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ON CERTAIN NONLINEAR INTEGRAL INEQUALITIES

INVOLVING ITERATED INTEGRALS

B. G. PACHPATTE

Abstract. In this paper explicit bounds on some nonlinear integral inequalities involving iterated

integrals are established. Applications are also given to illustriate the usefulness of one of our

results.

1. Introduction

Integral inequalities with iterated integrals play a very important role in the study of

various classes of integrodifferential and integral equations. In [3] Bykov and Salpagarov

(see also [1, 4-6]) have given the explicit bounds on the following integral inequalities

u(t) ≤ c +

∫ t

α

b(s)u(s)ds +

∫ t

α

(
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α

k(s, τ)u(τ)dτ
)

ds
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∫ t
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(

∫ s

α

(

∫ τ
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h(s, τ, σ)u(σ)dσ
)

dτ
)

ds, (1.1)

u(t) ≤ c +

∫ t

α

k(t, s)u(s)ds +

∫ t

α

(

∫ s

α

h(t, s, σ)u(σ)dσ
)

ds (1.2)

under some suitable conditions on the functions involved in (1.1) and (1.2). For a detailed
account on such inequalities and their applications, see [1-7]. Motivated by the results

given in [3], in this paper we offer some useful nonlinear generalizations of the inequalities

in [3] which will be equally important to achieve a diversity of desired goals in certain

applications. The two independent variable generalizations of the main results and some

applications of one of our results are also given.

2. Statement of Results

Let R denotes the set of real numbers; R+ = [0,∞), I = [0, T ), I1 = [0, X), I2 = [0, Y )

are the given subsets of R, ∆ = I1 × I2 and ′ denotes the derivative. The partial
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derivatives of a function z(x, y) for x, y ∈ R with respect to x, y and xy are denoted

by D1z(x, y), D2z(x, y) and D1D2z(x, y) = D2D1z(x, y) (or ∂
∂x

z(x, y), ∂
∂y

z(x, y) and
∂2

∂x∂y
z(x, y) = ∂2

∂y∂x
z(x, y)) respectively. We denote by E1 = {(t, s) ∈ I2 : 0 ≤ s ≤ t < T },

E2 = {(t, s, σ) ∈ I3 : 0 ≤ σ ≤ s ≤ t < T }, H1 = {(x, y, s, t) ∈ ∆2 : 0 ≤ s ≤ x < X, 0 ≤

t ≤ y < Y }, H2 = {(x, y, s, t, σ, τ) ∈ ∆3 : 0 ≤ σ ≤ s ≤ x < X, 0 ≤ τ ≤ t ≤ y < Y }.

Throughout, we assume that all the integrals involved in the discussion exist on the

respective domains of their definitions and are finite.

Our main results are given in the following theorem.

Theorem 1. Let u(t) ∈ C(I, R+), k(t, s) ∈ C(E1, R+), h(t, s, σ) ∈ C(E2, R+) and

a(t), a′(t) ∈ C(I, R+). Let g(u) ∈ C(R+, R+) be a nondecreasing function, g(u) > 0 on

(0,∞).

(c1) Let b(t) ∈ C(I, R+). If

u(t) ≤ a(t) +

∫ t

0

b(s)g(u(s))ds +

∫ t

0

(

∫ s

0

k(s, τ)g(u(τ))dτ
)

ds

+

∫ t

0

(

∫ s

0

(

∫ τ

0

h(s, τ, σ)g(u(σ))dσ
)

dτ
)

ds, (2.1)

for t ∈ I, then for 0 ≤ t ≤ t1; t, t1 ∈ I.

u(t) ≤ G−1
[

G(a(t)) +

∫ t

0

M(s)ds
]

, (2.2)

where

G(r) =

∫ r

r0

ds

g(s)
, r > 0, (2.3)

r0 > 0 is arbitrary, G−1 is the inverse of G,

M(t) = b(t) +

∫ t

0

k(t, τ)dτ +

∫ t

0

(

∫ τ

0

h(t, τ, σ)dσ
)

dτ, (2.4)

for t ∈ I and t1 ∈ I is chosen so that

G(a(t)) +

∫ t

0

M(s)ds ∈ Dom(G−1),

for all t ∈ I lying in the interval 0 ≤ t ≤ t1.

