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HARMONIC HYPERGEOMETRIC FUNCTIONS

R. A. AL-KHAL AND H. A. AL-KHARSANI

Abstract. In this paper we try to uncover some of the inequalities associating hypergeometric
functions with planer harmonic mappings. Sharp coefficient relations, distortion theorems and

neighborhood are given for these functions. Furthermore, convolution products are considered.

1. Introduction

Let U denote the open unit disc and Sy denote the class of functions which are
complex-valued, harmonic, univalent, sense-preserving in U normalized by f(0) = f,(0)—
1 =0. Each f € Sy can be expressed as f = h + g, where h and g are analytic in U. A
necessary and sufficient condition for f to be locally univalent and sense-preserving in U
is that |h/(2)] > |¢’(2)] in U. Thus for f = h+ g € Sy we may write

h(z)=z+Y Arz¥, g(z) =Y Bp¥, |Bi| <1. (1.1)
k=2 k=1

Clunie and Sheil-Small [4] studied the class Sy with some geometric subclasses of Sg.

Let HP(fB) denote the subclass of Sy satisfying Re{h/(z) +¢'(2)} > 8, 0<p(8<1
which was studied by Yalcin et al. [8]; they also denoted by HP*((3) the subclass of
HP(B) such that the functions h and g in f = h + g are of the form

h(z)=z— Z |Ag|2" and g(z) = — Z | B| 2~ (1.2)
k=1

k=2

If fj =hj+79;, Jj=12,...arein the class Sy, then we define the convolution
f1* fo of fi and fo in the natural way hy * ho + g1 * g2. If ¢1 and ¢o are analytic and
f=h+7gisin Sy, Ahuja and Silverman [6] defined

F*(01+dy) =h*o1+g+* o (1.3)
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Let a, b, ¢ be complex numbers with ¢ # 0,—1,—2,... Then the Gauss hypergeometric
function written as 2 Fy (a,b; ¢; 2) or simply as F(a, b; ¢; z) is defined by

— (@i
F(a,b;c;2z) = —— 2" 1.4
(@b62) =2 G, a4
where (M) is the Pochhammer symbol defined by
(A = % “AA+1) At k—1) for k=1,2,3,..., and (A)o=1. (L5)

Since the hypergeometric series in (1.4) converges absolutely in U, it follows that
F(a,b;c; z) defines a function which is analytic in U, provided that ¢ is neither zero nor
a negative integer. In terms of Gamma functions, we are led to the well-known Gauss’s
summation theorem: If Re(c — a — b) > 0, then

I(e)T'(c—a—10)

Fla.bial) = 5 ame—0)

c#0,—1,-2, ... (1.6)

For further information about hypergeometric functions, one may refer to [1], [2], and
[3].

Throughout this paper, let G(z) := ¢1(2) + ¢2(2) be a function where ¢;(z) =
o1(a1,b1;c152) and ¢a(2) = Pa(asg, ba; ca; z) are the hypergeometric functions defined by

_ N — (a)k—1(b1)k—1
$1(z) = zF (a1, b1;¢15 2) _Z+k2=2—(cl)k71(1)k—1 z", (1.7)
_ . o (a2)e(b2)r .
¢2(2) = zF (ag, ba;ca;2) — 1 = Z ISRON 2%, agbs < cg, aj,bj,cj are  (1.8)
k=1

positive for j =1,2.

The purpose of this paper is to uncover some of the connections between the theory
of harmonic univalent functions and hypergeometric functions. We will investigate the
convolution multipliers f * (¢1 + ¢5) and the neighborhood of G' = ¢1 + ¢, where ¢1, P2
are as defined by (1.7), (1.8) and f € HP(). Also, convolution products are considered.

2. Preliminary Results
In order to derive new results, we need the following lemmas due to Yalgin et al. [8].
Lemma 2.1. For f = h+§ with h and g of the form (1.1), if

> k(| Ak +1Bkl) <2 -8, (2.1)
k=1
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where A1 =1 and 0 < B < 1, then f € HP(().

Lemma 2.2. For f = h+ g with h and g of the form (1.2). Then f € HP*(0) if
and only if

D k(| Ak]) + |Bi]) <2 8.
k=1
where Ay =1 and 0 < 8 < 1.

Lemma 2.3. If f € HP*((3), then
[F)) <A+ |B1])r+ %(1 —|By| - B)r?, |z =r <1,

and )
lf(z)| = (1= [Bi|)r — 5(1 —|Bi| = B)r?, |z =r< 1L

Hence

fwi lol < 50— B1] + 9)} € (0.

