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ON MATRIX POLYNOMIALS ASSOCIATED WITH
HERMITE MATRIX POLYNOMIALS

M. A. PATHAN, MAGED G. BIN-SAAD AND FADHL AL-SARHI

Abstract. In this paper, an extension of the Hermite matrix polynomials is introduced.
Some relevant matrix functions appear in terms of the two-index and two-variable and
p-index and p-variable Hermite matrix polynomials. Furthermore, in order to give qual-
itative properties of this family of matrix polynomials, the Legendre and Chebyshev ma-
trix polynomials of sveral variables are introduced.

1. Introduction

An extension to the matrix framework of the classical families of Laguerre, Hermite and

Gegenbauer polynomials have been introduced in ([4, 5, 6]). In [3], the Laguerre and Her-

mite matrix polynomials are presented as examples of right orthogonal matrix polynomial

sequences for appropriate right matrix moment functional of integral type.

Jodar and Company [4] introduced the class of Hermite matrix polynomials Hn(x, A) de-

fined by

exp
(
xt

√
(2A)− t 2I

)
=

∞∑
n=0

Hn(x, A)
t n

n!
, (1.1)

where

Hn(x, A) = n!
[ n

2 ]∑
k=0

(−1)k
(p

2A
)n−2k

k !(n −k)!
xn−2k ,n ≥ 0, (1.2)

where A is a positive stable matrix in the complex space C N×N of all square matrices of com-

mon order N , which appear as a finite series solutions of second order matrix differential

equations y
′′ − x Ay

′ +n Ay = 0,for a matrix A in C N×N whose eigen values are all in the right

open half-plane. In [1], Batahan presented a study of the two-variable Hermite matrix poly-

nomials defined by

exp
(
xt

√
(2A)− y t 2I

)
=

∞∑
n=0

Hn(x, y, A)
t n

n!
, (1.3)
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where

Hn(x, y, A) = n!
[ n

2 ]∑
k=0

(−1)k
(p

2A
)n−2k

k !(n −k)!
xn−2k yk ,n ≥ 0. (1.4)

Now ,we recall that if A(k,n) and B(k,n) are matrices in C N×N for n ≥ 0 and k ≥ 0,then it

follows that [8]:

∞∑
n=0

n∑
k=0

A(k,n) =
∞∑

n=0

∞∑
k=0

A(k,n +k), (1.5)

∞∑
n=0

∞∑
k=0

B(k,n) =
∞∑

n=0

[ n
2 ]∑

k=0
B(k,n −2k), (1.6)

∞∑
n=0

2n∑
k=0

A(k,n) =
∞∑

n=0

n∑
k=0

A(2k,n). (1.7)

For m is a positive integer, we can write

∞∑
n=0

n∑
k=0

A(k,n) =
∞∑

n=0

[n/m]∑
k=0

A(k,n − (m −1)k). (1.8)

In the course of an attempt to unify several results in the theory of matrix polynomials of

more than one variable, we define Hermite matrix polynomials of several index and several

variables. The importance of this new class of matrix polynomials have been recognized both

in purely mathematical and applied frame works. The structure of this paper is the following:

In section 2, we introduce and study the two-index and two-variable Hermite matrix poly-

nomials Hn,m(x, y ; A). In sections 3 and 4,we study a number of properties of the two-index

two-variable Hermite matrix polynomials involving recurrence relations and Rodrigue’s for-

mula respectively. In section 5, we introduce and study the multiindices and multivariable

Hermite matrix polynomials Hn1,n2,...,np (x1, x2, . . . , xp ; A) and obtain a number of properties of

the p-index and p-variable Hermite matrix polynomials involving recurrence relations and

Rodrigue’s formula. Finally, in section 6 definitions of p-index and p-variable Legendre and

Chebyshev matrix polynomials are introduced as a new families of polynomials.

2. Two-index and two-variable Hermite matrix polynomials

Let A be a positive stable matrix in C N×N .We define two-index and two- variable Hermite

matrix polynomials by means of the following generating function:

f (x, y, t ,h) = exp
(
x(t +h)

√
(2A)− y(t +h)2I

)
=

∞∑
n,m=0

Hn,m(x, y ; A)
t nhm

n!m!
. (2.1)

Making use of the matrix exponential series

ex =
∞∑

n=0

xn

n!
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and the binomial expansion

