TAMKANG JOURNAL OF MATHEMATICS Volume 39, Number 3, 247-253, Autumn 2008

FIXED POINT THEOREM FOR MULTIVALUED MAPPINGS SATISFYING AN IMPLICIT RELATION

DURAN TURKOGLU AND ISHAK ALTUN

Abstract. In this paper, we give a common fixed point theorem for multivalued mappings with Hausdorff metric.

1. Introduction

Throughout this paper, *X* stands for a metric space with the metric *d* whereas CB(X) denotes the family of all nonempty closed bounded subsets of *X*. Let

$$H(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\},\$$

where $A, B \in CB(X)$ and $d(x, A) = \inf\{d(x, y) : y \in A\}$. The function H is a metric on CB(X) and is called Hausdorff metric. It is well known that if X is a complete metric space, then so is the metric space (CB(X), H). Let $A, B \in CB(X)$ and k > 1. In the sequel the following well known fact will be used [4]: for each $a \in A$, there is $b \in B$ such that $d(a, b) \le kH(A, B)$.

Kaneko and Sessa extend the definition of compatibility to include multivalued mappings in the following way.

Definition 1. ([3]) The mappings $f : X \to X$ and $S : X \to CB(X)$ are compatible if $fSx \in CB(X)$ for all $x \in X$ and

$$\lim_{n \to \infty} H(Sfx_n, fSx_n) = 0,$$

whenever $\{x_n\}$ is a sequence in *X* such that $\lim_{n \to \infty} Sx_n = A \in CB(X)$ and $\lim_{n \to \infty} fx_n = t \in A$.

Now, we consider the following conditions.

Condition 1. The mappings $f : X \to X$ and $S : X \to CB(X)$ are said to be satisfy Condition 1 iff $f Sx \in CB(X)$ for all $x \in X$ and

$$\lim_{n \to \infty} H(Sfx_n, fSx_n) \le \lim_{n \to \infty} H(Sfx_n, Sx_n)$$

whenever $\{x_n\}$ is a sequence in *X* such that $\lim_{n\to\infty} Sx_n = A \in CB(X)$ and $\lim_{n\to\infty} fx_n = t \in A$.

2000 Mathematics Subject Classification. Primary 54H25; Secondary 47H10.

Received September 8, 2005; revised December 12, 2007.

Key words and phrases. Fixed point, implicit relation, multivalued mapping.

Condition 2. The mappings $f : X \to X$ and $S : X \to CB(X)$ are said to be satisfy Condition 2 iff for all $x \in X$ and

$$\lim_{n \to \infty} d(ffx_n, fx_n) \le \lim_{n \to \infty} H(Sfx_n, Sx_n)$$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} Sx_n = A \in CB(X)$ and $\lim_{n \to \infty} fx_n = t \in A$.

Remark 1. Note that, two compatible maps *f* and *S* are satisfy Condition 1.

The following example shows that f and S are satisfy Condition 1 and Condition 2 but they are not compatible.

Example 1. Let $X = [0, \infty)$ be endowed with the Euclidean metric *d*. Let $fx = \frac{x^2 + 2}{2}$ and $Sx = [x^2 + 1, x^2 + 2]$ for each $x \ge 0$. It is clear that *f* and *S* are continuous. Let $\{x_n\}$ be a sequence in *X* such that

$$\lim_{n \to \infty} f x_n = t, \lim_{n \to \infty} S x_n = A \in CB(X),$$

then $t \in A$ if and only if t = 1. Indeed, if $fx_n \to t$, then $t \ge 1$ since $fx = \frac{x^2 + 2}{2} \ge 1$. Again, if $fx_n \to t$, then $x_n^2 \to 2t - 2$ and so $Sx_n \to A = [2t - 1, 2t]$.