3. Main Results

Theorem 3.1. Ifc¢; > aj +b; +1 for j = 1,2, then a sufficient condition for
G = ¢1 + ¢4 to be harmonic univalent in U and G € HP(3), 0<3<1 is that
agbg

b
(1 + #) F(ai,by;e1;1) +

F bojeo;l) <2—03. (3.1
Cl*alfblf]_ (a2) 2; C2; )_ ﬁ ( )

Cgfagfbgf].

Proof. In order to prove that G is locally univalent and sense-preserving in U, we
only need to show that |¢](2)| > |#5(2)], =z € U. In view of (1.4), (1.5), (1.6) and (1.7),
we have
o (

|61(2) =

14 I a1)k—1(b1)k—1 k1
)

— (c1)r-1(1)r—1

(
>1i(k1)%iw

k=2

a1b1 = (a1 + Dgp_a(by + Dr—2 = (a1)r(b1)x
=1— - Z Z \CLk\PLk

= (ot DroDr2 = ()L

_ ., ab = (a1 + 1)g—1(by + 1)g_1 B = (a1)k(b1)k

T N e DM 2 ey

_ a1b1 F(Cl + 1)F(Cl —a; — by — 1) _
C1 F(Cl — al)F(cl — bl)

a1b1
=2-|—F 41| F bi;c151).
<cl—a1—b1—1+) (ala 1,01,)

=2
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Again, using (3.1), (1.4), (1.6) and (1.8) in turn, to the above mentioned inequality, we
have

agbg
Co — a2 — bg —1
a2b2

|91 (2)] > B+ F(ag,ba;ca;1)

e —ay—by—1 (az,ba; c2;1)

aabsy F(Cg + 1)F(CQ —ag — by — 1)
co T(ca — a2)T(ca — ba)

oo

(a2)k+1(b2) k41
z_: 02)k+1(1)

M8|

|k1

(@2)k(b2)k  r—1
1’“ (e (1)

Y

MgH

= |2 (2)].

>
Il

To show that G is univalent in U, we assume that 21,22 € U so that z; # z5. Since

U is simply connected and convex, we have z(t) = (1 —t)z; + tze € U, where 0 <t < 1.
Then we can write

G(22) = G(21) = / [(22 = 21)64 (2(0) + (22 — 20) (D) |

so that

Rewz/l Re
0

P (2(1) + M%(Z(t))] dt

22—z 20 — 21 (3.2)
1
> [ [Re 64 (:(0)) - 15O de
0
On the other hand,
Re ¢1(2) — |¢5(2)]
700 alkl kl E_1 ag bg k1
> 1 Zk B 2| Zk |z|
_oo . ( De-1(0)k1 an(bz)k
= kZ:Q(k 1+1)( Dk-1(1)k—1 kz;k CQk(l)k
=2 3 —(al) i( agby o (a2 + Dga(ba + i
i ()i = (el 2 = (e2+ DD
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albl agbg
=2—- |14+ —7F— | F bi:cp:l) = ———272 F ot co: 1
( +01a1b11) (0/17 15C13 ) 027(12*1)271 (Cl27 2; C2; )
>p
>0, by (3.1).

Thus (3.2) and the above inequality lead to G(z1) # G(z2) and hence G is univalent in
U. In order to prove that G € HP(f3), using Lemma 2.1, we only need to prove that

Zk( Ji—1 bl)k Ly (a2)k(b2)k) <24

Je—1(1)r—1 (e2)e(1)r

or

Zk@kl—blkl+2kw§1—ﬁ- (3:3)

= (c1)k—1(1)r—1 (e2)k (D)

Writing & = k — 1 4 1, the left hand side of (33) reduces to

a1by o= (a1 + 1)x(by + 1)y — (a1)k(b1)k B
D D T [Z ()L 1}

k=0 k=0

" asbs i (CLQ + 1)k(b2 + 1)k

Co =0 (CQ + 1)k(1)k

azby

b
= (LJrl) F(a1,bi;e1;1) + F(az,ba;c251) — 1.

cl—al—bl—l 02—a2—b2—1

The last expression is bounded above by 1 — 3 so that (3.1) is satisfied. This completes
the proof

Theorem 3.2. Let ¢; > a; +b;+1, for j =1,2 and agby < c2. If G = ¢1(2) + ¢2(2)
with

o0
= Z ’”’“

k=2

o0
$2(2) =1 — zF(az, ba; c2; 2) Z ,,
1 (c2)k(

then G € HP*(8), 0< <1 if and only if (3.1) holds.

(3.4)

Proof. We observe that HP*(3) C HP(f). In view of Theorem 3.1, we need only
to show the necessary condition for G to be in HP(3). If G € HP*(3), then G satisfies
the inequality in Lemma 2.2, and the result follows.

