INVERSE PROBLEMS FOR THE DIFFERENTIAL OPERATOR ON THE GRAPH WITH A CYCLE WITH DIFFERENT ORDERS ON DIFFERENT EDGES

NATALIA BONDARENKO

Abstract

We consider a variable order differential operator on a graph with a cycle. We study inverse spectral problems for this operator by the system of spectra. Uniqueness theorems are proved, and constructive algorithms are obtained for the solution of the inverse problems.

1. Introduction

Differential operators on geometrical graphs (networks) play a fundamental role in many problems in science and engineering. Main results for second-order operators on graphs and their applications are described in $[1,2,3,4,5,6,7]$. In this paper, we focus our attention on inverse spectral problems that consist in recovering the coefficients of differential operators on graphs by their spectral characteristics. Thus we assume that the structure of the graph, boundary and matching conditions in the vertices are known a priori.

Although the inverse spectral theory for second-order differential operators has been developed fairly completely, there are only a few works for higher-order operators [8]. In paper [9], V.A. Yurko started to study inverse problems for various order differential operators, i.e. when the orders of differential equations are different on different edges of the graph. Papers [10, 11] describe some mechanical models with variable order differential operators.

In work [9], an inverse problem is solved on a star-type graph. Now we plan to investigate inverse problems for a variable order operator on a graph with a cycle. We use the system of spectra, corresponding to different boundary and matching conditions, for recovering the potential of the differential operator. Our problem statement is a natural generalization of the classical inverse Sturm-Liouville problem on a finite interval by two spectra (see monographs [13, 12]).

Key words and phrases. Geometrical graphs, differential operators, inverse spectral problems, Weyltype matrices, method of spectral mappings.

Let us come to the formulation of the problem. Consider a compact graph G with the vertices $V=\left\{v_{0}, \ldots, v_{m}\right\}$ and the edges $\mathscr{E}=\left\{e_{0}, \ldots, e_{m}\right\}$, where $e_{j}=\left[v_{j}, v_{0}\right], j=\overline{1, m}$, and e_{0} is a cycle containing only the vertex v_{0}. Thus $v_{j}, j=\overline{1, m}$, are boundary vertices and ν_{0} is the only internal vertex (see Figure 1). For each edge $e_{j} \in \mathscr{E}$, we introduce the parameter $x_{j} \in[0,1]$ in such a way, that for $j=\overline{1, m}$, the end $x_{j}=0$ corresponds to the vertex v_{j}, and the end $x_{j}=1$ corresponds to ν_{0}. For $j=0$, both ends correspond to the vertex ν_{0}.

Figure 1:

Fix the integers $2=n_{0} \leq n_{1} \leq \cdots \leq n_{m}$. Consider the following differential equations of variable orders:

$$
\begin{equation*}
y_{j}^{\left(n_{j}\right)}+\sum_{\mu=0}^{n_{j}-2} q_{\mu j}\left(x_{j}\right) y_{j}^{(\mu)}\left(x_{j}\right)=\lambda y_{j}\left(x_{j}\right), \quad j=\overline{0, m} \tag{1.1}
\end{equation*}
$$

where $q_{\mu j} \in L[0,1]$. We call the collection $q:=\left\{q_{\mu j}\right\}_{j=\overline{0, m}, \mu=\overline{0, n_{j}-2}}$ the potential on the graph G.

Now we are going to introduce matching conditions in the internal vertex v_{0}, that generalize Kirchhoff's matching conditions for Sturm-Liouville operators on graphs [7] and matching conditions for higher-order differential operators [8]. Consider the linear forms

$$
\begin{gathered}
U_{j v}\left(y_{j}\right)=\sum_{\mu=0}^{v} \gamma_{j v \mu} y_{j}^{(\mu)}(1), \quad \gamma_{j v}:=\gamma_{j v v} \neq 0, \quad j=\overline{1, m}, v=\overline{0, n_{j}-1}, \\
U_{0 v}\left(y_{0}\right)=y_{0}^{(v)}(1), \quad v=0,1,
\end{gathered}
$$

where $\gamma_{j v \mu}$ are some complex numbers. Define the continuity condition $\operatorname{Cont}(v)$ and the Kirchhoff's condition $\operatorname{Kirch}(v)$ of the v-th order:

$$
\operatorname{Cont}(v): \begin{cases}U_{m v}\left(y_{m}\right)=U_{j v}\left(y_{j}\right), & j=\overline{0, m-1}: v<n_{j}-1, \\ y_{0}(0)=U_{0 v}\left(y_{0}\right), & \text { if } v=0 ;\end{cases}
$$

$$
\operatorname{Kirch}(v): \sum_{j: v<n_{j}} U_{j v}\left(y_{j}\right)=\delta_{1 v} y_{0}^{\prime}(0)
$$

Here and below $\delta_{j k}$ is the Kronecker delta.
Fix an edge number $s=\overline{1, m}$ and orders $k=\overline{1, n_{s}-1}, \mu=\overline{k, n_{s}}$. Let $\Lambda_{s k \mu}=\left\{\lambda_{l s k \mu}\right\}_{l \geq 1}$ be the spectrum of the boundary value problem $L_{s k \mu}$ for the system (1.1) under the boundary conditions

$$
\left\{\begin{array}{l}
y_{s}^{(v-1)}(0)=0, \quad v=\overline{1, k-1}, \mu \tag{1.2}\\
y_{j}^{(v-1)}(0)=0, \quad v=\overline{1, n_{j}-k}, j=\overline{1, m} \backslash s: n_{j}>k \\
y_{j}(0)=0, \quad j=\overline{1, m}: n_{j} \leq k
\end{array}\right.
$$

and the matching conditions $\operatorname{Cont}(v), v=\overline{0, k-1}, \operatorname{Kirch}(v), v=\overline{k, n_{s}-1}$, in the vertex v_{0}. Note that the total number of the boundary conditions and the matching conditions equals $\sum_{j=0}^{m} n_{j}$, i.e. the sum of the orders on the edges. In Section 3 we discuss the question of regularity for these conditions.

We will use the spectra $\left\{\Lambda_{s k \mu}\right\}$ for recovering of the potential $\left\{q_{\mu j}\right\}$, but this information is insufficient, and we need additional data related to the cycle. Let $S_{0}\left(x_{0}, \lambda\right)$ and $C_{0}\left(x_{0}, \lambda\right)$ be the solutions of the differential equation (1.1) on the edge $e_{0}\left(n_{0}=2\right)$, satisfying the initial conditions

$$
S_{0}(0, \lambda)=C_{0}^{\prime}(0, \lambda)=0, \quad S_{0}^{\prime}(0, \lambda)=C_{0}(0, \lambda)=1
$$

Denote

$$
\begin{equation*}
h(\lambda):=S_{0}(1, \lambda), \quad H(\lambda):=C_{0}(1, \lambda)-S_{0}^{\prime}(1, \lambda), \quad d(\lambda):=C_{0}(1, \lambda)+S_{0}^{\prime}(1, \lambda) . \tag{1.3}
\end{equation*}
$$

Note that the functions $h(\lambda), H(\lambda)$ and $d(\lambda)$ are entire in λ of order $1 / 2$. Let $\left\{v_{n}\right\}_{n \geq 1}$ be the zeros of $h(\lambda)$, and $\omega_{n}:=\operatorname{sign} H\left(v_{n}\right)$. Here we assume for the sake of simplicity, that the potential $q_{00}\left(x_{0}\right)$ is real-valued. For the non-self-adjoint case, one can use the approach described in [14].

