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FIXED POINT THEOREM FOR MULTIVALUED MAPPINGS

SATISFYING AN IMPLICIT RELATION

DURAN TURKOGLU AND ISHAK ALTUN

Abstract. In this paper, we give a common fixed point theorem for multivalued mappings with Hausdorff metric.

1. Introduction

Throughout this paper, X stands for a metric space with the metric d whereas CB(X ) de-

notes the family of all nonempty closed bounded subsets of X . Let

H(A,B) = max{sup
x∈A

d(x,B),sup
y∈B

d(y, A)},

where A,B ∈CB(X ) and d(x, A) = inf{d(x, y) : y ∈ A}. The function H is a metric on CB(X ) and

is called Hausdorff metric. It is well known that if X is a complete metric space, then so is the

metric space (CB(X ), H). Let A,B ∈ CB(X ) and k > 1. In the sequel the following well known

fact will be used [4]: for each a ∈ A, there is b ∈ B such that d(a,b) ≤ kH(A,B).

Kaneko and Sessa extend the definition of compatibility to include multivalued mappings

in the following way.

Definition 1. ([3]) The mappings f : X → X and S : X → CB(X ) are compatible if f Sx ∈

CB(X ) for all x ∈ X and

lim
n→∞

H(S f xn , f Sxn) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

Sxn = A ∈CB(X ) and lim
n→∞

f xn = t ∈ A.

Now, we consider the following conditions.

Condition 1. The mappings f : X → X and S : X →CB(X ) are said to be satisfy Condition

1 iff f Sx ∈CB(X ) for all x ∈ X and

lim
n→∞

H(S f xn , f Sxn ) ≤ lim
n→∞

H(S f xn ,Sxn)

whenever {xn} is a sequence in X such that lim
n→∞

Sxn = A ∈CB(X ) and lim
n→∞

f xn = t ∈ A.
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Condition 2. The mappings f : X → X and S : X →CB(X ) are said to be satisfy Condition

2 iff for all x ∈ X and

lim
n→∞

d( f f xn , f xn ) ≤ lim
n→∞

H(S f xn ,Sxn )

whenever {xn} is a sequence in X such that lim
n→∞

Sxn = A ∈CB(X ) and lim
n→∞

f xn = t ∈ A.

Remark 1. Note that, two compatible maps f and S are satisfy Condition 1.

The following example shows that f and S are satisfy Condition 1 and Condition 2 but they

are not compatible.

Example 1. Let X = [0,∞) be endowed with the Euclidean metric d . Let f x =
x2 +2

2
and

Sx = [x2+1, x2+2] for each x ≥ 0. It is clear that f and S are continuous. Let {xn } be a sequence

in X such that

lim
n→∞

f xn = t , lim
n→∞

Sxn = A ∈CB(X ),

then t ∈ A if and only if t = 1. Indeed, if f xn → t , then t ≥ 1 since f x =
x2 +2

2
≥ 1. Again, if

f xn → t , then x2
n → 2t −2 and so Sxn → A = [2t −1,2t ].

Now, if t ∈ A, then t ∈ [2t −1,2t ], that is, 2t −1 ≤ t and so t ≤ 1. Now, since t ≥ 1 and t ≤ 1,

then t = 1. On the contrary, if t = 1, then xn → 0 since f xn → t = 1. Thus Sxn → [1,2] = A and

so t ∈ A. Therefore, we have

0 6= lim
n→∞

H(S f xn , f Sxn ) =
1

2
≤ 1= lim

n→∞
H(S f xn ,Sxn ).

Thus f and S are satisfy Condition 1 but they are not compatible. On the other hand

lim
n→∞

d( f f xn , f xn ) =
1

2
≤ 1 = lim

n→∞
H(S f xn ,Sxn ).

Thus f and S are satisfy Condition 2.

2. Implicit relation

Implicit relations on metric spaces have been used in many articles (see [2] [5] [6] [8]).

Let F be the set of all continuous functions F : R6
+ → R+ satisfying the following condi-

tions:

F1 : F (t1, . . . , t6) is decreasing in t2, . . . , t6.

F2 : there exist an increasing function f : R+ → R+, f (0) = 0 and k > 1 with f (s) < s
k

such

that the inequality

(Fa) : u ≤ kt and F (t , v, v,u,u+ v,0) ≤ 0 or

(Fb) : u ≤ kt and F (t , v,u, v,0,u+ v) ≤ 0 implies t ≤ f (v).

F3 : F (u,u,u,0,u,u) > 0 and F (u,u,0,u,u,u) > 0,∀u > 0.

Remark 2. Note that, if we choose f (s) = hs with hk < 1 in F2, we obtain implicit relation

of Popa [6]
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Example 2. F (t1, . . . , t6) = t1 −m max{t2, t3, t4, 1
2

(t5 + t6)}, where m ∈ (0,1).

F1 : Obviously.