(c2) Let ∂
∂t

k(t, x) ∈ C(E1, R+), ∂
∂t

h(t, s, σ) ∈ C(E2, R+). If

u(t) ≤ a(t) +

∫ t

0

k(t, s)g(u(s))ds +

∫ t

0

(

∫ s

0

h(t, s, σ)g(u(σ))dσ
)

ds, (2.5)
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for t ∈ I, then for 0 ≤ t ≤ t2; t, t2 ∈ I,

u(t) ≤ G−1
[

G(a(t)) +

∫ t

0

[R(s) + Q(s)]ds
]

, (2.6)

where G, G−1 are as defined in part (c1),

R(t) = k(t, t) +

∫ t

0

h(t, t, σ)dσ, (2.7)

Q(t) =

∫ t

0

∂

∂t
k(t, σ)dσ +

∫ t

0

(

∫ s

0

∂

∂t
h(t, s, σ)dσ

)

ds, (2.8)

for t ∈ I and t2 ∈ I is chosen so that

G(a(t)) +

∫ t

0

[R(s) + Q(s)]ds ∈ Dom(G−1),

for all t ∈ I lying in the interval 0 ≤ t ≤ t2.

Remark 1. If we take g(u) = u, then G(r) = log r
r0

, G−1(r) = r0 exp(r) and the
bounds obtained in (2.2) and (2.6) reduces respectively to

u(t) ≤ a(t) exp
(

∫ t

0

M(s)ds
)

, (2.9)

and

u(t) ≤ a(t) exp
(

∫ t

0

[R(s) + Q(s)]ds
)

, (2.10)

for t ∈ I. Furthermore, if we take a(t) = c, a nonnegative constant, then we get the
inequalities established by Bykov and Salpagarov in [3] (see also [1, 4-6]).

The following theorem deals with the two independent variable versions of the in-
equalities established in Theorem 1 which can be used in certain applications.

Theorem 2. Let u(x, y) ∈ C(∆, R+), k(x, y, s, t) ∈ C(H1, R+), h(x, y, s, t, σ, τ) ∈
C(H2, R+) and a(x, y), D1a(x, y), D2a(x, y), D1D2a(x, y) ∈ C(∆, R+). Let g(u) be a

continuously differentiable function defined for u ≥ 0, g(u) > 0 for u > 0 and g′(u) ≥ 0
for u ≥ 0.

(d1) Let b(x, y) ∈ C(∆, R+). If

u(x, y) ≤ a(x, y) +

∫ x

0

∫ y

0

b(s, t)g(u(s, t))dtds

+

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

k(s, t, σ, τ)g(u(σ, τ))dτdσ
)

dtds

+

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

(

∫ σ

0

∫ τ

0

h(s, t, σ, τ, m, n)g(u(m, n))dndm
)

dτdσ
)

dtds,

(2.11)
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for (x, y) ∈ ∆, then for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1; x, x1 ∈ I1, y, y1 ∈ I2,

u(x, y) ≤ G−1
[

G(a(x, y)) +

∫ x

0

∫ y

0

N(s, t)dtds
]

, (2.12)

where

N(x, y) = b(x, y) +

∫ x

0

∫ y

0

k(x, y, σ, τ)dτdσ

+

∫ x

0

∫ y

0

(

∫ σ

0

∫ τ

0

h(x, y, σ, τ, m, n)dndm
)

dτdσ, (2.13)

G, G−1 are as in Theorem 1 part (c1) and x1 ∈ I1, y1 ∈ I2 are chosen so that

G(a(x, y)) +

∫ x

0

∫ y

0

N(s, t)dtds ∈ Dom(G−1),

for all (x, y) ∈ ∆ such that 0 ≤ x ≤ x1, 0 ≤ y ≤ y1.

