxdy, (14)

where Re(g) > 0, Re(h) > 0.

Similarly, the Laplace transform of f [p
√

x2 − u2H(x−u), q
√

y2 − v2H(y− v)] is defined
by the Laplace transform of F (x, y), where

F (x, y) = f
[

p
√

x2 − u2H(x − u), q
√

y2 − v2H(y − v)
]

, x > u > 0; y > v > 0 (15)

and H(t) denotes Heaviside’s unit step function.

Definition. By two-dimensional H-transform φ(g, h) involving a general class of
polynomials of a function F (x, y), we mean the following repeated integral involving two
different H-functions with a general class of polynomials

φ(g, h) = φ
M1,N1,M ;M2,N2,M ′

P1,Q1,N ;P2,Q2,N ′ [F (x, y); α, β; g, h]

=

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1H
M1,N1

P1,Q1

[

(gx)r1

∣

∣

∣

(aj ,αj ;Aj)1,N1
,(aj ,αj)N1+1,P1

(bj ,βj)1,M1
,(bj,βj ;Bj)M1+1,Q1

]

×SM
N {(gx)t1}HM2,N2

P2,Q2

[

(hy)r2

∣

∣

∣

(cj ,κj ;Cj)1,N2
,(cj ,κj)N2+1,P2

(dj ,τj)1,M2
,(dj ,τj;Dj)M2+1,Q2

]

SM ′

N ′ {(hy)t2}

×F (x, y)dxdy (16)

Here we suppose that u > 0, v > 0, r1 > 0, r2 > 0; φ(g, h) exists and belongs to U2.
Further suppose that

| arg gr1 | <
1

2
T1π, | arg hr2 | <

1

2
T2π, (17)
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where

T1 =

M1
∑

j=1

|βj | +
N1
∑

j=1

Ajaj −
Q1
∑

j=M1+1

|Bjβj | −
P1
∑

j=N1+1

αj > 0,

T2 =

M2
∑

j=1

|τj | +
N2
∑

j=1

Cjcj −
Q2
∑

j=M2+1

|Djτj | −
P2
∑

j=N2+1

κj > 0

The H-function appearing in (16), introduced by Inayat-Hussain ([6], see also [2]) in
terms of Mellin-Barnes type contour integral, is defined by

H
M,N

P,Q

[

z
∣

∣

∣

(aj ,αj ;Aj)1,N ,(aj ,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj;Bj)M+1,Q

]

=
1

2πi

∫ i∞

−i∞

Ψ(ξ)zξdξ, (18)

where

Ψ(ξ) =

M
∏

j=1

Γ(bj − βjξ)

N
∏

j=1

{Γ(1 − aj + αjξ)}Aj

Q
∏

j=M+1

{Γ(1 − bj + βjξ)}Bj

P
∏

j=N+1

Γ(aj − αjξ)

, (19)

which contains fractional powers of some of the Γ-functions. Here and throughout
the paper aj (j = 1, . . . , P ) and bj (j = 1, . . . , Q) are complex parameters, αj ≥
0 (j = 1, . . . , P ), βj ≥ 0 (j = 1, . . . , Q) (not all zero simultaneously) and the expo-
nents Aj (j = 1, . . . , N) and Bj (j = M + 1, . . . , Q) can take on non-integer values. The
contour in (18) is imaginary axis Re(ξ) = 0. It is suitably indented in order to avoid
the singularities of the Γ-functions and to keep these singularities on appropriate sides.
Again, for Aj (j = 1, . . . , N) not an integer, the poles of the Γ-functions of the numerator
in (19) are converted to branch points. However, as long as there is no coincidence of
poles from any Γ(bj − βjξ) (j = 1, . . . , M) and Γ(1 − aj + αjξ) (j = 1, . . . , N) pair, the
branch cuts can be chosen so that the path of integration can be distorted in the usual
manner.