Inverse problem 1. Given the spectra $\Lambda_{s k \mu}, s=\overline{1, m}, k=\overline{1, n_{s}-1}, \mu=\overline{k, n_{s}}$, and the signs $\Omega:=\left\{\omega_{n}\right\}_{n \geq 1}$, construct the potentials $q_{\mu j}, j=\overline{0, m}, \mu=\overline{0, n_{j}-2}$.

We will prove the unique solvability of Inverse problem 1 and develop a constructive procedure for its solution. Our approach is based on the method of spectral mappings [13, 15] and some ideas of paper [16] concerning an inverse problem for Sturm-Liouville operator on a graph with a cycle. Our general strategy is to solve auxiliary inverse problems on the boundary edges. These problems are not local problems on intervals, since they use information from the whole graph, but they are close to local problems by their properties. Then the
problem is reduced to the well-studied Sturm-Liouville periodic inverse problem for the cycle [18, 17, 16].

One can avoid the use of the additional data Ω by variation of a parameter in matching conditions. Introduce the following condition

$$
\operatorname{Cont}(0, \alpha): \quad U_{m 0}\left(y_{m}\right)=U_{j 0}\left(y_{j}\right), j=\overline{0, m-1}, \quad \alpha y_{0}(0)=y_{0}(1)
$$

depending on the complex parameter $\alpha \neq 0$. Let $m>1$. The case $m=1$ requires minor modifications. Fix an edge number $s=\overline{1, m}$ and orders $k=\overline{1, n_{s}-1}, \mu=\overline{k, n_{s}}$. Let $\Lambda_{s k \mu}^{\alpha}$ be the spectrum of the boundary value problem $L_{s k \mu}^{\alpha}$ for the system (1.1) under the boundary conditions (1.2) and the matching conditions $\operatorname{Cont}\left(0, \alpha_{s}\right), \operatorname{Cont}(v), v=\overline{1, k-1}, \operatorname{Kirch}(v), v=\overline{k, n_{s}-1}$. Here $\alpha_{s}, s=\overline{1, m}$, are some nonzero numbers, not all equal to each other. We assume that the conditions are regular.

Inverse problem 2. Given the spectra $\Lambda_{s k \mu}^{\alpha}, s=\overline{1, m}, k=\overline{1, n_{s}-1}, \mu=\overline{k, n_{s}}$, construct the potential q on the graph G.

We show that Inverse Problem 2 is uniquely solvable, and can be solved by a method, analogous to the solution of Inverse Problem 1.

The paper is organized as follows. In Section 2, we introduce so-called Weyl-type matrices for each of the boundary edges and show how to construct them by the given spectra. In Section 3, we study asymptotics of special solutions of system (1.1). In Section 4, we discuss auxiliary inverse problems on the boundary edges and on the cycle. In Section 5, we arrive at the main results of our paper for Inverse Problem 1. Inverse Problem 2 is studied in Section 6. We also provide Appendix with an example.

2. Weyl-type solutions and Weyl-type matrices

In this section, we introduce some special solutions of system (1.1) and study their structural and analytical properties.

Fix $j=\overline{0, m}$. Let $\left\{C_{k j}\left(x_{j}, \lambda\right)\right\}_{k=\overline{1, n_{j}}}$ be a fundamental system of solutions of equation (1.1) on the edge e_{j} under initial conditions $C_{k j}^{(\mu-1)}(0, \lambda)=\delta_{k \mu}, k, \mu=\overline{1, n_{j}}$. For each fixed $x_{j} \in[0,1]$, the functions $C_{k j}^{(\mu-1)}\left(x_{j}, \lambda\right)$ are entire in λ-plane of order $1 / n_{j}$. We also have

$$
\begin{equation*}
\operatorname{det}\left[C_{k j}^{(\mu-1)}\left(x_{j}, \lambda\right)\right]_{k, \mu} \equiv 1, \quad j=\overline{0, m} . \tag{2.1}
\end{equation*}
$$

Fix $s=\overline{1, m}$ and $k=\overline{1, n_{s}-1}$. Let $\Psi_{s k}=\left\{\psi_{s k j}\right\}_{j=\overline{1, m}}$ be the solutions of system (1.1) satis-
fying the conditions

$$
\begin{align*}
& \begin{cases}\psi_{s k s}^{(v-1)}(0)=\delta_{k v}, & v=\overline{1, k}, \\
\psi_{s k j}^{(\xi-1)}(0)=0, & \xi=\overline{1, n_{j}-k}, \quad j=\overline{1, m} \backslash s: k<n_{j}, \\
\psi_{s k j}(0)=0, & j=\overline{1, m}: k \geq n_{j},\end{cases} \tag{2.2}\\
& \operatorname{Cont}(v), \quad v=\overline{0, k-1}, \quad \operatorname{Kirch}(v), \quad v=\overline{k, n_{s}-1} . \tag{2.3}
\end{align*}
$$

The vector-function $\Psi_{s k}$ is called the Weyl-type solution of order k for the boundary vertex v_{s}. Additionally define $\psi_{s n_{j} s}\left(x_{s}, \lambda\right)=C_{n_{j} s}\left(x_{s}, \lambda\right), s=\overline{1, m}$.

Let $M_{s k \mu}(\lambda):=\psi_{s k s}^{(\mu-1)}(0, \lambda)$. For each fixed $s=\overline{1, m}$, the matrix $M_{s}(\lambda):=\left[M_{s k \mu}(\lambda)\right]_{k, \mu=1}^{n_{s}}$ is called the Weyl-type matrix with respect to the boundary vertex ν_{s}. The notion of the Weyltype matrices is a generalization of the notion of the Weyl function (m-function) for the classical Sturm-Liouville operator (see [19, 13]) and the notion of Weyl matrices for higher-order differential operators (see [8, 9, 15]).