(d2) Let D1k(x, y, s, t), D2k(x, y, s, t), D2D1k(x, y, s, t)∈C(H1, R+); D1h(x, y, s, t, σ, τ),
D2h(x, y, s, t, σ, τ), D2D1h(x, y, s, t, σ, τ) ∈ C(H2, R+). If

u(x, y) ≤ a(x, y) +

∫ x

0

∫ y

0

k(x, y, s, t)g(u(s, t))dtds

+

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

h(x, y, s, t, σ, τ)g(u(σ, τ))dτdσ
)

dtds, (2.14)

for (x, y) ∈ ∆, then for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2; x, x2 ∈ I1, y, y2 ∈ I2,

u(x, y) ≤ G−1
[

G(a(x, y)) +

∫ x

0

∫ y

0

[A(m, n) + B(m, n)]dndm
]

, (2.15)

where

A(x, y) = k(x, y, x, y) +

∫ x

0

D1k(x, y, ξ, y)dξ +

∫ y

0

D2k(x, y, x, η)dη

+

∫ x

0

∫ y

0

D2D1k(x, y, ξ, η)dηdξ, (2.16)

B(x, y) =

∫ x

0

∫ y

0

h(x, y, x, y, σ, τ)dτdσ +

∫ x

0

(

∫ s

0

∫ y

0

D1h(x, y, s, y, σ, τ)dτdσ
)

ds

+

∫ y

0

(

∫ x

0

∫ t

0

D2h(x, y, x, t, σ, τ)dτdσ
)

dt

+

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

D2D1h(x, y, s, t, σ, τ)dτdσ
)

dtds, (2.17)

G, G−1 are as in Theorem 1 part (c1) and x2 ∈ I1, y2 ∈ I2 are chosen so that

G(a(x, y)) +

∫ x

0

∫ y

0

[A(m, n) + B(m, n)]dndm ∈ Dom(G−1),

for all (x, y) ∈ ∆ such that 0 ≤ x ≤ x2, 0 ≤ y ≤ y2.
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Remark 2. By taking g(u) = u in Theorem 2, it is easy to observe that the bounds

in (2.12) and (2.15) reduces respectively to

u(x, y) ≤ a(x, y) exp
(

∫ x

0

∫ y

0

N(s, t)dtds
)

, (2.18)

and

u(x, y) ≤ a(x, y) exp
(

∫ x

0

∫ y

0

[A(m, n) + B(m, n)]dndm
)

, (2.19)

for (x, y) ∈ ∆. In this case, the inequalities obtained in (2.18) and (2.19) can be con-

sidered as generalizations of the Wendroff’s inequality given in [2, p.154]. For a large

number of such inequalities and their applications, we refer the interested readers to [1,

7].

3. Proof of Theorem 1

First we note that, since a′(t) ≥ 0, the function a(t) is monotonically increasing (see

[8, p.81]).

(c1) Let a(t) > 0 for t ∈ I and define a function z(t) by the right hand side of (2.1).

Then z(t) > 0, z(0) = a(0), u(t) ≤ z(t) and by hypotheses, it is nondecreasing and

z′(t) = a′(t) + b(t)g(u(t)) +

∫ t

0

k(t, τ)g(u(τ))dτ +

∫ t

0

(

∫ τ

0

h(t, τ, σ)g(u(σ))dσ
)

dτ

≤ a′(t) + b(t)g(z(t)) +

∫ t

0

k(t, τ)g(z(τ))dτ +

∫ t

0

(

∫ τ

0

h(t, τ, σ)g(z(σ))dσ
)

dτ

≤ a′(t) + M(t)g(z(t)). (3.1)

From (2.3), (3.1), the fact that a(t) ≤ z(t) and the nondecreasing character of g we

have

d

dt
G(z(t)) =

z′(t)

g(z(t))

≤
a′(t) + M(t)g(z(t))

g(z(t))

≤
a′(t)

g(a(t))
+ M(t)

=
d

dt
G(a(t)) + M(t). (3.2)

By setting t = s in (3.2) and integrating it from 0 to t, t ∈ I we have

G(z(t)) ≤ G(a(t)) +

∫ t

0

M(s)ds. (3.3)
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From (3.3) and the hypotheses on G we have

z(t) ≤ G−1
[

G(a(t)) +

∫ t

0

M(s)ds
]

. (3.4)

Using (3.4) in u(t) ≤ z(t) we get the required inequality in (2.2). If a(t) is nonneg-
ative, we carry out the above procedure with a(t) + ε instead of a(t), where ε > 0

is an arbitrary small constant, and subsequently pass to the limit ε → 0 to obtain
(2.2). The subinterval 0 ≤ t ≤ t1 is obvious.