For the sake of brevity

T =

M
∑

j=1

|βj | +
N

∑

j=1

Ajαj −
Q

∑

j=M+1

|Bjβj | −
P

∑

j=N+1

αj > 0. (20)

Further, a general class of polynomials appearing in (16), introduced by Srivastava ([23],
p.185, eqn.(7)), is defined by

SM
N (x) =

[N/M ]
∑

s=0

(−N)Ms

s!
A[N, s]xs, (21)

where M is arbitrary positive integer and the coefficient A[N, s] is arbitrary constant,
real or complex.
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4. Relationship Between Two-dimensional H-Transform Involving a General

Class of Polynomials in Terms of Two-dimensional Saigo Operator of Weyl

Type

To prove the theorem in this section, we need the two-dimensional H-transform

φ1(g, h) involving a general class of polynomials SM
N [x] of F (x, y) defined by

φ1(g, h) = φ
M1+2,N1,M ;M2+2,N2,M ′

P1+2,Q1+2,N ;P2+2,Q2+2,N ′ [f(x, y); α, β; g, h]

=

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1H
M1+2,N1

P1+2,Q1+2

×
[

(gx)r1

∣

∣

∣

(aj ,αj ;Aj)1,N1
,(aj ,αj)N1+1,P ,(1−α−s1t1,r1),(a+b+c−α+1−s1t1,r1)

(bj ,βj)1,M1
,(b−α+1−s1t1,r1),(c−α+1−s1t1,r1),(bj ,βj;Bj)M1+1,Q1

]

SM
N {(gx)t1}

×H
M2+2,N2

P2+2,Q2+2

[

(hy)r2

∣

∣

∣

(cj ,κj ;Cj)1,N2
,(cj,κj)N2+1,P2

,(1−β−s2t2,r2),(γ+σ+ρ−β+1−s2t2,r2)

(dj ,τj)1,M2
,(σ−β+1−s2t2,r2),(ρ−β+1−s2t2,r2),(dj,τj;Dj)M2+1,Q2

]

×SM ′

N ′ {(hy)t2}F (x, y)dxdy, (22)

where it is supposed that φ1(g, h) exists and belongs to U2 as well as r1 > 0, r2 > 0 and

other conditions on the parameters, in which additional parameters a, b, γ, σ, c, ρ included

correspond to those in (11).

Theorem 1. For Re(a) > 0, Re(γ) > 0, u > 0, v > 0, r1 > 0 and r2 > 0, also let

φ(g, h) be given by (16), then the following formula

Ja,b,c
g,∞ J

γ,σ,ρ
h,∞ [φ(g, h)] = φ1(g, h) (23)

holds, provided that φ1(g, h) exists and belongs to class U2.

Proof. Let Re(a) > 0, Re(γ) > 0, then in view of (11) and (16) we have

Ja,b,c
g,∞ J

γ,σ,ρ
h,∞ [φ(g, h)]

=
gbhσ

Γ(a)Γ(γ)

∫

∞

g

∫

∞

h

(s − g)a−1(w − h)γ−1s−a−bw−γ−σ

×2F1(a + b,−c; a; 1− g

s
)2F1(γ + σ,−ρ; γ; 1 − h

w
)φ(s, w)dsdw

=
gbhσ

Γ(a)Γ(γ)

∫

∞

g

∫

∞

h

s−a−bw−γ−σ(s − g)a−1(w − h)γ−1

×2F1(a + b,−c; a; 1− g

s
)2F1(γ + σ,−ρ; γ; 1 − h

w
)

×
{

∫

∞

u

∫

∞

v

(sx)α−1(wy)β−1H
M1,N1

P1,Q1

[

(sx)r1

∣

∣

∣

(aj ,αj ;Aj)1,N1
,(aj ,αj)N1+1,P1

(bj ,βj)1,M1
,(bj ,βj;Bj)M1+1,Q1

]

SM
N {(sx)t1}

×H
M2,N2

P2,Q2

[

(ty)r2

∣

∣

∣

(cj ,κj;Cj)1,N2
,(cj ,κj)N2+1,P2

(dj ,τj)1,M2
,(dj,τj ;Dj)M2+1,Q2

]

SM ′

N ′ {(wy)t2}F (x, y)dxdy
}

dsdw, (24)
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On interchanging the order of integration which is permissible, and on evaluating the s-

and w-integrals through the integral formula

∫

∞

x

s−µ−ν(s−x)ν−1
2F1(r, ω; ν, 1−x

s
)H

M,N

P,Q

[

zsk
∣

∣

∣

(aj ,αj ;Aj)1,N ,(aj ,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj;Bj)M+1,Q

]

SM ′

n′ {zsk′}ds

=
Γ(ν)

xµ
H

M+2,N

P+2,Q+2

[

zxk
∣

∣

∣

(aj ,αj ;Aj)1,N ,(aj ,αj)N+1,P ,(µ+ν−r−k′s′,k),(µ+ν−ω−s′k′,k)

(bj ,βj)1,M ,(µ−s′k′,k),(µ+ν−r−ω−s′k′,k),(bj ,βj;Bj)M+1,Q

]