It follows from (2.2), that $M_{s k \mu}(\lambda)=\delta_{k \mu}$ for $k \geq \mu$. Moreover,

$$
\begin{equation*}
\psi_{s k s}\left(x_{s}, \lambda\right)=C_{k s}\left(x_{s}, \lambda\right)+\sum_{\mu=k+1}^{n_{s}} M_{s k \mu}(\lambda) C_{\mu s}\left(x_{s}, \lambda\right), \quad s=\overline{1, m}, \quad k=\overline{1, n_{s}} . \tag{2.4}
\end{equation*}
$$

Now we plan to study the connection between the Weyl-type matrices, the spectra $\Lambda_{s k \mu}$ and the functions, defined in (1.3). For this purpose, one can easily expand the functions $\psi_{s k j}\left(x_{j}, \lambda\right)$ by the fundamental systems $C_{\mu j}\left(x_{j}, \lambda\right)$ and substitute these expansions into the matching conditions (2.3). Solving the resulting linear system $E_{s k}$, one gets for $s=\overline{1, m}, 1 \leq$ $k<\mu \leq n_{s}$:

$$
\begin{equation*}
M_{s k \mu}(\lambda)=-\frac{\Delta_{s k \mu}(\lambda)}{\Delta_{s k k}(\lambda)} \tag{2.5}
\end{equation*}
$$

Here $\Delta_{s k \mu}(\lambda), k \leq \mu$, is he characteristic function for the boundary value problem $L_{s k \mu}$, and its zeros coincide with the eigenvalues $\Lambda_{s k \mu}$. The functions $\Delta_{s k \mu}$ are entire in λ and, consequently, $M_{s k \mu}(\lambda)$ are meromorphic in λ. Similarly to [9], one can easily prove the following fact.

Lemma 1. Each characteristic function $\Delta_{s k \mu}(\lambda)$ can be determined uniquely by its zeros $\Lambda_{s k \mu}=$ $\left\{\lambda_{l s k \mu}\right\}_{l \geq 1}$.

Furthermore, analysing the structure of determinants in the systems $E_{s k}$ (see the example in Appendix for clarity), we obtain the relations

$$
\begin{align*}
& \Delta_{s k \mu}(\lambda)=(d(\lambda)-2) F_{s \mu}(\lambda)+h(\lambda) G_{s \mu}(\lambda), \quad k=1, \tag{2.6}\\
& \Delta_{s k \mu}(\lambda)=h(\lambda) G_{s k \mu}(\lambda), \quad k>1, \tag{2.7}
\end{align*}
$$

where $F_{s \mu}(\lambda), G_{s \mu}(\lambda), G_{s k \mu}(\lambda)$ are some combinations of $C_{l j}^{(v)}(1, \lambda)$. We will use formulas (2.6), (2.7) to find the data, associated with the cycle, from the characteristic determinants $\Delta_{s k \mu}(\lambda)$.

3. Asymptotic behavior of the Weyl-type solution

Fix $j=\overline{0, m}$. Let $\lambda=\rho_{j}^{n_{j}}$. The ρ-plane can be partitioned into sectors of angle $\frac{\pi}{n_{j}}$:

$$
S_{v j}=\left\{\arg \rho_{j} \in\left(\frac{v \pi}{n_{j}}, \frac{(v+1) \pi}{n_{j}}\right)\right\}, \quad v=\overline{0,2 n_{j}-1} .
$$

Let us fix one of them and call it simply S_{j}. Then the roots $R_{1 j}, R_{2 j}, \ldots, R_{n_{j} j}$ of the equation $R^{n_{j}}-1=0$ can be numbered in such a way that

$$
\begin{equation*}
\operatorname{Re}\left(\rho_{j} R_{1 j}\right)<\operatorname{Re}\left(\rho_{j} R_{2 j}\right)<\cdots<\operatorname{Re}\left(\rho_{j} R_{n_{j} j}\right), \quad \rho_{j} \in S_{j} . \tag{3.1}
\end{equation*}
$$

Denote

$$
\begin{gathered}
\Omega_{0 j}:=1, \quad \Omega_{k j}:=\operatorname{det}\left[R_{\xi j}^{v-1}\right]_{\xi, v=1}^{k}, \quad \omega_{k j}:=\frac{\Omega_{k-1, j}}{\Omega_{k j}}, \quad j=\overline{0, m}, k=\overline{1, n_{j}}, \\
{[1]_{j}:=1+O\left(\rho_{j}^{-1}\right), \quad\left|\rho_{j}\right| \rightarrow \infty}
\end{gathered}
$$

The following Lemma has been proved in [9]:
Lemma 2. Fix $j=\overline{0, m}$ and a sector S_{j} with property (3.1). Let $k=\overline{1, n_{j}-1}$ and let $y_{j}\left(x_{j}, \lambda\right)$ and $z_{j}\left(x_{j}, \lambda\right)$ be solutions of equation (1.1) on the edge e_{j} under the initial conditions

$$
\begin{aligned}
& y_{j}(0)=y_{j}^{\prime}(0)=\cdots=y_{j}^{(k-1)}(0)=0 \\
& z_{j}(0)=z_{j}^{\prime}(0)=\cdots=z_{j}^{(k-2)}(0)=0, \quad z_{j}^{(k-1)}(0)=1
\end{aligned}
$$

Then for $x_{j} \in\left(0, T_{j}\right], v=\overline{0, n_{j}-1}, \rho_{j} \in S_{j},\left|\rho_{j}\right| \rightarrow \infty$,

$$
\begin{aligned}
& y_{j}^{(v)}\left(x_{j}, \lambda\right)=\sum_{\mu=k+1}^{n_{j}} A_{\mu j}\left(\rho_{j}\right)\left(\rho_{j} R_{\mu j}\right)^{v} \exp \left(\rho_{j} R_{\mu j} x_{j}\right)[1]_{j}, \\
& z_{j}^{(v)}\left(x_{j}, \lambda\right)=\frac{\omega_{k j}}{\rho_{j}^{k-1}}\left(\rho_{j} R_{k j}\right)^{v} \exp \left(\rho_{j} R_{k j} x_{j}\right)[1]_{j}+\sum_{\mu=k+1}^{n_{j}} B_{\mu j}\left(\rho_{j}\right)\left(\rho_{j} R_{\mu j}\right)^{v} \exp \left(\rho_{j} R_{\mu j} x_{j}\right)[1]_{j},
\end{aligned}
$$

where the coefficients $A_{\mu j}\left(\rho_{j}\right), B_{\mu j}\left(\rho_{j}\right)$ do not depend on x_{j}. Here and below we assume that $\arg \rho_{j}=$ const, as $\left|\rho_{j}\right| \rightarrow \infty$.