(c2) Let a(t) > 0 for t ∈ I and define a function z(t) by the right hand side of (2.5).

Then z(t) > 0, z(0) = a(0), u(t) ≤ z(t), a(t) ≤ z(t). In view of hypotheses, it is
easy to observe that z(t) is nondecreasing and

z′(t) = a′(t) + k(t, t)g(u(t)) +

∫ t

0

∂

∂t
k(t, s)g(u(s))ds

+

∫ t

0

h(t, t, σ)g(u(σ))dσ +

∫ t

0

(

∫ s

0

∂

∂t
h(t, s, σ)g(u(σ))dσ

)

ds

≤ a′(t) + k(t, t)g(z(t)) +

∫ t

0

∂

∂t
k(t, s)g(z(s))ds

+

∫ t

0

h(t, t, σ)g(z(σ))dσ +

∫ t

0

(

∫ s

0

∂

∂t
h(t, s, σ)g(z(σ))dσ

)

ds

≤ a′(t) + [R(t) + Q(t)]g(z(t)).

The remaining proof can be completed by following the proof of part (c1) given
above.

4. Proof of Theorem 2

From the hypotheses, it is easy to observe that the function a(x, y) is monotonically

increasing in both the variables x and y. Furthermore, since g′(u) ≥ 0 on R+, the
function g(u) is monotonically increasing on (0,∞) (see [8, p.81]).

(d1) Let a(x, y) > 0 for (x, y) ∈ ∆ and define a function z(x, y) by the right hand side
of (2.11). Then z(x, y) > 0 and by hypotheses, it is nondecreasing in (x, y) ∈ ∆,
z(x, 0) = a(x, 0), z(0, y) = a(0, y), u(x, y) ≤ z(x, y) and

D1z(x, y) = D1a(x, y) +

∫ y

0

b(x, t)g(u(x, t))dt

+

∫ y

0

(

∫ x

0

∫ t

0

k(x, t, σ, τ)g(u(σ, τ))dτdσ
)

dt

+

∫ y

0

(

∫ x

0

∫ t

0

(

∫ σ

0

∫ τ

0

h(x, t, σ, τ, m, n)g(u(m, n))dndm
)

dτdσ
)

dt,



INEQUALITIES INVOLVING ITERATED INTEGRALS 267

D2z(x, y)=D2a(x, y)+

∫ x

0

b(s, y)g(u(s, y))ds

+

∫ x

0

(

∫ s

0

∫ y

0

k(s, y, σ, τ)g(u(σ, τ))dτdσ
)

ds

+

∫ x

0

(

∫ s

0

∫ y

0

(

∫ σ

0

∫ τ

0

h(s, y, σ, τ, m, n)g(u(m, n))dndm
)

dτdσ
)

ds,

D2D1z(x, y)=D2D1a(x, y)+b(x, y)g(u(x, y))+

∫ x

0

∫ y

0

k(x, y, σ, τ)g(u(σ, τ))dτdσ

+

∫ x

0

∫ y

0

(

∫ σ

0

∫ τ

0

h(x, y, σ, τ, m, n)g(u(m, n))dndm
)

dτdσ

≤D2D1a(x, y)+b(x, y)g(z(x, y))+

∫ x

0

∫ y

0

k(x, y, σ, τ)g(z(σ, τ))dτdσ

+

∫ x

0

∫ y

0

(

∫ σ

0

∫ τ

0

h(x, y, σ, τ, m, n)g(z(m, n))dndm
)

dτdσ

≤D2D1a(x, y)+N(x, y)g(z(x, y)), (4.1)

where N(x, y) is given by (2.13). It is easy to observe that

D2D1G(z(x, y)) = G′′(z(x, y))D1z(x, y)D2z(x, y) + G′(z(x, y))D2D1z(x, y) (4.2)