(a +x)n =
n∑

r=0

(
n

r

)
an−r xr (2.2)

we obtain

f (x, y, t ,h) =
∞∑

n=0

n∑
m=0

∞∑
r=0

2r∑
s=0

(−1)r (2r )!
(
x
p

(2A)
)n

y r

m!r !s!(n −m)!(2r − s)!
t n−m+2r−shm+s ,

which in view of the equations (1.5), (1.6) and (1.8) gives us

f (x, y, t ,h) =
∞∑

n=0

n∑
m=0

∞∑
r=0

r∑
s=0

(−1)r (2r )!
(
x
p

(2A)
)n

y r

m!r !(2s)!(n −m)!(2r −2s)!
t n−m+2r−2shm+2s ,

=
∞∑

n=0

∞∑
m=0

∞∑
r=0

∞∑
s=0

(−1)r+s(2r +2s)!
(
x
p

(2A)
)n+m

y r+s

(r + s)!(2r )!(2s)!n!m!
t n+2r hm+2s ,

=
∞∑

n,m=0

[ n
2 ]∑

r=0

[ m
2 ]∑

s=0
(−1)r+s (2r +2s)!y r+s

(
x
p

2A
)n+m−2r−2s

t nhm

(r + s)!(n −2r )!(m −2s)!(2r )!(2s)!
. (2.3)

Thus, from (2.1) and (2.3), we obtain the following explicit representation for the two-index

and two-variable Hermite matrix polynomials

Hn,m(x, y ; A) = n!m!
[ n

2 ]∑
r=0

[ m
2 ]∑

s=0
(−1)r+s (2r +2s)!y r+s

(
x
p

2A
)n+m−2r−2s

(n −2r )!(m −2s)!(2r )!(2s)!(r + s)!
. (2.4)

For m = 0, (2.4) reduces to (1.4). Further, it is of interest to point out that the series represen-

tation in (2.4), in particlar, yields the following relationships:

H0,0(x, y ; A) = I , Hn,0(x, y ; A) = Hn(x, y, A), H1,1(x, y ; A) =
(
x
p

2A
)2

,

Hn,m(x,0; A) =
(
x
p

2A
)n+m

, Hn,m(x,1; A) = Hn,m(x; A)

Also, we can write

Hn,m(x, y ; A) = y
n+m

2 Hn,m(
xp
y

; A)

and

Hn,m(−x, y ; A) = (−1)n+m Hn,m(x, y ; A).

For y = 1, it follows that

∞∑
n,m=0

Hn,m(x; A)
t nhm

n!m!
= exp

(
x(t +h)

√
(2A)− (t +h)2I

)
, (2.5)

which when x = 0 gives us

∞∑
n,m=0

Hn,m(0; A)
t nhm

n!m!
=

∞∑
n,m−0

(−1)n+m(2n +2m)!

(n +m)!(2n)!(2m)!
t 2nh2m . (2.6)
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Therefore, we get

H2n,2m(0; A) = (−1)n+m22n+2m
(

1

2

)
n+m

I ,

and

H2n+1,2m+1(0; A) = 0.

Moreover, from (2.1), we have

∞∑
n=0

(x
p

2A)n

n!
(t +h)n =

∞∑
r=0

y r

r !
(t +h)2r ×

∞∑
n,m=0

Hn,m(x, y ; A)

n!m!
t nhm ,

which can be written in the form

∞∑
n,m=0

(x
p

2A)n+m

(n −m)!m!
t nhm =

∞∑
n,m,r,s=0

(2r +2s)!y r+s Hn,m(x, y ; A)

n!m!(r + s)!(2s)!(2r )!
t n+2r hm+2s . (2.7)

Next, applying (1.6), equation (2.7) gives us

∞∑
n,m=0

(x
p

2A)n+m

n!m!
t nhm =

∞∑
n,m=0

[ n
2 ]∑

r=0

[ m
2 ]∑

s=0

(2r +2s)!y r+s Hn−2r,m−2s(x, y ; A)

(n −2r )!(m −2s)!(r + s)!(2s)!(2r )!
t nhm .

Now, on comparing the coefficient of t nhm , we obtain the following expansion formula:

Theorem 2.1. Let A be a positive stable matrix in C N×N , then, we have

(
x
p

2A
)n+m =

[ n
2 ]∑

r=0

[ m
2 ]∑

s=0

(
n

2r

)(
m

2s

)(
1

2

)
r+s

22r+2s y r+s Hn−2r,m−2s(x, y ; A). (2.8)

3. Differential recurrence relations

This section deals with some differential recurrence relations for the two-index two-variable

Hermite matrix polynomials. First, we record the following theorem.