Theorem 3.3. Let asby < c2 and G of the form (3.4). If G € HP*((), then
|G(z)|§<1+a2—b2> 1<1a2—b26> 2, Jzl=r<1

C2
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and

|G(z)|2<1a2—b2) %(1@5)r2, 2| =r < 1.

Co C2

{ |w|<—(1a2—b2+ﬂ)}CG(U).

Proof. The result follows from Lemma 2.3.

Hence

Theorem 3.4. Let ¢; > a; +b; +1 for j = 1,2 and azby < ca. A necessary and
sufficient condition such that f (1 + o) € HP*(B) for f € HP*(B) is that

F(a1,b1;¢1;1) + F(ag, ba;ca;1) < 3, (3.5)
where ¢1, P2 are as defined, respectively, by (1.7) and (1.8)
Proof. Let f = h+g € HP*(8), where h and g are given by (1.2). Then
(f % (&1 + 82))(2) = h(=2) * ¢ (2) + 9(2) * ¢2(2)
— (a1)r—1(
Aglz
Z (e1)r—1( 1 | 12°

In view of Lemma 2.2, we need to prove that f % (¢1 + ¢y) € HP*(8) if and only if

> al k— 1 )k 1 ( )k(b2)k
Zk[ Drs |Ar| + s |Bk|] <2-8

1 C1 k—1 ( 2)k(
or
= b b
Zk k 1 1 k— 1|Ak|+zk a2)k( 2) |Bk|<1*ﬂ (36)
— C1 k 1 1 2)k( )

As an application of Lemma 2.2, we have

1-p 1-p
Ap| < —— Byl < ——.
| k|— k ? | k|— k

Therefore, the left hand side of (3.6) is bounded above by

i(l B)M +i(1 75)M
C1)k 5

=2 f
= (1-=0)[F(a1,b1;c151) + F(ag, ba;c;1) — 2]
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The last expression is bounded above by (1 — 8) if and only if (3.5) is satisfied. This
proves (3.6) and the result follows.

Theorem 3.5. Ifc; > a; +b; for j =1,2, then a sufficient condition for a function

Gi(z) = / F(ay,by;eq;t)dt —|—/ [F(ag,ba;cost) — 1] dt
0 0
to be in HP(J3) is that

F(ai,bi;c1;1) 4+ Flag, ba;e;1) <3 -3, 0< <1

Proof. In view of Lemma 2.1, the function

— . = (al)k—l(bl)k—lzk = (a2)k—1(b2)k—12
Gz = +Z (e1)k—1(1)x +Z (c2)r—1(1)g ’

That is, if

Equivalently, G; € HP((3) if
F(ai,bi;er;1) + F(az, ba;e2;1) <3 — 6.
In the next theorem we give a necessary and sufficient convolution condition for
G = ¢1 + ¢, to be in HP([).

Theorem 3.6. Let azby < c2. If G = ¢1(2) +52(z) with ¢1, o are as defined,
respectively, by (1.7) and (1.8). Then G € HP(B) if and only if

<(¢1 + ) * €+ 1) ) 4 Gab2t o

(1_2)2 (172675)7&(); 0<p<1, |€|:17 0<|Z|<1.

Cc2

Proof. Let G € HP([3), then

Re{¢] + ¢} > .
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Since 7(41)1( )+ ¢5(2)) =1 at z = 0, therefore we can write G € HP(f) if and
a2ba + c2

only if

-1

+17

1 C2

e P CIORTACI B

lEl=1,6# -1, 0<|z[ < 1.

By a simple algebraic manipulation, we get

0# (€4 1) (61(2) + 64(2) — BE+1) — (1= B)(E 1)
= 52+62(§+1)(¢1( 2)+ dh(2)) + (1 —28—€)
= , €+ o
_a2b2+02(¢1( &)+ x T yp T (126

which is the condition required by Theorem 3.6.

Theorem 3.7. Let f € HP*(8), 0< 3 < 1. Then the function H = f % (¢1 + by)
is starlike of order v(0 <~ < 1) in |z| < R, where

Qk(l - ')’)(01)1971(02);c k! -1
(1= B)[k(k —v)(a1)k—1(b1)k—1(c2)r + (K +v — 2)(a2)x(b2)r(c1) k1]

@1, 2 are as defined by (1.7) and (1.8).