Since a(x, y) ≤ z(x, y), D1z(x, y) ≥ 0, D2z(x, y) ≥ 0, G′(z(x, y)) = 1
g(z(x,y)) and

G′′(z(x, y)) ≤ 0, we obtain from (4.1) and (4.2)

D2D1G(z(x, y)) ≤ G′(z(x, y))D2D1z(x, y)

≤
1

g(z(x, y))
[D2D1a(x, y) + N(x, y)g(z(x, y))]

≤
D2D1a(x, y)

g(a(x, y))
+ N(x, y). (4.3)

On the other hand we observe that

D2D1G(a(x, y)) = D2

(

D1

(

∫ a(x,y)

r0

ds

g(s)

))

= D2

(D1a(x, y)

g(a(x, y))

)

=
g(a(x, y))D2D1a(x, y) − D1a(x, y)g′(a(x, y))D2a(x, y)

{g(a(x, y))}2

=
D2D1a(x, y)

g(a(x, y))
−

D1a(x, y)g′(a(x, y))D2a(x, y)

{g(a(s, y))}2

which implies

D2D1G(a(x, y)) ≥
D2D1a(x, y)

g(a(x, y))
. (4.4)
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From (4.3) and (4.4) we have

D2D1G(z(x, y)) ≤ D2D1G(a(x, y)) + N(x, y),

and this yields

G(z(x, y)) ≤ G(a(x, y)) +

∫ x

0

∫ y

0

N(s, t)dtds,

which in view of the fact u(x, y) ≤ z(x, y) implies

u(x, y) ≤ G−1
[

G(a(x, y)) +

∫ x

0

∫ y

0

N(s, t)dtds
]

.

The case when a(x, y) ≥ 0 follows as noted in the proof of Theorem 1 part (c1).
The subdomain 0 ≤ x ≤ x1, 0 ≤ y ≤ y1 is obvious.

(d2) Let a(x, y) > 0 for (x, y) ∈ ∆ and define a function z(x, y) by the right hand side
of (2.14). Then z(x, y) > 0 and by hypotheses, it is nondecreasing in (x, y) ∈ ∆,
z(x, 0) = a(x, 0), z(0, y) = a(0, y) and u(x, y) ≤ z(x, y). As in the proof of part
(d1), it is easy to observe that D1z(x, y) ≥ 0, D2z(x, y) ≥ 0 and

D2D1z(x, y) ≤ D2D1a(x, y) + [A(x, y) + B(x, y)]g(z(x, y)), (4.5)

where A(x, y), B(x, y) are given by (2.16), (2.17). The rest of the proof can be
completed by closely looking at the proof of part (d1) given above. We omit the
details.

5. Applications

In this section, we present applications of the inequality in Theorem 1 part (c2) which
pvovide estimates for the solutions of iterated Volterra integral equation of the form

z(t) = f(t) +

∫ t

0

K(t, s, z(s))ds +

∫ t

0

(

∫ s

0

H(t, s, σ, z(σ))dσ
)

ds, (5.1)

where f ∈ C(I, R), K ∈ C(E1 × R, R), H ∈ C(E2 × R, R). Here, we note that the
existence proofs for the solutions of equation (5.1) show either that the operator T

defined by the right hand side of equation (5.1) is a contraction (in which case one also
has uniqueness) or T is compact and continuous on a suitable subspace of the space of
continuous functions.

Theorem 3. Suppose that the functions f , K and H in equation (5.1) satisfy

|f(t)| ≤ a(t), (5.2)

|K(t, s, z)| ≤ k(t, s)g(|z|), (5.3)

|H(t, s, σ, z)| ≤ h(t, s, σ)g(|z|), (5.4)
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where a, k, h, g are as in Theorem 1 part (c2). If z(t), t ∈ I is any solution of equation

(5.1), then

|z(t)| ≤ G−1
[

G(a(t)) +

∫ t

0

[R(s) + Q(s)]ds
]

, (5.5)

for t ∈ I, where G, G−1, R(t), Q(t) are as given in Theorem 1 part (c2).