Theorem 3.1. The two-index two-variable Hermite matrix polynomials satisfies the following

relations:

∂k

∂xk
Hn,m(x, y ; A) =

(p
2A

)k k∑
r=0

n!m!k !Hn−(k−r ),m−r (x, y ; A)

(n − (k − r ))!(m − r )!(k − r )!r !
(3.1)

and
∂k

∂yk
Hn,m(x, y ; A) = (−1)k

2k∑
r=0

(2k)!n!m!Hn−(2k−r ),m−r (x, y ; A)

(n − (2k − r ))!(m − r )!(2k − r )!r !
(3.2)
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Proof. Differentiating partially (2.1) with respect to “x" ,we get

∞∑
n,m=0

∂

∂x
Hn,m(x, y ; A)

t nhm

n!m!
= (t +h)

√
(2A)exp

(
x(t +h)

√
(2A)− y(t +h)2I

)
. (3.3)

From (2.1) and (3.3), we have

∞∑
n,m=0

∂

∂x
Hn,m(x, y ; A)

t nhm

n!m!
=

√
(2A)

∞∑
n,m=0

1∑
r=0

Hn−(1−r ),m−r (x, y ; A)t nhm

r !(1− r )!(n − (1− r ))!(m − r )!
. (3.4)

On comparing the coefficient of t nhm in (3.4), we obtain

∂

∂x
Hn,m(x, y ; A) =

p
2A

1∑
r=0

n!m!

r !(1− r )!(n − (1− r ))!(m − r )!
Hn−(1−r ),m−r (x, y ; A), (3.5)

Again, by differentiating (3.5) with respect to “x, we get

∂2

∂x2 Hn,m(x, y ; A) = 2A
2∑

r=0

2n!m!Hn−(2−r ),m−r (x, y ; A)

r !(2− r )!(n − (2− r ))!(m − r )!
, (3.6)

Iteration (3.5), for 0 ≤ k ≤ n, implies (3.1). To prove (3.2), differentiate partially (2.1) with

respect to “y", to get

∞∑
n,m=0

∂

∂y
Hn,m(x, y ; A)

t nhm

n!m!
= (−1)(t +h)2 exp

(
x(t +h)

√
(2A)− y(t +h)2I

)
. (3.7)

From (2.1) and (3.7), we have

∞∑
n,m=0

∂

∂y
Hn,m(x, y ; A)

t nhm

n!m!
= (−1)

∞∑
n,m=0

2∑
r=0

2Hn−(2−r ),m−r (x, y ; A)t nhm

r !(2− r )!(n − (2− r ))!(m − r )!
. (3.8)

On comparing the coefficient of t nhm in (3.8) ,we obtain

∂

∂y
Hn,m(x, y ; A) = (−1)

2∑
r=0

2n!m!Hn−(2−r ),m−r (x, y ; A)

r !(2− r )!(n − (2− r ))!(m − r )!
, (3.9)

On iteration (3.9), for 0 ≤ k ≤ [ n
2 ], we arrive at (3.2).

Corollary 3.1. The two-index two-variable Hermite matrix polynomials satisfies the following

relations

∂2

∂x2 Hn,m(x, y ; A)+2A
∂

∂y
Hn,m(x, y ; A) = 0, (3.10)

in general
∂2k

∂x2k
Hn,m(x, y ; A) = (−1)k (2A)k ∂k

∂yk
Hn,m(x, y ; A), (3.11)

Proof. On equating (3.6) and (3.9), we obtain (3.10), and equating (3.1) and (3.2), we get (3.11).
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Theorem 3.2. The two-index two-variable Hermite matrix polynomials satisfies the following

relation:

x
∂

∂x
Hn,m(x, y ; A)+2y

∂

∂y
Hn,m(x, y ; A)− (n +m)Hn,m(x, y ; A) = 0, (3.12)

Proof. Differentiating (2.1) with respect to x, y, t and h, we find respectively

∂F

∂x
= (t +h)

p
2A exp

[
x(t +h)

p
2A− y(t +h)2I

]
,

∂F

∂y
= −(t +h)2 exp

[
x(t +h)

p
2A− y(t +h)2I

]
,

∂F

∂t
=

[
x
p

2A−2y(t +h)I
]

exp
[

x(t +h)
p

2A− y(t +h)2I
]

,

∂F

∂h
=

[
x
p

2A−2y(t +h)I
]

exp
[

x(t +h)
p

2A− y(t +h)2I
]

.