Now we are going to apply Lemma 2 to the Weyl-type solution, in order to study its asymptotic behavior. Fix an edge $s=\overline{1, m}$ and an order $k=\overline{1, n_{s}-1}$. For brevity, further we omit the indices s, k it they are fixed, $\psi_{j}\left(x_{j}, \lambda\right):=\psi_{s k j}\left(x_{j}, \lambda\right)$. Fix a ray $\{\lambda: \arg \lambda=\theta\}, \theta \neq 0, \pi$, which belongs to some sectors S_{j} with property (3.1) for each $j=\overline{0, m}$. It follows from (2.2) and Lemma 2 that

$$
\psi_{s}^{(v)}\left(x_{s}, \lambda\right)=\frac{\omega_{k s}}{\rho_{s}^{k-1}}\left(\rho_{s} R_{k s}\right)^{v} \exp \left(\rho_{s} R_{k s} x_{s}\right)[1]_{s}
$$

$$
\begin{aligned}
& +\sum_{\mu=k+1}^{n_{s}} A_{\mu s}\left(\rho_{s}\right)\left(\rho_{s} R_{\mu s}\right)^{v} \exp \left(\rho_{s} R_{\mu s} x_{s}\right)[1]_{s}, v=\overline{0, n_{s}-1}, \\
\psi_{j}^{(v)}\left(x_{j}, \lambda\right)= & \sum_{\mu=\max \left(n_{j}-k, 1\right)+1}^{n_{j}} A_{\mu j}\left(\rho_{j}\right)\left(\rho_{j} R_{\mu j}\right)^{v} \exp \left(\rho_{j} R_{\mu j} x_{j}\right)[1]_{j}, \quad j=\overline{1, m} \backslash s, \quad v=\overline{0, n_{s}-1}, \\
\psi_{0}^{(v)}\left(x_{0}, \lambda\right)= & \sum_{\mu=1}^{2} A_{\mu 0}\left(\rho_{0}\right)\left(\rho_{0} R_{\mu 0}\right)^{v} \exp \left(\rho_{0} R_{\mu 0} x_{0}\right)[1]_{0}, \quad v=0,1 .
\end{aligned}
$$

Substitution of these representations into the matching conditions (2.3) gives a linear system $D_{s k}$ with respect to the coefficients $A_{\mu j}\left(\rho_{j}\right)$. Since each $A_{\mu j}\left(\rho_{j}\right)$ in this system is multiplied by the corresponding exponent $\exp \left(\rho_{j} R_{\mu j}\right)$ and $[1]_{j}=1+o(\lambda),|\lambda| \rightarrow \infty$, we obtain the following asymptotics for the determinant of $D_{s k}$:

$$
\begin{equation*}
d_{s k}(\lambda)=d_{s k}^{0} \lambda^{v_{s k}} \exp \left(P_{s k}(\lambda)\right)(1+o(\lambda)), \quad|\lambda| \rightarrow \infty \tag{3.2}
\end{equation*}
$$

where

$$
P_{s k}(\lambda)=\rho_{s}\left(\sum_{\mu=k+1}^{n_{s}} R_{\mu s}\right)+\sum_{\substack{j=\overline{1, m} \backslash s \\ k<n_{j}}} \rho_{j}\left(\sum_{\mu=\max \left(n_{j}-k, 1\right)+1}^{n_{j}} R_{\mu j}\right),
$$

and $v_{s k}$ is a rational power of λ. In order to have the main term of the asymptotics (3.2) distinct from zero, we impose the requirement

$$
\begin{equation*}
d_{s k}^{0} \neq 0, \quad s=\overline{1, m}, \quad k=\overline{1, n_{s}-1} . \tag{3.3}
\end{equation*}
$$

The matching conditions (2.3), satisfying (3.3), are called regular.
One can easily show that the determinant $\Delta_{s k \mu}(\lambda)$ asymptotically equals

$$
d_{s k}^{0}\left(\rho_{s} R_{k s}\right)^{\mu} \lambda^{v_{s k}} \exp \left(P_{s k}(\lambda)\right)
$$

up to a nonzero constant (under the current assumptions on λ). Consequently, if the matching conditions are regular, then $\Delta_{s k \mu}(\lambda) \not \equiv 0$. Hence the boundary value problems $L_{s k \mu}$ have only discrete spectra.

Solving the system $D_{s k}$ by the Cramer's rule, we obtain, in particular

$$
A_{\mu s}\left(\rho_{s}\right)=O\left(\rho_{s}^{1-k} \exp \left(\rho_{s}\left(R_{k s}-R_{\mu s}\right)\right), \quad \mu=\overline{k+1, n_{s}},\right.
$$

and finally arrive at the following assertion.
Lemma 3. Fix $s=\overline{1, m}$ and a sector S_{s} with property (3.1). For $x_{s} \in\left(0, T_{s}\right), v=\overline{0, n_{s}-1}, k=\overline{1, n_{s}}$, the following asymptotic formula holds

$$
\psi_{s k s}^{(v)}\left(x_{s}, \lambda\right)=\frac{\omega_{k s}}{\rho_{s}^{k-1}}\left(\rho_{s} R_{k s}\right)^{v} \exp \left(\rho_{s} R_{k s} x_{s}\right)[1]_{s}, \quad \rho_{s} \in S_{s}, \quad\left|\rho_{s}\right| \rightarrow \infty
$$

4. Auxiliary inverse problems

In this section we consider auxiliary inverse problems of recovering the differential operator on each fixed edge. We start from the boundary edges. Fix $s=\overline{1, m}$ and consider the following inverse problems of the edge e_{s}.

IP(s). Given the Weyl-type matrix M_{s}, construct the potential $q_{s}:=\left\{q_{\mu s}\right\}_{\mu=0}^{n_{s}-2}$ on the edge e_{s}.
In IP(s) we construct the potential on the single edge e_{s}, but the Weyl-type matrix M_{s} brings global information from the whole graph. In other words, IP(s) is not a local inverse problem related only to the edge e_{s}.

Let us prove the uniqueness theorem for the solution of IP(s). For this purpose together with q we consider a potential \tilde{q}. Everywhere below if a symbol α denotes an object related to q then $\tilde{\alpha}$ will denote the analogous object related to \tilde{q}.

Theorem 1. Fix $s=\overline{1, m}$. If $M_{s}=\tilde{M}_{s}$, then $q_{s}=\tilde{q}_{s}$. Thus, the specification of the Weyl-type matrix M_{s} uniquely determines the potential q_{s} on the edge e_{s}.