Now, if $t \in A$, then $t \in [2t - 1, 2t]$, that is, $2t - 1 \le t$ and so $t \le 1$. Now, since $t \ge 1$ and $t \le 1$, then t = 1. On the contrary, if t = 1, then $x_n \to 0$ since $f x_n \to t = 1$. Thus $Sx_n \to [1, 2] = A$ and so $t \in A$. Therefore, we have

$$0 \neq \lim_{n \to \infty} H(Sfx_n, fSx_n) = \frac{1}{2} \le 1 = \lim_{n \to \infty} H(Sfx_n, Sx_n).$$

Thus *f* and *S* are satisfy Condition 1 but they are not compatible. On the other hand

$$\lim_{n \to \infty} d(ffx_n, fx_n) = \frac{1}{2} \le 1 = \lim_{n \to \infty} H(Sfx_n, Sx_n).$$

Thus *f* and *S* are satisfy Condition 2.

2. Implicit relation

Implicit relations on metric spaces have been used in many articles (see [2] [5] [6] [8]).

Let \mathscr{F} be the set of all continuous functions $F : \mathbb{R}^6_+ \to \mathbb{R}_+$ satisfying the following conditions:

 F_1 : $F(t_1,...,t_6)$ is decreasing in $t_2,...,t_6$.

 F_2 : there exist an increasing function $f : R_+ \to R_+, f(0) = 0$ and k > 1 with $f(s) < \frac{s}{k}$ such that the inequality

 $(F_a): u \le kt \text{ and } F(t, v, v, u, u + v, 0) \le 0 \text{ or}$

 (F_b) : $u \le kt$ and $F(t, v, u, v, 0, u + v) \le 0$ implies $t \le f(v)$.

 $F_3: F(u, u, u, 0, u, u) > 0 \text{ and } F(u, u, 0, u, u, u) > 0, \forall u > 0.$

Remark 2. Note that, if we choose f(s) = hs with hk < 1 in F_2 , we obtain implicit relation of Popa [6]

248

Example 2. $F(t_1, ..., t_6) = t_1 - m \max\{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6)\}$, where $m \in (0, 1)$. F_1 : Obviously.

 F_2 : Let u > 0, $u \le kt$ and $F(t, v, v, u, u+v, 0) = t - m \max\{u, v\} \le 0$, where $1 < k < \frac{1}{m}$. If $u \ge v$ then $u \le kt \le kmu < u$, a contradiction. Thus u > v and $t \le mv$. Similarly, u > 0, $u \le kt$ and $F(t, v, u, v, 0, u+v) \le 0$ imply $t \le mv$. If u = 0, then $u \le v$ and $t \le mv$. Thus F_2 is satisfying with f(s) = ms.

 $F_3: F(u, u, u, 0, u, u) = F(u, u, 0, u, u, u) = u - mu > 0, \forall u > 0.$

Example 3. $F(t_1, ..., t_6) = t_1 - \phi(\max\{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6)\})$, where $\phi : R_+ \to R_+$ increasing, $\phi(0) = 0$ and k > 1 with $\phi(s) < \frac{s}{k}$ for s > 0.

 F_1 : Obviously.

 F_2 : Let u > 0, $u \le kt$ and $F(t, v, v, u, u + v, 0) = t - \phi(\max\{u, v\}) \le 0$. If $u \ge v$, then $u \le kt \le k\phi(u) < u$, a contradiction. Thus u < v and $t \le \phi(v)$. Similarly u > 0, $u \le kt$ and $F(t, v, u, v, 0, u + v) \le 0$ imply $t \le \phi(v)$. If u = 0, then $u \le \phi(v)$. Thus F_2 is satisfying with $f = \phi$.

 $F_3: F(u, u, u, 0, u, u) = F(u, u, 0, u, u, u) = u - \phi(u) > 0, \, \forall u > 0.$

3. Main Result

We need the following lemma for the proof of our main theorem.

Lemma 1. [(7)] For any t > 0, $\gamma(t) < t$ if and only if $\lim_{n \to \infty} \gamma^n(t) = 0$, where γ^n denotes the composition of γ *n*-times with itself.