From the above equations, we observe that:

x
∂F

∂x
+2y

∂F

∂y
− t

∂F

∂t
−h

∂F

∂h
= 0,

which again in view of (2.1) and identifying the coefficients of t nhm on both sides gives (3.12).

Therefore, the equation (3.12) is established and the proof of Theorem 3.2 is completed.

Corollary 3.2. The two-index two-variable Hermite matrix polynomials satisfies the following

partial differential equation:[
y
∂2

∂x2 −x A
∂

∂x
+ (n +m)A

]
Hn,m(x, y ; A) = 0, n,m ≥ 0. (3.13)

Proof. From relations (3.5), (3.6)and (3.9), it is easily seen that

∂

∂x
Hn,m(x, y ; A) =

p
2AnHn−1,m(x, y ; A)+

p
2AmHn,m−1(x, y ; A),

∂2

∂x2 Hn,m(x, y ; A)

= 2A
[
n(n −1)Hn−2,m(x, y ; A)+2nmHn−1,m−1(x, y ; A)+m(m −1)Hn,m−2(x, y ; A)

]
,

and
∂

∂y
Hn,m(x, y ; A)

= −[
n(n −1)Hn−2,m(x, y ; A)+2nmHn−1,m−1(x, y ; A)+m(m −1)Hn,m−2(x, y ; A)

]
,

respectively. Now, by starting from (3.12) and employing the above results we obtain (3.13).

Therefore, the result is established. Now, we derive an operational representation for the Her-

mite matrix polynomials.
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Theorem 3.3. Let A be a matrix in C N×N . Then the two-index and two-variable Hermite ma-

trix polynomials has the following representation:

Hn,m(x, y ; A) = exp

(
−y(2A)−1 ∂2

∂x2

)(
x
p

2A
)n+m

. (3.14)

Proof. It is clear that[(p
2A

)−1 ∂

∂x

]2

exp
(
x(t +h)

p
2A

)
= (t +h)2 exp

(
x(t +h)

p
2A

)
. (3.15)

Thus

exp

[
−y

(p
2A

)−2 ∂2

∂x2

]
exp

(
x(t +h)

p
2A

)
=

∞∑
n=0

(−1)n yn

n!
(t +h)2n exp

(
x(t +h)

p
2A

)
. (3.16)

Also, we can write (4.3) in the form

exp

[
−y

(p
2A

)−2 ∂2

∂x2

]2

exp
(
x(t +h)

p
2A

)
= exp

(
x(t +h)

p
2A− y(t +h)2I

)
. (3.17)

Therefore, by using (2.1), we obtain

exp

[
−y

(p
2A

)−2 ∂2

∂x2

] ∞∑
n,m=0

(x
p

2A)n+m

n!m!
t nhm =

∞∑
n,m=0

Hn,m(x, y ; A)
t nhm

n!m!
, (3.18)

which on comparing the coefficients of t nhm yields (3.14).

4. p-index and p-variable Hermite matrix polynomials

Let A be a positive stable matrix in C N×N . We define the p-index and p-variable Hermite

matrix polynomials by means of the generating function

exp
[

x1(t1 +·· ·+ tp )
√

(2A)− (x2 +·· ·+xp )(t1 +·· ·+ tp )2I
]

=
∞∑

n1,...,np=0
Hn1,...,np (x1, . . . , xp ; A)

t n1
1

n1!
· · · t

np
p

np !
. (4.1)

Proceeding on the same lines as in the proof of (2.4), the following explicit representation for

the p-index and p-variable Hermite matrix polynomials can be obtained

Hn1,...,np (x1, . . . , xp ; A) = n1! · · ·np !
[

n1
2 ]∑

r1=0
· · ·

[
np
2 ]∑

rp=0

(−1)r1+···+rp (2r1 +·· ·+2rp )!

(r1 +·· ·+ rp )!(n1 −2r1)! · · · (np −2rp )!

(x1
p

2A)n1+···+np−2r1−···−2rp (x2 +·· ·+xp )r1+···+rp

(2r1)! · · · (2rp )!
(4.2)
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It is clear that

H0,...,0(x1, . . . , xp ; A) = I , Hn,0,...,0(x1, . . . , xp ; A) = Hn(x1, . . . , xp ; A)

H1,...,1(x1, . . . , xp ; A) = (x1

p
2A)n and Hn1,...,np (x1,0, . . . ,0; A) = (x1

p
2A)n1+···+np .