R = inf
k

Proof. It is sufficient to show that

H/
ZH 1'<1'y in |z|] <R. (3.7)

For the left hand side of (3.7), we have

(k—1)(a 1(b 1 _ 0o k41 b
L 1‘ Zk p Cpdeplinics |y | [ofp—1 4 Y32 | (tElliahllale gy ||

1 bl — —
" 1— 5o, Qadimaldos | g | [o|b-1 — 5000 | (glelade By o]k

The last expression is less than 1 — v if

(k=) (a1)k—1(b1)k—1 o1, N (K + 2 — ) (a2)k(b2)k ko1
Al |z + E Byl |z <1
= (1=7) (c)r-1()r ke = (C2)k(1)k 1Bl I

(3.8)
Using the fact that f € HP*(f) if and only if

D OEIA+D k(B <1-5,
k=2 k=1

we can say (3.8) is true if

E—~v(a)k-1(b1)r—1  k+2—7(a2)r(b2)r k-1 _ 2k
{1—7(QM40%4+ i <@»an}'” <

_ﬁ'
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Or equivalently,

1 < 2k(1—7) { (c)r—1(Dr—1(c2)r(1)x }
1= [ (k=7)(a1)k—1(b1)k—1(c2)k(L)r+ (k+2—)(a2)r(b2)k(c1)r—1(1)k-1
_ 2k(1‘7 7) { kﬂ(01)k71(02)k }
1= Lk(k=y)(a1)s-1(01)k-1(c2)r + (k +2 = y)(az)x (b2)x(c1)k—1 )

If h,g, H,G are of the form (1.1) and as we know if f = h+g and F = H + G, then
the convolution of f and F' is defined to be the function

frF(z) =2+ arApz+> bBizk
k=2 k=1
while the integral convolution is defined by

(o)
A br B
foF(z):z+§:ak—l€’“Z’f+ kkkk
k=2 k=1

The d-neighborhood of f is the set

(oo} (oo} (o]
Né(f):{F:HZAkzMZBkzk:Zk(|ak—Ak|+|bk—Bk|)+|bl — By| ga}
k=2 k=1 k=2

(see [5], [7]). In this case, let us define the generalized d-neighborhood of G = ¢ + ¢,
where ¢1, ¢2 of the form (1.7) and (1.8) to be the set

B
No(G) = {F +ZA1lelk1k+Z 2kk

(C1)k-1(
= a1)k—1(b1)k—1 (A1)k71(B1)k71 (a2)k(b2)k7(A2)k(B2)k
,; {< Cer1Wra  (COr(Dit >+< )M (@)l )}
+ (ai—SQ - Aé?) < (1-p)3.

Let PY denote the class of functions F' complex and harmonic in U, F = h + g such
that Re F(z) >0, z¢€ U and

(o) o0
z)=1+4 Z Arz®, g(z) = Z By2".
k=1 k=2

It is known [9, Theorem 3] that the sharp inequalities |Ax| < k+ 1, |Bg| < k—1 are
true.
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Theorem 3.8. (i) If G = ¢1(2) + ¢2(z) € HP(B) where ¢1, ¢y are as defied by (1.7)
and (1.8), (0 < 8 < 1), then for ; < |A4] <2, ALGOF € HP(f).
1
(ii) If G satisfies the condition

2 —1(b)k—1 | (a2)k(b2)k
Zk ( ~1(Dr-1 i (c2)r(1)k ) <15 (3.9)

then
— FeHP
e G *x F e (3).
1 1
(i) If G satisfies (3.9) and 6 < 5~ WGZ—ZD then Ns(G) C HP(f), where 0 <
- 2

ﬂ <1, asby < co.
Proof. We justify the case (ii). Since

- (a1)r—1(b1)r—
Z’“(( (L)

k=2 )k 1 -1

Ay,

(a2)k(b2)k | B
Al + k k k

(c2)r(Di [Ar

)

(a)k—1(b)k—1k+1 | (a2)r(ba)g k — 1)
(c)r—1(Dk—1 [A1lk ~ (c2)p(D)r |Ar|k

. @22 © (a1)k—1(b1)Kk—1 Sk W is a member
(ili) Let G(z) = z + ) < e~ (e ' ’

of HP(A) and F(2) = = + A232Z+i ((A k= 1(31)k71zk+( 2)k(B2)k k) belong

(C1)k—1(L)k—1 (C2)k (L)

to Ns(G). We have

A3By & (A1)k 1(B1)k 1 (A2) (B2)k
) *Z’“{wnk (Wi T (Coe(s ]

Ay By a2b2> agby K Ji—1( B1 Jk—1 (al)kl(bl)k1>
< - + ) k -
- ( Cy o Z::Q (C)r—1( (c1)k—1(1)k—1

" <(<c§§k< 2)356 (éz)ﬁ((bf)k )]
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_ agby loo o ((a)k—1(b1)k—1  (a2)r(b2)k
SA=po+ =+ }:k< Y - )

24 (c1)k—1(Dr-1  (c2)e(D
b 1
<(1-P)5+ 224 -(1-p)
Co 2
<1-4
Hence, for § < % - ﬁaz—ib, F(z) € HP(S).
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