Proof. Denote $\psi_{s}\left(x_{s}, \lambda\right):=\left[\psi_{s k s}^{(v-1)}\left(x_{s}, \lambda\right)\right]_{k, v=1}^{n_{s}}, C_{s}\left(x_{s}, \lambda\right):=\left[C_{k s}^{(v-1)}\left(x_{s}, \lambda\right)\right]_{k, v=1}^{n_{s}}$. Then by (2.4) we get

$$
\begin{equation*}
\psi_{s}\left(x_{s}, \lambda\right)=C_{s}\left(x_{s}, \lambda\right) M_{s}^{T}(\lambda) \tag{4.1}
\end{equation*}
$$

where T is the sign for the trasposition. Define the matrix $\mathscr{P}_{s}\left(x_{s}, \lambda\right)=\left[\mathscr{P}_{s j k}\left(x_{s}, \lambda\right)\right]_{j, k=1}^{n_{s}}$ by the formula

$$
\mathscr{P}_{s}\left(x_{s}, \lambda\right)=\psi_{s}\left(x_{s}, \lambda\right)\left(\tilde{\psi}_{s}\left(x_{s}, \lambda\right)\right)^{-1} .
$$

Applying Lemma 3, we get

$$
\begin{equation*}
\mathscr{P}_{s 1 k}\left(x_{s}, \lambda\right)-\delta_{1 k}=O\left(\rho_{s}^{-1}\right), \quad k=\overline{1, n_{s}}, \quad x_{s} \in(0,1), \quad \arg \lambda \neq 0, \pi, \quad|\lambda| \rightarrow \infty . \tag{4.2}
\end{equation*}
$$

Transform the matrix $\mathscr{P}_{s}\left(x_{s}, \lambda\right)$, using (4.1) and $M_{s}=\tilde{M}_{s}$:

$$
\mathscr{P}_{s}\left(x_{s}, \lambda\right)=C_{s}\left(x_{s}, \lambda\right)\left(\tilde{C}_{s}\left(x_{s}, \lambda\right)\right)^{-1} .
$$

Taking (2.1) into account, we conclude that for each fixed x_{s}, the matrix-valued function $\mathscr{P}_{s}\left(x_{s}, \lambda\right)$ is an entire analytic function in λ of order $1 / n_{s}$. Together with (4.2), this yields $\mathscr{P}_{s 11}\left(x_{s}, \lambda\right) \equiv 1, \mathscr{P}_{s 1 k}\left(x_{s}, \lambda\right) \equiv 0, k=\overline{2, n_{s}}$. Consequently, $\psi_{s k s}\left(x_{s}, \lambda\right) \equiv \tilde{\psi}_{s k s}\left(x_{s}, \lambda\right)$ and $q_{s}=\tilde{q}_{s}$.

Using the method of spectral mappings, one can get a constructive procedure for the solution of IP(s). It can be obtained by the same arguments as for n-th order differential operators on a finite interval (see [15, Ch. 2] for detais).

For the Sturm-Liouville operator on the cycle e_{0}, we consider the following auxiliary inverse problem.
$\mathbf{I P}(\mathbf{0})$. Given $d(\lambda), h(\lambda)$ and Ω, construct $q_{00}\left(x_{0}\right)$.
This inverse problem was studied in [18, 17] and other papers. In fact, one can easily construct Dirichlet spectral data $\left\{v_{n}, \alpha_{n}\right\}_{n \geq 1}$ by the data $\{d(\lambda), h(\lambda), \Omega\}$, and reduce $\operatorname{IP}(0)$ to the classical Sturm-Liouville problem [12, 19, 20, 13]. Thus, $\operatorname{IP}(0)$ has a unique solution which can be found by the following algorithm.

Algorithm 1. ([16]) Given $d(\lambda), h(\lambda)$ and Ω.

1. Find the zeros of $h(\lambda),\left\{v_{n}\right\}_{n \geq 1}$.
2. Calculate $H\left(v_{n}\right):=\omega_{n} \sqrt{d^{2}\left(v_{n}\right)-4}$.
3. Find $S_{0}^{\prime}\left(1, v_{n}\right):=\left(d\left(v_{n}\right)-H\left(v_{n}\right)\right) / 2$.
4. Calculate $\alpha_{n}:=\dot{h}\left(v_{n}\right) S_{0}^{\prime}\left(T_{0}, v_{n}\right), \dot{h}(\lambda):=\frac{d h(\lambda)}{d \lambda}$.
5. Construct q_{00} from the given spectral data $\left\{v_{n}, \alpha_{n}\right\}_{n \geq 1}$ by solving the classical SturmLiouville problem.

5. Solution of Inverse Problem 1

Now we are ready to present a constructive procedure for the solution of Inverse Problem 1.

Algorithm 2. Given the spectra $\Lambda_{s k \mu}, s=\overline{1, m}, k=\overline{1, n_{s}-1}, \mu=\overline{k, n_{s}}$, and the signs Ω.

1. Construct the characteristic functions $\Delta_{s k \mu}(\lambda)$ by their zeros $\Lambda_{s k \mu}$.
2. Find the Weyl-type matrices $M_{s}(\lambda), s=\overline{1, m}$, via (2.5).
3. For each $s=\overline{1, m}$, solve the inverse problem $\operatorname{IP}(\mathrm{s})$ and find the potential q_{s} on the edge e_{s}.
4. Construct the solutions $C_{k s}\left(x_{s}, \lambda\right), s=\overline{1, m}, k=\overline{1, n_{s}}$.
5. Find $h(\lambda), d(\lambda)$ from (2.6), (2.7).
6. Solve $\operatorname{IP}(0)$ by $d(\lambda), h(\lambda)$ and Ω, using Algorithm 1 , and and construct the potential on the cycle e_{0}.

On step 5, we assume that there exist at least one edge with the order $n_{s}>2$. The case of all $n_{s}=2$ was considered in [16]. Then $h(\lambda)$ can be easily determined from (2.7), and then $d(\lambda)$ from (2.6).

Remark. Note that there are often considered inverse problems by the Weyl functions and their generalizations. But in the present case, the functions $d(\lambda)-2$ and $h(\lambda)$ can not be uniquely recovered from the Weyl matrices M_{s}, if these functions have common zeros.

Theorem 1 together with the uniqueness of the solution for $\operatorname{IP}(0)$ yields the following result.

Theorem 2. The spectra $\Lambda_{s k \mu}, k=\overline{1, n_{s}-1}, \mu=\overline{k, n_{s}}$, and the signs Ω determine the potential q on the graph G uniquely.