F2 : Let u > 0, u ≤ kt and F (t , v, v,u,u+v,0) = t−m max{u, v} ≤ 0, where 1 < k <
1
m

. If u ≥ v

then u ≤ kt ≤ kmu < u, a contradiction. Thus u > v and t ≤ mv. Similarly, u > 0, u ≤ kt and

F (t , v,u, v,0,u+v) ≤ 0 imply t ≤ mv. If u = 0, then u ≤ v and t ≤ mv . Thus F2 is satisfying with

f (s)= ms.

F3 : F (u,u,u,0,u,u) = F (u,u,0,u,u,u) = u−mu > 0, ∀u > 0.

Example 3. F (t1, . . . , t6) = t1 −φ(max{t2, t3, t4, 1
2

(t5 + t6)}), where φ : R+ → R+ increasing,

φ(0) = 0 and k > 1 with φ(s) < s
k

for s > 0.

F1 : Obviously.

F2 : Let u > 0,u ≤ kt and F (t , v, v,u,u + v,0) = t −φ(max{u, v}) ≤ 0. If u ≥ v, then u ≤ kt ≤

kφ(u) < u, a contradiction. Thus u < v and t ≤φ(v). Similarly u > 0, u ≤ kt and F (t , v,u, v,0,u+

v)≤ 0 imply t ≤φ(v). If u = 0, then u ≤φ(v). Thus F2 is satisfying with f =φ.

F3 : F (u,u,u,0,u,u) = F (u,u,0,u,u,u) = u−φ(u) > 0, ∀u > 0.

3. Main Result

We need the following lemma for the proof of our main theorem.

Lemma 1. [(7)] For any t > 0,γ(t) < t if and only if lim
n→∞

γn(t) = 0, where γn denotes the

composition of γ n−times with itself.

Now we give our main theorem.

Theorem 1. Let (X ,d) be a complete metric space. Let f , g : X → X and S,T : X →CB(X ) be

a continuous mapping such that f and S as well as g and T satisfy Condition 1 and Condition

2. Assume T (X ) ⊆ f (X ), S(X ) ⊆ g (X ) and for all x, y ∈ X

F (H(Sx,T y),d( f x, g y),d( f x,Sx),d(g y,T y),d( f x,T y),d(g y,Sx)) ≤ 0, (3.1)

where F ∈F . Then f , g ,S and T have a common fixed point.

Proof. Let x0 be arbitrary point in X . We shall construct two sequences {xn} and {yn }

of elements in X and sequence {An} of elements in CB(X ). Since S(X ) ⊆ g (X ), there exists

x1 ∈ X such that y1 = g x1 ∈ Sx0. Then there exists an element y2 = f x2 ∈ T x1 = A1, because

T (X ) ⊆ f (X ), such that

d(y1, y2) = d(g x1, f x2) ≤ kH(Sx0,T x1).

Since S(X ) ⊆ g (X ), we may choose x3 ∈ X such that y3 = g x3 ∈ Sx2 = A2 and

d(y2, y3) ≤ kH(T x1,Sx2).

By induction we produce the sequences {xn}, {yn} and {An} such that

y2n+1 = g x2n+1 ∈ Sx2n = A2n , (3.2)
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y2n+2 = f x2n+2 ∈T x2n+1 = A2n+1, (3.3)

d(y2n+1, y2n ) ≤ kH(Sx2n ,T x2n−1), (3.4)

d(y2n+1, y2n+2) ≤ kH(Sx2n ,T x2n+1) (3.5)

for every n ∈ N . Letting x = x2n , y = x2n+1 in (3.1), we have successively

F (H(Sx2n ,T x2n+1),d( f x2n , g x2n+1),d( f x2n ,Sx2n),

d(g x2n+1,T x2n+1),d( f x2n ,T x2n+1),d(g x2n+1,Sx2n)) ≤ 0,

and so

F (H(Sx2n ,T x2n+1),d(y2n , y2n+1),d(y2n , y2n+1),

d(y2n+1, y2n+2),d(y2n , y2n+2),d(y2n+1, y2n+1)) ≤ 0.

Thus

F (H(Sx2n ,T x2n+1),d(y2n , y2n+1),d(y2n , y2n+1),

d(y2n+1, y2n+2),d(y2n , y2n+1)+d(y2n+1, y2n+2),0) ≤ 0. (3.6)

From (3.5), (3.6) and (Fa), there exist an increasing function f : R+ → R+, f (0) = 0 and k > 1

with f (s) < s
k , we have

H(Sx2n ,T x2n+1) = H(A2n , A2n+1) ≤ f (d(y2n , y2n+1)) (3.7)

and so

d(y2n+1, y2n+2) ≤ k f (d(y2n , y2n+1)). (3.8)

Similarly we obtain

H(Sx2n ,T x2n−1) = H(A2n , A2n−1) ≤ f (d(y2n−1, y2n )) (3.9)

and so

d(y2n , y2n+1) ≤ k f (d(y2n−1, y2n )). (3.10)

Since k f (s) < s it follows from (3.8), (3.10) and Lemma 1 that {yn } is a Cauchy sequence. Hence

there exists z ∈ X such that yn → z. Therefore, g x2n+1 → z and f x2n → z. Also from (3.7)

and (3.9) and the fact that {yn } is Cauchy sequence it follows that {Ak } is Cauchy sequence in

the complete metric space (CB(X ), H). Thus Ak → A ∈ CB(X ). This implies T x2n+1 → A and

Sx2n → A and therefore z ∈ A, because

d(z, A) = lim
n→∞

d(yn , A) ≤ lim
n→∞

H(An−1, An) = 0.