, (25)

where Re(ν) > 0, Re(µ+ν+
k(1−aj)

αj
) > 0, Re(µ+ν−r−ω+

k(1−aj)
αj

) > 0, | arg z| < 1
2Tπ

(T is given in (20)). (25) can be established by means of the formula [4, p.399]

∫ 1

0

xγ−1(1 − x)ρ−1
2F1(α, β; γ; x)dx =

Γ(γ)Γ(ρ)Γ(γ + ρ − α − β)

Γ(γ + ρ − α)Γ(γ + ρ − β)
,

for Re(γ) > 0, Re(ρ) > 0, Re(γ + ρ − α − β) > 0. The left hand side of (24) becomes

=

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1

×H
M1+2,N1

P1+2,Q1+2

[

(gx)r1

∣

∣

∣

(aj ,αj ;Aj)1,N1
,(aj,αj)N1+1,P1

,(1−α−s1t1,r1),(a+b+c−α+1−s1t1,r1)

(bj ,βj)1,M1
,(b−α+1−s1t1,r1),(c−α+1−s1t1,r1),(bj ,βj;Bj)M1+1,Q1

]

×SM
N {(gx)t1}

×H
M2+2,N2

P2+2,Q2+2

[

(hy)r2

∣

∣

∣

(cj ,κj;Cj)1,N2
,(cj ,κj)N2+1,P2

,(1−β−s2t2,r2),(γ+σ+ρ−β+1−s2t2,r2)

(dj ,τj)1,M2
,(σ−β+1−s2t2,r2),(1−β+ρ−s2t2,r2),(dj,τj;Dj)M2+1,Q2

]

×SM ′

N ′ {(hy)t2}F (x, y)dxdy

= φ1
M1+2,N1,M ;M2+2,N2,M ′

P1+2,Q1+2,N ;P2+2,Q2+2,N ′ [F (x, y); α, β; g, h]

= φ1(g, h) = R.H.S. of (23).

Since the two-dimensional Weyl type Saigo operators Ja,b,c
x,∞ Jγ,σ,ρ

y,∞ preserves the class U2,

it follows that φ1(g, h) also belongs to U2.

It is interesting to note that the statement of Theorem 1 can be easily extended for

arbitrary real a, γ by using the definition (12) for the generalized Weyl type fractional

calculus operators and differentiating under the signs of the integrals.

5. Interesting Special Cases

Taking c = ρ = 0 in Theorem 1, we have the following Theorem 1(a).

Theorem 1.(a). For Re(a) > 0, Re(γ) > 0, u > 0, v > 0, r1 > 0, r2 > 0 and also

let φ(g, h) be given by (16), then the following formula

Ja,b,0
g,∞ J

γ,σ,0
h,∞ [φ(g, h)] = φ2(g, h), (26)
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holds, provided that φ2(g, h) exists and belongs to class U2, where φ2 is represented by

the repeated integral

φ2(g, h) =

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1

×H
M1+1,N1

P1+1,Q1+1

[

(gx)r1

∣

∣

∣

(aj ,αj ;Aj)1,N1
,(aj ,αj)N1+1,P1

,(a+b−α+1−s1t1,r1)

(bj ,βj)1,M1
,(b−α+1−s1t1,r1),(bj,βj ;Bj)M1+1,Q1

]

SM
N {(gx)t1}

×H
M2+1,N2

P2+1,Q2+1

[

(hy)r2

∣

∣

∣

(cj ,κj ;Cj)1,N2
,(cj ,κj)N2+1,P2

,(γ+σ−β+1−s2t2,r2)

(dj ,τj)1,M2
,(σ−β+1−s2t2,r2),(dj,τj ;Dj)M2+1,Q2

]

×SM ′

N ′ {(hy)t2}F (x, y)dxdy, (27)

For Aj = Bj = 1, the H-function in (18) reduces to Fox’s H-function [5], [9] and then

Theorem 1(a) reduces to

Ja,b,0
g,∞ J

γ,σ,0
h,∞ [φ(g, h)] = φ3(g, h) (28)

provided that φ3(g, h) exists and belongs to U2, where φ3 is represented by the repeated

integral

φ3(g, h) =

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1H
M1+1,N1

P1+1,Q1+1

[

(gx)r1

∣

∣

∣

(aP1
,αP1

),(a+b−α+1−s1t1,r1)

(b−α+1−s1t1,r1),(bQ1
,βQ1

)