6. Solution of Inverse Problem 2

Consider Inverse Problem 2 by the system of spectra $\left\{\Lambda_{s k \mu}^{\alpha}\right\}$. Introduce the Weyl-type solutions $\Psi_{s k}^{\alpha}=\left\{\psi_{s k j}^{\alpha}\right\}_{j=\overline{1, m}}, s=\overline{1, m}, k=\overline{1, n_{s}-1}$, satisfying the boundary conditions (1.2) and the matching conditions $\operatorname{Cont}\left(0, \alpha_{s}\right), \operatorname{Cont}(v), v=\overline{1, k-1}, \operatorname{Kirch}(v), v=\overline{k, n_{s}-1}$. Define the Weyl-type matrices $M_{s}^{\alpha}(\lambda)=\left[M_{s k \mu}^{\alpha}(\lambda)\right]_{k, m=1}^{n_{s}}, s=\overline{1, m}$, similarly to $M_{s}(\lambda)$. One can investigate the asymptotic behavoir of the Weyl-type solutions and the regularity of the boundary conditions analogously to Inverse Problem 1. In can be shown, that the characteristic functions of the boundary value problems $L_{s k \mu}^{\alpha}$ have the form

$$
\left\{\begin{array}{l}
\Delta_{s k \mu}^{\alpha}(\lambda)=d_{\alpha_{s}}(\lambda) F_{s \mu}(\lambda)+h(\lambda) G_{s \mu}(\lambda), \quad k=1, \tag{6.1}\\
\Delta_{s k \mu}^{\alpha}(\lambda)=h(\lambda) G_{s k \mu}(\lambda), \quad k>1,
\end{array}\right.
$$

where $h(\lambda)=S_{0}(1, \lambda), d_{\alpha_{s}}(\lambda)=C_{0}(1, \lambda)+\alpha_{s} S_{0}^{\prime}(1, \lambda)-\alpha_{s}-1$, and the functions $F_{s \mu}(\lambda), G_{s \mu}(\lambda)$, $G_{s k \mu}(\lambda)$ depends only on the potentials $q_{\mu s}$ on the boundary edges $e_{s}, s=\overline{1, m}$ (see the example in Appendix). Having the functions $d_{\alpha_{s}}$ for at least two different values α_{s}, one can easily find $S_{0}^{\prime}(1, \lambda)$. It remains to solve the classical inverse problem by two spectra (zeros of the characteristic functions $S_{0}(1, \lambda)$ and $\left.S_{0}^{\prime}(1, \lambda)\right)$, and find the potential q_{00} on the cycle e_{0}. Finally, we arrive at the following algorithm for the solution of Inverse Problem 2.

Algorithm 3. Given the spectra $\Lambda_{s k \mu}^{\alpha}, s=\overline{1, m}, k=\overline{1, n_{s}-1}, \mu=\overline{k, n_{s}}$.

1. Construct the characteristic functions $\Delta_{s k \mu}^{\alpha}(\lambda)$ by their zeros $\Lambda_{s k \mu}^{\alpha}$.
2. Find the Weyl-type matrices: $M_{s k \mu}^{\alpha}(\lambda)=-\frac{\Delta_{s k \mu}^{\alpha}(\lambda)}{\Delta_{s k k}^{\alpha}(\lambda)}$.
3. For each $s=\overline{1, m}$, solve the inverse problem $\operatorname{IP}(\mathrm{s})$ by M_{s}^{α} and find the potential q_{s} on the edge e_{s}.
4. Construct the solutions $C_{k s}\left(x_{s}, \lambda\right), s=\overline{1, m}, k=\overline{1, n_{s}}$.
5. Find $h(\lambda), d_{\alpha_{s}}(\lambda)$ from (6.1).
6. Find $S_{0}^{\prime}(1, \lambda)$ from two different $d_{\alpha_{s}}(\lambda)$, find the sequences Λ_{0} and Λ_{1} of zeros of the functions $S_{0}(1, \lambda)$ and $S_{0}^{\prime}(1, \lambda)$, respectively.
7. Solve the inverse problem by two spectra Λ_{0} and Λ_{1} (see $[12,13]$) on the cycle e_{0}.

Remark 1. If $m=1$ and $n_{1}>2$, the similar results can be obtained for the boundary value problems for the system (1.1) under conditions (1.2), (2.3) with $\operatorname{Cont}\left(0, \alpha_{k}\right)$ instead $\operatorname{Cont}(0)$, where the collection $\left\{\alpha_{k}\right\}_{k=1}^{n_{1}}$ contains at least two distinct values.

Acknowledgement

This research was supported by Grants 13-01-00134 and 15-01-04864 of Russian Foundation for Basic Research and by the Ministry of Education and Science of the Russian Federation (Grant 1.1436.2014K).

Appendix. Example

In this section, we consider an example, that illustrates how the entries of the Weyl-type matrices can be found from the linear system $E_{s k}$ (see Section 2) and shows the structure of determinants. We also check the regularity of the matching conditions for the example.

Let $s=\overline{1, m}$ and $k=\overline{1, n_{s}-1}$ be fixed. For brevity, in this section we omit the indices s and k, when they are fixed. So we write $\psi_{j}\left(x_{j}, \lambda\right)$ instead of $\psi_{s k j}\left(x_{j}, \lambda\right)$. We substitute the following expansions

$$
\psi_{j}\left(x_{j}, \lambda\right)=\sum_{\mu=1}^{n_{j}} M_{j}^{\mu}(\lambda) C_{\mu j}\left(x_{j}, \lambda\right), \quad j=\overline{1, m}
$$

into the mathcing conditions (2.3) and obtain the coefficients $M_{k}^{\mu}(\lambda)$ from a linear system by the Cramer's rule: $M_{k}^{\mu}(\lambda)=-\frac{\Delta_{\mu}(\lambda)}{\Delta_{0}(\lambda)}$.

Let $m=2, n_{1}=3, n_{2}=4$.
Fix $s=1, k=1$. Then the boundary conditions (2.2) take the form:

$$
\psi_{1}(0, \lambda)=1, \quad \psi_{2}(0, \lambda)=\psi_{2}^{\prime}(0, \lambda)=\psi_{2}^{\prime \prime}(0, \lambda)=0 .
$$

Consequently,

$$
\begin{aligned}
\psi_{0}\left(x_{0}, \lambda\right) & =M_{0}^{1}(\lambda) C_{0}\left(x_{0}, \lambda\right)+M_{0}^{2}(\lambda) S_{0}\left(x_{0}, \lambda\right) \\
\psi_{1}\left(x_{1}, \lambda\right) & =C_{11}\left(x_{1}, \lambda\right)+M_{1}^{2}(\lambda) C_{21}\left(x_{1}, \lambda\right)+M_{1}^{3}(\lambda) C_{31}\left(x_{1}, \lambda\right) \\
\psi_{2}(x, \lambda) & =M_{2}^{4}(\lambda) C_{42}\left(x_{2}, \lambda\right)
\end{aligned}
$$