Now we give our main theorem.

Theorem 1. Let (X, d) be a complete metric space. Let $f, g : X \to X$ and $S, T : X \to CB(X)$ be a continuous mapping such that f and S as well as g and T satisfy Condition 1 and Condition 2. Assume $T(X) \subseteq f(X)$, $S(X) \subseteq g(X)$ and for all $x, y \in X$

$$F(H(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(gy, Sx)) \le 0,$$
(3.1)

where $F \in \mathcal{F}$. Then f, g, S and T have a common fixed point.

Proof. Let x_0 be arbitrary point in *X*. We shall construct two sequences $\{x_n\}$ and $\{y_n\}$ of elements in *X* and sequence $\{A_n\}$ of elements in CB(X). Since $S(X) \subseteq g(X)$, there exists $x_1 \in X$ such that $y_1 = gx_1 \in Sx_0$. Then there exists an element $y_2 = fx_2 \in Tx_1 = A_1$, because $T(X) \subseteq f(X)$, such that

$$d(y_1, y_2) = d(gx_1, fx_2) \le kH(Sx_0, Tx_1).$$

Since $S(X) \subseteq g(X)$, we may choose $x_3 \in X$ such that $y_3 = gx_3 \in Sx_2 = A_2$ and

$$d(y_2, y_3) \le kH(Tx_1, Sx_2).$$

By induction we produce the sequences $\{x_n\}$, $\{y_n\}$ and $\{A_n\}$ such that

$$y_{2n+1} = g x_{2n+1} \in S x_{2n} = A_{2n}, \tag{3.2}$$

$$y_{2n+2} = f x_{2n+2} \in T x_{2n+1} = A_{2n+1}, \tag{3.3}$$

$$d(y_{2n+1}, y_{2n}) \le kH(Sx_{2n}, Tx_{2n-1}), \tag{3.4}$$

$$d(y_{2n+1}, y_{2n}) \le kH(Sx_{2n}, Tx_{2n-1}), \tag{3.5}$$

$$d(y_{2n+1}, y_{2n+2}) \le kH(Sx_{2n}, Tx_{2n+1})$$
(3.5)

for every $n \in N$. Letting $x = x_{2n}$, $y = x_{2n+1}$ in (3.1), we have successively

$$F(H(Sx_{2n}, Tx_{2n+1}), d(fx_{2n}, gx_{2n+1}), d(fx_{2n}, Sx_{2n}), d(gx_{2n+1}, Tx_{2n+1}), d(fx_{2n}, Tx_{2n+1}), d(gx_{2n+1}, Sx_{2n})) \le 0,$$

and so

$$F(H(Sx_{2n}, Tx_{2n+1}), d(y_{2n}, y_{2n+1}), d(y_{2n}, y_{2n+1}), d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), d(y_{2n}, y_{2n+2}), d(y_{2n+1}, y_{2n+1})) \le 0.$$

Thus

$$F(H(Sx_{2n}, Tx_{2n+1}), d(y_{2n}, y_{2n+1}), d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2}), 0) \le 0.$$
(3.6)

From (3.5), (3.6) and (*F_a*), there exist an increasing function $f : R_+ \to R_+$, f(0) = 0 and k > 1 with $f(s) < \frac{s}{k}$, we have

$$H(Sx_{2n}, Tx_{2n+1}) = H(A_{2n}, A_{2n+1}) \le f(d(y_{2n}, y_{2n+1}))$$
(3.7)

and so

$$d(y_{2n+1}, y_{2n+2}) \le k f(d(y_{2n}, y_{2n+1})).$$
(3.8)

Similarly we obtain

$$H(Sx_{2n}, Tx_{2n-1}) = H(A_{2n}, A_{2n-1}) \le f(d(y_{2n-1}, y_{2n}))$$
(3.9)

and so

$$d(y_{2n}, y_{2n+1}) \le k f(d(y_{2n-1}, y_{2n})).$$
(3.10)