]

×SM
N {(gx)t1}HM2+1,N2

P2+1,Q2+1

[

(hy)r1

∣

∣

∣

(cP2
,κP2

),(γ+σ−β+1−s2t2,r2)

(σ−β+1−s2t2,r2),(dQ2
,τQ2

)

]

×SM ′

N ′ {(hy)t2}F (x, y)dxdy, (29)

On employing the identity

H
M,N
P,Q

[

x
∣

∣

∣

(aP ,1)

(bQ,1)

]

= G
M,N
P,Q

[

x
∣

∣

∣

a1,...,aP

b1,...,bQ

]

, (30)

we see that the two-dimensional H-transform reduces to the corresponding two-dimen-

sional G-transform Ψ(g, h) defined by

Ψ(g, h) = G
M1,N1,M ;M2,N2,M ′

P1,Q1,N ;P2,Q2,N ′ [F (x, y); α, β; g, h]

=

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1G
M1,N1

P1,Q1

[

(gx)r1

∣

∣

∣

a1,...,aP1

b1,...,bQ2

]

SM
N {(gx)t1}

×G
M2,N2

P2,Q2

[

(hy)r2

∣

∣

∣

c1,...,cP2

d1,...,dQ2

]

SM ′

N ′ {(hy)t2}F (x, y)dxdy (31)

provided that Ψ(g, h) exists and belongs to class U2, where r1 and r2 are positive integers,

u > 0, v > 0, P1 ≤ Q1, P2 ≤ Q2, | arg gr1 | <
T∗

1 π
2 and | arghr2 | <

T∗

2 π
2 with T ∗

1 =

2N1 +2M1−P1−Q1 and T ∗

2 = 2N2 +2M2−P2−Q2 ·GM,N
P,Q [.] appearing in (30) and (31)

represents Meijer’s G-function whose detailed account is available from the monograph

of Mathai and Saxena [8].
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Thus we obtain the following Theorem 1(b).

Theorem 1.(b). For Re(a) > 0, Re(γ) > 0, u > 0, v > 0, r1 and r2 being positive

integers and also let Ψ(g, h) be given by (31), then the following formula

Ja,b,c
g,∞ J

γ,σ,ρ
h,∞ [Ψ(g, h)] = Ψ1(g, h), (32)

holds, provided that Ψ1(g, h) exists and belongs to class U2 for other conditions on the

parameters, in which additional parameters a, b, γ, c, σ, ρ included correspond to those in

(31). Here

Ψ1(g, h) = r−a
1 r

−γ
2

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1

×G
M1+2,N1

P1+2,Q1+2

[

(gx)r1

∣

∣

∣

a1,...,aP1
,∆(r1,−α−s1t1),∆(r1,a+b+c−α+1−s1t1)

∆(r1,b−α+1−s1t1),∆(r1,c−α+1−s1t1),b1,...,bQ1

]

SM
N {(gx)t1}

×G
M2+2,N2

P2+2,Q2+2

[

(hy)r2

∣

∣

∣

c1,...,cP2
,∆(r2,1−β−s2t2),∆(r2,γ+σ+ρ−β+1−s2t2)

∆(r2,σ−β+1−s2t2),∆(r2,ρ−β+1−s2t2),d1,...,dQ2

]

×SM ′

N ′ {(hy)t2}F (x, y)dxdy, (33)

and the symbol ∆(n, α) represents the sequence of parameters

α

n
,
α + 1

n
, . . . ,

α + n − 1

n
.

On taking c = ρ = 0, (32) becomes

Ja,b,0
g,∞ J

γ,σ,0
h,∞ [Ψ(g, h)] = Ψ2(g, h) (34)

provided Ψ2(g, h) exists and belongs to class U2, where Ψ2 is represented by the integral

Ψ2(g, h) = r−a
1 r

−γ
2

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1

×G
M1+1,N1

P1+1,Q1+1

[

(gx)r1

∣

∣

∣

a1,...,aP1
,∆(r1,a+b−α+1−s1t1)

∆(r1,b−α+1−s1t1),b1,...,bQ1

]

SM
N {(gx)t1}

×G
M2+1,N2

P2+1,Q2+1

[

(hy)r2

∣

∣

∣

c1,...,cP2
,∆(r2,γ+σ−β+1−s2t2)

∆(r2,σ−β+1−s2t2),d1,...,dQ2

]

×SM ′

N ′ {(hy)t2}F (x, y)dxdy. (35)