Let $U_{j v}\left(\psi_{j}\right)=\psi_{j}^{(v)}(1, \lambda)$. Then we have the following matching conditions:

$$
\begin{aligned}
& \operatorname{Cont}(0): \psi_{0}(0, \lambda)=\psi_{0}(1, \lambda)=\psi_{1}(1, \lambda)=\psi_{2}(1, \lambda)=0, \\
& \operatorname{Kirch}(1): \psi_{0}^{\prime}(1, \lambda)+\psi_{1}^{\prime}(1, \lambda)+\psi_{2}^{\prime}(1, \lambda)=\psi_{0}^{\prime}(0, \lambda), \\
& \operatorname{Kirch}(2): \psi_{1}^{\prime \prime}(1, \lambda)+\psi_{2}^{\prime \prime}(1, \lambda)=0,
\end{aligned}
$$

which give the following system (we omit the arguments $(1, \lambda)$ of $C_{\mu j}$):

$$
\left[\begin{array}{ccccc}
-1+C_{0} & S_{0} & 0 & 0 & 0 \\
-1 & 0 & C_{21} & C_{31} & 0 \\
C_{0}^{\prime} & -1+S_{0}^{\prime} & C_{21}^{\prime} & C_{31}^{\prime} & C_{42}^{\prime} \\
0 & 0 & C_{21}^{\prime \prime} & C_{31}^{\prime \prime} & C_{42}^{\prime \prime} \\
-1 & 0 & 0 & 0 & C_{42}
\end{array}\right]\left[\begin{array}{c}
M_{0}^{1} \\
M_{0}^{2} \\
M_{1}^{2} \\
M_{1}^{3} \\
M_{2}^{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
C_{11} \\
C_{11}^{\prime} \\
C_{11}^{\prime \prime} \\
0
\end{array}\right]=0
$$

Note that only the first two columns of the matrix depends on C_{0} and S_{0}, i.e. on the potential $q_{00}(x)$ on the cycle e_{0}. The first two columns contain only two nonzero minors:

$$
\left|\begin{array}{cc}
-1+C_{0} & S_{0} \\
-1 & 0
\end{array}\right|=S_{0}, \quad\left|\begin{array}{cc}
-1+C_{0} & S_{0} \\
C_{0}^{\prime} & -1+S_{0}^{\prime}
\end{array}\right|=2-C_{0}-S_{0}^{\prime}=2-d(\lambda)
$$

since $C_{0} S_{0}^{\prime}-C_{0}^{\prime} S_{0}=1$. So the determinant of the system equals

$$
\Delta_{0}(\lambda)=-(d(\lambda)-2) \cdot\left|\begin{array}{cc}
C_{21} & C_{31} \\
C_{21}^{\prime \prime} & C_{31}^{\prime \prime}
\end{array}\right| \cdot C_{42}+h(\lambda) \cdot\left(\left|\begin{array}{cc}
C_{21}^{\prime} & C_{31}^{\prime} \\
C_{21}^{\prime \prime} & C_{31}^{\prime \prime}
\end{array}\right| C_{42}-\left|\begin{array}{ccc}
C_{21} & C_{31} & 0 \\
C_{21}^{\prime} & C_{31}^{\prime} & C_{42}^{\prime} \\
C_{21}^{\prime \prime} & C_{31}^{\prime \prime} & C_{42}^{\prime \prime}
\end{array}\right|\right)
$$

and $M_{1}^{k}(\lambda)=-\frac{\Delta_{k}(\lambda)}{\Delta_{0}(\lambda)}, k=2,3$, where $\Delta_{k}(\lambda)$ can be obtained from $\Delta_{0}(\lambda)$ by change of $C_{k 1}$ to C_{11}.

For $s=1, k=2$ we have

$$
\begin{aligned}
\psi_{1}(0, \lambda) & =0, \quad \psi_{1}^{\prime}(0, \lambda)=1, \quad \psi_{2}(0, \lambda)=\psi_{2}^{\prime}(0, \lambda)=0 \\
\psi_{1}\left(x_{1}, \lambda\right) & =C_{21}\left(x_{1}, \lambda\right)+M_{1}^{3}(\lambda) C_{31}\left(x_{1}, \lambda\right) \\
\psi_{2}\left(x_{2}, \lambda\right) & =M_{2}^{3}(\lambda) C_{32}\left(x_{2}, \lambda\right)+M_{2}^{4}(\lambda) C_{42}\left(x_{2}, \lambda\right) .
\end{aligned}
$$

$\operatorname{Cont}(0): \psi_{0}(0, \lambda)=\psi_{0}(1, \lambda)=\psi_{1}(1, \lambda)=\psi_{2}(1, \lambda)=0$,
$\operatorname{Cont}(1): \psi_{1}^{\prime}(1, \lambda)=\psi_{2}^{\prime}(1, \lambda)=0$,
$\operatorname{Kirch}(2): \psi_{1}^{\prime \prime}(1, \lambda)+\psi_{2}^{\prime \prime}(1, \lambda)=0$.

The determinant of the system is

$$
\left|\begin{array}{ccccc}
-1+C_{0} & S_{0} & 0 & 0 & 0 \\
-1 & 0 & C_{31} & 0 & 0 \\
0 & 0 & -C_{31}^{\prime} & C_{32}^{\prime} & C_{42}^{\prime} \\
0 & 0 & C_{31}^{\prime \prime} & C_{32}^{\prime \prime} & C_{42}^{\prime \prime} \\
-1 & 0 & 0 & C_{32} & C_{42}
\end{array}\right|=h(\lambda)\left(\left|\begin{array}{ccc}
-C_{31}^{\prime} & C_{32}^{\prime} & C_{42}^{\prime} \\
C_{31}^{\prime \prime} & C_{32}^{\prime \prime} & C_{42}^{\prime \prime} \\
0 & C_{32} & C_{42}
\end{array}\right|-C_{31}\left|\begin{array}{cc}
C_{32}^{\prime} & C_{42}^{\prime} \\
C_{32}^{\prime \prime} & C_{42}^{\prime \prime}
\end{array}\right|\right)
$$

Thus, formulas (2.6), (2.7) are valid in this case. For the general graph, the determinants have the similar structure.

Now let us take the condition $\operatorname{Cont}(0, \alpha)$ instead of $\operatorname{Cont}(0)$. Then we have $-\alpha$ instead of -1 in the first columns of the determinants. The dependence on the potential q_{00} is contained in the following functions

$$
\left|\begin{array}{cc}
-\alpha+C_{0} & S_{0} \\
-\alpha & 0
\end{array}\right|=\alpha S_{0}, \quad\left|\begin{array}{cc}
-\alpha+C_{0} & S_{0} \\
C_{0}^{\prime} & -1+S_{0}^{\prime}
\end{array}\right|=1+\alpha-C_{0}-\alpha S_{0}^{\prime}=-d_{\alpha}(\lambda),
$$

so the determinants have the form (6.1).
Furthermore, let us show, how to check the regularity of the matching conditions for our example (with $\alpha=1$). Let $s=1, k=1$. Denote $\rho=\sqrt{\lambda}, \sigma=\sqrt[3]{\lambda}, \theta=\sqrt[4]{\lambda}$. Let $R_{j}, j=\overline{1,3}$ and $r_{j}, j=\overline{1,4}$ be the cube roots and the fourth roots from 1, respectively. Suppose they are numbered according to (3.1) in some sector. Lemma 2 gives

$$
\begin{aligned}
& \psi_{0}\left(x_{0}, \lambda\right)=A_{10}(\rho) \exp \left(-\rho x_{0}\right)[1]+A_{20}(\rho) \exp \left(\rho x_{0}\right)[1] \\
& \psi_{1}\left(x_{0}, \lambda\right)=\frac{1}{R_{1}} \exp \left(\sigma R_{1} x_{1}\right)[1]+A_{21}(\sigma) \exp \left(\sigma R_{2} x_{1}\right)[1]+A_{31}(\sigma) \exp \left(\sigma R_{3} x_{1}\right)[1] \\
& \psi_{2}\left(x_{0}, \lambda\right)=A_{42}(\theta) \exp \left(\theta r_{4} x_{2}\right)[1]
\end{aligned}
$$

where $[1]=1+o(\lambda),|\lambda| \rightarrow \infty$ on some fixed ray.
Substitute these asymptotic formulas into the matching conditions. Cont(0) gives

$$
A_{10}(\rho)[1]+A_{20}(\rho)[1]=A_{10}(\rho) \exp (-\rho)+A_{20}(\rho) \exp (\rho)
$$