Since kf(s) < s it follows from (3.8), (3.10) and Lemma 1 that $\{y_n\}$ is a Cauchy sequence. Hence there exists $z \in X$ such that $y_n \to z$. Therefore, $gx_{2n+1} \to z$ and $fx_{2n} \to z$. Also from (3.7) and (3.9) and the fact that $\{y_n\}$ is Cauchy sequence it follows that $\{A_k\}$ is Cauchy sequence in the complete metric space (CB(X), H). Thus $A_k \to A \in CB(X)$. This implies $Tx_{2n+1} \to A$ and $Sx_{2n} \to A$ and therefore $z \in A$, because

$$d(z, A) = \lim_{n \to \infty} d(y_n, A) \le \lim_{n \to \infty} H(A_{n-1}, A_n) = 0.$$

Since *A* is closed, $t \in A$ and *f* and *S* are satisfying Condition 1 and Condition 2 implies that

$$\lim_{n \to \infty} H(fSx_{2n}, Sfx_{2n}) \le \lim_{n \to \infty} H(Sx_{2n}, Sfx_{2n})$$

and

$$\lim_{n \to \infty} d(ffx_{2n}, fx_{2n}) \le \lim_{n \to \infty} H(Sx_{2n}, Sfx_{2n})$$

This along with the continuity of f and S imply that

$$H(fA, Sz) \le H(A, Sz) \tag{3.11}$$

and

$$d(fz,z) \le H(A,Sz). \tag{3.12}$$

Now

$$\begin{aligned} d(fz, Sz) &\leq d(fz, fgx_{2n+1}) + d(fgx_{2n+1}, Sz) \\ &\leq d(fz, fgx_{2n+1}) + H(fSx_{2n}, Sz) \\ &\leq d(fz, fgx_{2n+1}) + H(fSx_{2n}, Sfx_{2n}) + H(Sfx_{2n}, Sz) \end{aligned}$$

and letting $n \to \infty$ we have

$$d(fz, Sz) \le \lim_{n \to \infty} H(fSx_{2n}, Sfx_{2n}) \le H(A, Sz)$$

Now using (3.1) we have

$$F(H(Sz, Tx_{2n+1}), d(fz, gx_{2n+1}), d(fz, Sz), d(gx_{2n+1}, Tx_{2n+1}), d(fz, Tx_{2n+1}), d(gx_{2n+1}, Sz)) \le 0,$$

and

$$F(H(Sz, Tx_{2n+1}), d(fz, gx_{2n+1}), d(fz, Sz), d(gx_{2n+1}, Tx_{2n+1}), d(fz, fx_{2n+2}) + d(fx_{2n+2}, Tx_{2n+1}), d(gx_{2n+1}, Sz)) \le 0.$$

Letting $n \to \infty$ we obtain

$$F(H(Sz, A), d(fz, z), d(fz, Sz), d(z, A), d(fz, z) + d(z, A), d(z, Sz)) \le 0$$

and so

$$F(H(Sz, A), H(Sz, A), H(Sz, A), 0, H(Sz, A), H(Sz, A)) \le 0$$

which is a contradiction to F_3 . Thus H(Sz, A) = 0 and so, from (3.11) and (3.12) we have $z = fz \in Sz$. Similarly we have $z = gz \in Tz$. Thus z is a common fixed point of this four mappings.

Corollary 1. Let (X, d) be a complete metric space. Let $f, g : X \to X$ and $S, T : X \to CB(X)$ be a continuous mapping such that f and S as well as g and T satisfy Condition 1 and Condition 2. Assume $T(X) \subseteq f(X)$, $S(X) \subseteq g(X)$ and that $H(Sx, Ty) \leq rd(fx, gy)$ for all $x, y \in X$ where 0 < r < 1. Then f, g, S and T have a common fixed point.