On using the representation of the Whittaker function [9]

G20
12

(

x
∣

∣

∣

1−α

1
2
+β, 1

2
−β

)

= e−x/2Wα,β(x), (36)

we find that the two-dimensional H-transform involving a general class of polynomials

reduces to the two-dimensional Whittaker transform

Ψ3(g, h) = W
λ,µ
λ′,µ′ [f(x, y); α, β; g, h]

=

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1 exp
[

− 1

2
(gx + hy)

]

Wλ,µ(gx)

×SM
N {(gx)t1}Wλ′,µ′(hy)SM ′

N ′ {(hy)t2}F (x, y)dxdy (37)
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provided that Re(g) > 0, Re(h) > 0 and Ψ3(g, h) exists and belongs to U2.

The Whittaker confluent hypergeometric function appearing in equations (36) and (37)
is defined by the integral equation [24, p.340]

Wλ,µ(x) =
xλe−x/2

Γ(1
2 − λ + µ)

∫

∞

0

w−
1
2
−λ+µ

(

1 +
w

x

)λ+µ− 1
2

e−wdw, (38)

where Re(1
2 − λ + µ) > 0.

Theorem 1.(c). There holds the formula

Ja,b,c
g,∞ J

γ,σ,ρ
h,∞ [Ψ3(g, h)] = Ψ4(g, h) (39)

provided that

Ψ4(g, h) =

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1G
4,0
3,4

[

(gx)
∣

∣

∣

1−λ,1−α−s1t1,a+b+c−α+1−s1t1

b−α+1−s1t1,c−α+1−s1t1, 1
2
+µ, 1

2
−µ

]

×SM
N {(gx)t1}G4,0

3,4

[

(hy)
∣

∣

∣

1−λ′,1−β−s2t2,γ+σ+ρ−β+1−s2t2

σ−β+1−s2t2,ρ−β+1−s2t2, 1
2
+µ′, 1

2
−µ′

]

×SM ′

N ′ {(hy)t2}F (x, y)dxdy, (40)

exists and belongs to class U2.

On taking b = σ = 0, (39) becomes

Ja,0,c
g,∞ J

γ,0,ρ
h,∞ [Ψ3(g, h)] = Ψ5(g, h) (41)

provided that

Ψ5(g, h) =

∫

∞

u

∫

∞

v

(gx)α−1(hy)β−1G
3,0
2,3

[

(gx)
∣

∣

∣

1−λ,a+c−α+1−s1t1

c−α+1−s1t1, 1
2
+µ, 1

2
−µ

]

SM
N {(gx)t1}

×G
3,0
2,3

[

(hy)
∣

∣

∣

1−λ′,γ+ρ−β+1−s2t2

ρ−β+1−s2t2, 1
2
+µ′, 1

2
−µ′

]

SM ′

N ′ {(hy)t2}F (x, y)dxdy, (42)

exists and belongs to class U2.

6. Some Interesting Known Deductions

(i) On taking Aj = Bj = 1, N = N ′ = 0 in Theorem 1, we arrive at the result obtained
by Saigo, Saxena and Ram [19, p.67].

(ii) For Aj = Bj = 1 and N = N ′ = 0 = c = ρ in Theorem 1, we have a result earlier
proved by Saxena and Kiryakova [21, p.136].

(iii) Letting N = N ′ = 0 = c = ρ in Theorem 1(b), we get a result earlier given by
Nishimoto and Saxena [12, p.25].

(iv) When N = N ′ = 0 = b = σ in Theorem 1(c), we find the reuslt earlier given by
Saxena and Ram [22, p.28].
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7. One-Dimensional Analogue of Theorem 1

The following one dimensional analogue can be established on the similar lines as

given in Theorem 1.

Theorem 2. Let φ(g) be the one-dimensional H-transform involving a general class

of polynomials of F (x) defined by

φ(g) = φ
M,N,M ′

P,Q,N ′ [F (x); α, g]

=

∫

∞

u

(gx)α−1H
M,N

P,Q

[

(gx)r
∣

∣

∣

(aj ,αj ;Aj)1,N ,(aj ,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj ;Bj)M+1,Q

]

SM ′

N ′ {(gx)t}F (x)dx, (43)

provided that φ(g) exists and belongs to class U1, where r > 0, | arg gr| < 1
2Tπ;

F (x) = f
(

a
√

x2 − u2
)

H(x − u). (44)

For Re(a) > 0, u > 0, r > 0 and let φ1(g) be defined as

φ1(g)=

∫

∞

u

(gx)α−1H
M+2,N

P+2,Q+2

[

(gx)r
∣

∣

∣

(aj ,αj ;Aj)1,N ,(aj ,αj)N+1,P ,(1−α−st,r),(a+b+c−α+1−st,r)

(bj ,βj)1,M ,(b−α+1−st,r),(c−α+1−st,r),(bj,βj ;Bj)M+1,Q

]

×SM ′

N ′ {(gx)t}F (x)dx, (45)

then the following formula

J
a,b,c

g,∞ [φ(g)] = φ1(g), (46)

holds, provided that φ1(g) exists and belongs to class U1.