Proof. Let z(t) be a solution of equation (5.1). Using the fact that z(t) is a solution

of equation (5.1) and (5.2)-(5.4) we have

|z(t)| ≤ a(t) +

∫ t

0

k(t, s)g(|z(s)|)ds +

∫ t

0

(

∫ s

0

h(t, s, σ)g(|z(σ)|)dσ
)

ds. (5.6)

Now an application of the inequality in Theorem 1 part (c2) to (5.6) yields (5.5).

Theorem 4. Suppose that the functions K, H and f in equation (5.1) satisfy

|K(t, s, z)− K(t, s, z)| ≤ k(t, x)g(|z − z|), (5.7)

|H(t, s, σ, z) − H(t, s, σ, z)| ≤ h(t, s, σ)g(|z − z|), (5.8)

∫ t

0

|K(t, s, f(s))|ds +

∫ t

0

(

∫ s

0

|H(t, s, σ, f(σ))|dσ
)

ds ≤ a(t), (5.9)

where k, h, g, a are as in Theorem 1 part (c2). If z(t), t ∈ I is any solution of equation

(5.1), then

|z(t) − f(t)| ≤ G−1
[

G(a(t)) +

∫ t

0

[R(s) + Q(s)]ds
]

, (5.10)

for t ∈ I, where G, G−1, R(s), Q(s) are as given in Theorem 1 part (c2).

Proof. Let z(t), t ∈ I be a solution of equation (5.1). Using the fact that z(t) is a

solution of equation (5.1) and (5.7)-(5.9) we have

|z(t) − f(t)| =
∣

∣

∣

∫ t

0

{K(t, s, z(s))− K(t, s, f(s)) + K(t, s, f(s))}ds

+

∫ t

0

(

∫ s

0

{H(t, s, σ, z(σ)) − H(t, s, σ, f(σ)) + H(t, s, σ, f(σ))}dσ
)

ds
∣

∣

∣

≤ a(t) +

∫ t

0

k(t, s)g(|z(s) − f(s)|)ds

+

∫ t

0

(

∫ s

0

h(t, s, σ)g(|z(σ) − f(σ)|)dσ
)

ds. (5.11)

Now a suitable application of the inequality in Theorem 1 part (c2) to (5.11) yields (5.10).
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Remark 3. We note that the inequality in Theorem 2 part (d2) can be used to study

similar properties as in Theorems 3 and 4 for the Volterra integral equation of the form

z(x, y) = f(x, y) +

∫ x

0

∫ y

0

F (x, y, s, t, z(s, t))dtds

+

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

H(x, y, s, t, σ, τ, z(σ, τ))dτdσ
)

dtds, (5.12)

under some suitable conditions on the functions involved in equation (5.12).

In conclusion, we note that the inequalities given in Theorem 1 part (c1) and Theorem

2 part (d1) can be used respectively to study similar properties as in Theorems 3 and 4

of the equations

z(t) = f(t) +

∫ t

0

e(s, z(s))ds +

∫ t

0

(

∫ s

0

K(s, τ, z(τ))dτ
)

ds

+

∫ t

0

(

∫ s

0

(

∫ τ

0

H(s, τ, σ, z(σ))dσ
)

dτ
)

ds (5.13)

and

z(x, y)=f(x, y)+

∫ x

0

∫ y

0

e(s, t, z(s, t))dtds

+

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

K(s, t, σ, τ, z(σ, τ))dτdσ
)

dtds

+

∫ x

0

∫ y

0

(

∫ s

0

∫ t

0

(

∫ σ

0

∫ τ

0

H(s, t, σ, τ, m, n, z(m, n))dndm
)

dτdσ
)

dtds, (5.14)

under some suitable conditions on the functions involved in equations (5.13) and (5.14).
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