Example 4. Let X = [0,1] be endowed with the Euclidean metric *d*. Let $fx = \frac{x}{2}$, $gx = \frac{x^2}{3}$, $Sx = [0, \frac{x}{4}]$ and $Tx = [0, \frac{x^2}{6}]$. It is clear that these mappings are continuous and $S(X) = [0, \frac{1}{4}] \subset$

 $[0, \frac{1}{2}] = f(X)$ and $T(X) = [0, \frac{1}{6}] \subset [0, \frac{1}{3}] = g(X)$. Also *f* and *S* as well as *g* and *T* are satisfy Condition 1 and Condition 2. Indeed, let $\{x_n\}$ be a sequence in *X* such that

$$\lim_{n \to \infty} f x_n = t, \lim_{n \to \infty} S x_n = A \in CB(X),$$

then $t \in A$ if and only if t = 0. Therefore,

$$\lim_{n \to \infty} H(Sfx_n, fSx_n) = \lim_{n \to \infty} d(ffx_n, fx_n) = 0 = \lim_{n \to \infty} H(Sfx_n, Sx_n)$$

Thus *f* and *S* are satisfy Condition 1 and Condition 2. Again, for all $x, y \in X$, we have

$$H(Sx, Ty) = H([0, \frac{x}{4}], [0, \frac{y^2}{6}])$$
$$= \left|\frac{x}{4} - \frac{y^2}{6}\right|$$
$$= \frac{1}{2} \left|\frac{x}{2} - \frac{y^2}{3}\right|$$
$$= \frac{1}{2} d(fx, gy).$$

Consequently, these mappings are satisfy all conditions of Corollary 1, then they have a common fixed point in *X*.

Theorem 2. [(1)] Let (X, d) be a complete metric space. Let $f, g : X \to X$ and $S, T : X \to CB(X)$ be a continuous mapping such that f is compatible with S and g is compatible with T. Assume $T(X) \subseteq f(X)$, $S(X) \subseteq g(X)$ and that $H(Sx, Ty) \leq rd(fx, gy)$ for all $x, y \in X$ where 0 < r < 1. Then there is a coincidence point for f and S, as g and T.

Remark 3. In Theorem 2, Azam and Beg [1] find a coincidence point of mappings assumed compatibility. In Corollary 1, we find a common fixed point of mappings with Condition 1 and Condition 2 replaced by compatibility.

Acknowledgement

The authors are thankful to the referees for their valuable comments in modifying the first version of this paper.

References

- [1] A. Azam and I. Beg, *Coincidence points of compatible multivalued mappings*, Demonstratio Math. **29**(1996), 17–22.
- [2] M. Imdad, S. Kumar and M. S. Khan, *Remarks on some fixed point theorems satisfying implicit relations*, Rad. Math. **11**(2002), 135–143.
- [3] H. Kaneko and S. Sessa, *Fixed point theorems for compatible multivalued and single-valued mappings*, Internat. J. Math. and Math. Sci. **12**(1989), 257–262.

FIXED POINT THEOREM

- [4] S. B. Nadler, *Multivalued contraction mappings*, Pacific J. Math. 20(1969), 457–488.
- [5] V. Popa, *Some fixed point theorems for compatible mappings satisfying an implicit relation*, Demonsratio Math. **32**(1999), 157–163.
- [6] V. Popa, *A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation*, Demonstratio Math. **33**(2000), 159–164.
- [7] S. P. Singh and B. A. Meade, A common fixed point theorem, Bull. Austral. Math. Soc. 16(1977), 49– 53.
- [8] S. Sharma and B. Desphande, *On compatible mappings satisfying an implicit relation in common fixed point consideration*, Tamkang J. Math. **33**(2002), 245–252.

Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500 Teknikokullar, Ankara, Turkey.

E-mail: dturkoglu@gazi.edu.tr

Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey.

E-mail:ialtun@kku.edu.tr, :ishakaltun@yahoo.com