Suppose that on the considered ray $\operatorname{Re}(\rho)>0$. Then $A_{10}(\rho)=A_{20}(\rho) \exp (\rho)[1]$, so we have already excluded one variable. Further,

$$
\begin{array}{ll}
\operatorname{Cont}(0): & A_{10}(\rho)[1]=\frac{1}{R_{1}} \exp \left(\sigma R_{1}\right)[1]+A_{21}(\sigma) \exp \left(\sigma R_{2}\right)[1]+A_{31}(\sigma) \exp \left(\sigma R_{3}\right)[1], \\
& A_{10}(\rho)[1]=A_{42}(\theta) \exp \left(\theta r_{4}\right)[1] \\
\operatorname{Kirch}(1): & 2 \rho A_{10}(\rho)[1]+\frac{1}{R_{1}} \sigma R_{1} \exp \left(\sigma R_{1}\right)[1]+A_{21}(\sigma) \sigma R_{2} \exp \left(\sigma R_{2}\right)[1]
\end{array}
$$

$$
\begin{array}{ll}
& +A_{31}(\sigma) \sigma R_{3} \exp \left(\sigma R_{3}\right)[1]+A_{42}(\theta) \theta r_{4} \exp \left(\theta r_{4}\right)=0 \\
\operatorname{Kirch}(2): & \frac{1}{R_{1}}\left(\sigma R_{1}\right)^{2} \exp \left(\sigma R_{1}\right)[1]+A_{21}(\sigma)\left(\sigma R_{2}\right)^{2} \exp \left(\sigma R_{2}\right)[1] \\
& +A_{31}(\sigma)\left(\sigma R_{3}\right)^{2} \exp \left(\sigma R_{3}\right)[1]+A_{42}(\theta)\left(\theta r_{4}\right)^{2} \exp \left(\theta r_{4}\right)[1]=0 .
\end{array}
$$

We have got a linear system with respect to the variables $A_{10}(\rho), A_{21}(\sigma), A_{31}(\sigma), A_{42}(\theta)$, with the determinant

$$
d_{s k}(\lambda)=\left|\begin{array}{cccc}
-1 & 1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
2 \rho & \sigma R_{2} & \sigma R_{3} & \theta r_{4} \\
0 & \left(\sigma R_{2}\right)^{2} & \left(\sigma R_{3}\right)^{2} & \left(\theta r_{4}\right)^{2}
\end{array}\right| \exp \left(\sigma\left(R_{2}+R_{3}\right)+\theta r_{4}\right)[1]=2 \rho \sigma^{2}\left(R_{2}^{2}-R_{3}^{2}\right)[1] \neq 0
$$

We have used that $\theta=o(\sigma), \sigma=o(\rho)$, as $|\lambda| \rightarrow \infty$. Thus, $d_{s k}(\lambda) \neq 0$ for sufficiently large $|\lambda|$. So the relation (3.3) is proved for $s=1, k=1$.

References

[1] J. Langese, G. Leugering and J. Schmidt, Modelling, analysis and control of dynamic elastic multi-link structures, Birkhäuser, Boston (1994).
[2] T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.
[3] P. Kuchment, Quantum graphs. Some basic structures, Waves Random Media, 14 (2004), S107-S128.
[4] M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.
[5] Y. Pokornyi and A. Borovskikh, Differential equations on networks (geometric graphs), J. Math. Sci. (N.Y.) 119(2004), 691-718.
[6] Analysis on Graphs and Its Applications, edited by P. Exner, J.P. Keating, P. Kuchment, T. Sunada and Teplyaev, A. Proceedings of Symposia in Pure Mathematics, AMS, 77 (2008).
[7] V. A. Yurko, Inverse spectral problems for differential operators on arbitrary compact graphs, J. Inverse and Ill-Posed Probl., 18(2010), 245-261.
[8] V. A. Yurko, Inverse problems for differential of any order on trees, Matemat. Zametki, 83(2008), 139-152; English transl. in Math. Notes 83(2008), 125-137.
[9] V. A. Yurko, Inverse problems on star-type graphs: differential operators of different orders on different edges, Central European J. Math., 12(2014), 483-499.
[10] Y. V. Pokornyi, T. V. Beloglazova and K. P. Lazarev, On a Class of Ordinary Differential Equations of Various Orders on a Graph, Mat. Zametki, 73(2003), 469-470.
[11] Y. V. Pokornyi, T. V. Beloglazova, E. V. Dikareva and T. V. Perlovskaya, Green function for a locally interacting system of ordinary equations of different orders, Matem. Zametki, 74(2003), 146-149; English transl. in Mathem. Notes 74(2003), 141-143.
[12] B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka, Moscow (1984) (Russian); English transl., VNU Sci. Press, Utrecht (1987).
[13] G. Freiling and V. Yurko, Inverse Sturm-Liouville problems and their applications, Huntington, NY: Nova Science Publishers, 305 p. (2001).
[14] V. A. Yurko, Inverse problems for non-selfadjoint quasi-periodic differential pencils, Analysis and Math. Physics 2(2012), 215-230.
[15] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-Posed Problems Series, Utrecht: VSP (2002).
[16] V. A. Yurko, Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2(2008), 543-553.
[17] I. V. Stankevich, An inverse problem of spectral analysis for Hill's equations, Doklady Akad. Nauk SSSR, 192(1970), 34-37 (Russian).
[18] V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of the Hill operator, Mat. Sbornik, 97 (1975), 540-606 (Russian); English transl. in Math. USSR Sbornik 26(1975), 493-554.
[19] V. A. Marchenko, Sturm-Liouville Operators and their Applications, Naukova Dumka, Kiev (1977) (Russian); English transl., Birkhauser (1986).
[20] J. Pöschel and E. Trubowitz, Inverse Spectral Theory, New York, Academic Press, 1987.

Department of Mechanics and Mathematics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.
E-mail: bondarenkonp@info.sgu.ru