Here J
a,b,c

g,∞ f =
gb

Γ(a)

∫

∞

g

(t − g)a−1ta−b
2F1(a + b,−c; a; 1− g

t
)f(t)dt = gbJa,b,c

g,∞ f.

Special Cases

(i) For Aj = Bj = 1, the H-function in (18) reduces to Fox’s H-function and then (46)

becomes

J
a,b,c

g,∞ [φ(g)] = φ2(g), (47)

provided that φ2(g) exists and belongs to class U1, where

φ2(g) =

∫

∞

u

(gx)α−1H
M+2,N

P+2,Q+2

[

(gx)r
∣

∣

∣

(aP ,αP ),(1−α−st,r),(a+b+c−α+1−st,r)

(b−α+1−st,r),(c−α+1−st,r),(bQ,BQ)

]

×SM ′

N ′ {(gx)t}F (x)dx. (48)

Further, for αj = βj = 1, the Fox’s H-function reduces to Meijer’s G-function and

then (47) yields the following Theorem 2(a).
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Theorem 2.(a). For Re(a) > 0, u > 0 and Let

φ3(g) = G
M,N,M ′

P,Q,N ′ [F (x); α, g]

=

∫

∞

u

(gx)α−1G
M,N
P,Q

[

(gx)r
∣

∣

∣

a1,...,aP

b1,...,bQ

]

SM ′

N ′ {(gx)t}F (x)dx, (49)

where M + N > P+Q
2 , | arg gr| < (M + N − P+Q

2 )π and P ≤ Q, be the one-

dimensional G-transform involving a general class of polynomials of F (x) and φ3(g)

belongs to class U1, then the following formula

J
a,b,c

g,∞ [φ3(g)] = φ4(g), (50)

holds, provided that φ4(g) exists and belongs to class U2. Here

φ4(g) = r−a

∫

∞

u

(gx)α−1G
M+2,N
P+2,Q+2

[

(gx)r
∣

∣

∣

a1,...,aP ,∆(r,1−α−st),∆(r,a+b+c−α+1−st)

∆(r,b−α+1−st),∆(r,c−α+1−st),b1,...,bQ

]

×SM ′

N ′ {(gx)t}F (x)dx, (51)

(ii) For b = 0, Theorem 2 reduces to the following Theorem 2(b).

Theorem 2.(b). Let φ(g) be given by (43) and let

Ka,c
g,∞f = J

a,0,c

g,∞ f, (52)

be the one-dimensional Erdélyi-Kober operator of fractional integration defined by

(10), then the following formula

Ka,c
g,∞[φ(g)] = φ5(g), (53)

holds, provided that φ5(g) exists and belongs to class U1, where r > 0, u > 0 and

φ5(g) =

∫

∞

u

(gx)α−1H
M+1,N

P+1,Q+1

[

(gx)r
∣

∣

∣

(aj ,αj ;Aj)1,N ,(aj ,αj)N+1,P ,(a+c−α+1−st,r)

(bj ,βj)1,M ,(c−α+1−st,r),(bj,βj;Bj)M+1,Q

]

×SM ′

N ′ {(gx)t}F (x)dx, (54)

Deductions

(i) Taking N = N ′ = 0, Aj = Bj = 1, (46) reduces to the result obtained by Saigo,

Saxena and Ram [19, p.70].

(ii) If we take N = N ′ = 0 in (49), we arrive at the result obtained by Saigo, Saxena

and Ram [19, p.71].

(iii) On taking Aj = Bj = 1, N = N ′ = 0 in (53), we get the result earlier proved by

Saigo, Saxena and Ram [19, p.71].
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On account of the most general character of the H-function and a general class of

polynomials, a large number of interesting particular cases of the results established in

this paper can be given by suitably specializing the parameters of the H-function and

SM
N [x].
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