Since A is closed, t ∈ A and f and S are satisfying Condition 1 and Condition 2 implies that

lim
n→∞

H( f Sx2n ,S f x2n ) ≤ lim
n→∞

H(Sx2n ,S f x2n )
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and

lim
n→∞

d( f f x2n , f x2n ) ≤ lim
n→∞

H(Sx2n ,S f x2n).

This along with the continuity of f and S imply that

H( f A,Sz) ≤ H(A,Sz) (3.11)

and

d( f z, z) ≤ H(A,Sz). (3.12)

Now

d( f z,Sz) ≤ d( f z, f g x2n+1)+d( f g x2n+1,Sz)

≤ d( f z, f g x2n+1)+H( f Sx2n ,Sz)

≤ d( f z, f g x2n+1)+H( f Sx2n ,S f x2n)+H(S f x2n ,Sz)

and letting n →∞ we have

d( f z,Sz)≤ lim
n→∞

H( f Sx2n ,S f x2n ) ≤ H(A,Sz).

Now using (3.1) we have

F (H(Sz,T x2n+1),d( f z, g x2n+1),d( f z,Sz),

d(g x2n+1,T x2n+1),d( f z,T x2n+1),d(g x2n+1,Sz))≤ 0,

and

F (H(Sz,T x2n+1),d( f z, g x2n+1),d( f z,Sz),

d(g x2n+1,T x2n+1),d( f z, f x2n+2)+d( f x2n+2,T x2n+1),d(g x2n+1,Sz)) ≤ 0.

Letting n →∞ we obtain

F (H(Sz, A),d( f z, z),d( f z,Sz),d(z, A),d( f z, z)+d(z, A),d(z,Sz)) ≤ 0

and so

F (H(Sz, A), H(Sz, A), H(Sz, A),0, H(Sz, A), H(Sz, A))≤ 0

which is a contradiction to F3. Thus H(Sz, A) = 0 and so, from (3.11) and (3.12) we have z =

f z ∈ Sz. Similarly we have z = g z ∈ T z. Thus z is a common fixed point of this four mappings.

Corollary 1. Let (X ,d) be a complete metric space. Let f , g : X → X and S,T : X →CB(X ) be

a continuous mapping such that f and S as well as g and T satisfy Condition 1 and Condition

2. Assume T (X ) ⊆ f (X ), S(X ) ⊆ g (X ) and that H(Sx,T y) ≤ r d( f x, g y)for all x, y ∈ X where

0< r < 1. Then f , g ,S and T have a common fixed point.

Example 4. Let X = [0,1] be endowed with the Euclidean metric d . Let f x =
x

2
, g x =

x2

3
,

Sx = [0,
x

4
] and T x = [0,

x2

6
]. It is clear that these mappings are continuous and S(X ) = [0,

1

4
] ⊂
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[0,
1

2
] = f (X ) and T (X ) = [0,

1

6
] ⊂ [0,

1

3
] = g (X ). Also f and S as well as g and T are satisfy

Condition 1 and Condition 2. Indeed, let {xn } be a sequence in X such that

lim
n→∞

f xn = t , lim
n→∞

Sxn = A ∈CB(X ),

then t ∈ A if and only if t = 0. Therefore,

lim
n→∞

H(S f xn , f Sxn) = lim
n→∞

d( f f xn , f xn ) = 0 = lim
n→∞

H(S f xn ,Sxn ).

Thus f and S are satisfy Condition 1 and Condition 2. Again, for all x, y ∈ X , we have

H(Sx,T y) = H([0,
x

4
],[0,

y2

6
])

=

∣

∣

∣

x

4
−

y2

6

∣

∣

∣

=
1

2

∣

∣

∣

x

2
−

y2

3

∣

∣

∣

=
1

2
d( f x, g y).

Consequently, these mappings are satisfy all conditions of Corollary 1, then they have a com-

mon fixed point in X .

Theorem 2. [(1)] Let (X ,d) be a complete metric space. Let f , g : X → X and S,T : X →

CB(X ) be a continuous mapping such that f is compatible with S and g is compatible with

T. Assume T (X ) ⊆ f (X ), S(X ) ⊆ g (X ) and that H(Sx,T y) ≤ r d( f x, g y)for all x, y ∈ X where

0< r < 1. Then there is a coincidence point for f and S, as g and T .

Remark 3. In Theorem 2, Azam and Beg [1] find a coincidence point of mappings assumed

compatibility. In Corollary 1, we find a common fixed point of mappings with Condition 1 and

Condition 2 replaced by compatibility.
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