Also, we can write

Hn1,...,np (x1,1,0, . . . ,0; A) = Hn1,...,np (x1; A)

and

Hn1,...,np (−x1, . . . , xp ; A) = (−1)n1+···+np Hn1,...,np (x1, . . . , xp ; A).

Some recurrence relations have been deduced for the p-index and p-variable Hermite matrix

polynomials. We record the following theorem.

Theorem 4.4. The p-index p-variable Hermite matrix polynomials satisfies the following rela-

tions:

∂s

∂xs
1

Hn1,...,np (x1, . . . , xp ; A) (4.3)

= (
p

2A)s
s∑

r1=0
· · ·

rp−2∑
rp−1=0

s!n1! · · ·np !Hn1−(s−r1−···−rp−1),n2−r1,...,np−(rp−1−rp )(x1, . . . , xp ; A)

(n1−(s−r1−·· ·−rp−1)!(n2−r1)! · · · (np−rp−1)!r1! · · ·rp−1!(s − r1−·· ·−rp−1)!
,

∂s

∂xs
2

Hn1,...,np (x1, . . . , xp ; A) (4.4)

= (−1)s
n2∑

r1=0
· · ·

np∑
rp−1=0

(2s)!n1! · · ·np !Hn1−(s−r1−···−rp−1),n2−r1,...,np−(rp−1−rp )(x1, . . . , xp ; A)

(n1−(s−r1−·· ·−rp−1)!(n2−r1)! · · · (np−rp−1)!r1! · · ·rp−1!(s−r1−·· ·−rp−1)!
,

Proof. By Differentiating (4.1) with respect to “x1", we get

√
(2A)(t1 +·· ·+ tp )

∞∑
n1,...,np=0

Hn1,...,np (x1, . . . , xp ; A)
t n1

1

n1!
· · · t

np
p

np !

=
∞∑

n1,...,np=0

∂

∂x1
Hn1,...,np (x1, . . . , xp ; A)

t n1
1

n1!
· · · t

np
p

np !

which on employing the result

(z1 +·· ·+ zp )n =
n∑

r1=0

n−r1∑
r2=0

· · ·
n−r1−···−rp−2∑

rp−1=0

(
n

r1

)(
n − r1

r2

)
· · ·

(
n − r1 −·· ·− rp−2

rp−1

)
z

n−r1−···−rp−1

1 zr1
2 zr2

3 · · ·z
rp−1
p ,

and on comparing the coefficients of t n1
1 t n2

2 · · · t
np
p and then on iteration we get (4.3). Similarly,

(4.4) can be established.

We conclude this section giving Rodrigues formula for the p-index and p-variable Her-

mite matrix polynomials.
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Theorem 4.5. Let A be matrix in C N×N such that ℜ(λ) > 0 for every eigenvalue λ ∈σ(A). Then

the p-index and p-variable Hermite matrix polynomials has the following representation

Hn1,...,np (x1, . . . , xp ; A) = exp

[
−(x2 +·· ·xp )(2A)−1 ∂2

∂x2
1

]
(x1

√
(2A))n1+···+np (4.5)

Proof. We refer to the proof of (3.1).

5. The p-index and p-variable Chebyshev and Legendre matrix polynomials

The p-index and p-variable Hermite matrix polynomials will be exploited here to define

a matrix version of Chebyshev and Legendre polynomials. We recall that the Chebyshev and

Legendre polynomials of the second kind [2] are defined by:

Un(z) =
[ n

2 ]∑
k=0

(−1)k (n −k)!(2z)n−2k

k !(n −2k)!

and

Pn(x) =
[ n

2 ]∑
k=0

(−1)k ( 1
2 )n−k (2x)n−2k

k !(n −2k)!
=

[ n
2 ]∑

k=0

(−1)k (2n −2k))!(2x)n−2k

22n−2k k !(n −k)!(n −2k)!
,

respectively. Suppose that A is a matrix in C N×N such that Re(λ) > 0,for every eigenvalue

λ ∈σ(A), where σ(A) denotes the set of all the eigenvalues of A. Then, we define the p-index

and p-variable Chebyshev and Legendre matrix polynomials by the integral representation:

Un1,...,np (x1, . . . , xp ; A) = 1

n1! · · ·np !

∫ ∞

0
e−t t n1+···+np Hn1,...,np

(
x1,

x2

t
, . . . ,

xp

t
; A

)
d t , (5.1)

and

Pn1,...,np (x1, . . . , xp ; A) = 2

n1! · · ·np !
p
π

∫ ∞

0
e−2t t n1+···+np Hn1,...,np

(
x1t , x2, . . . , xp ; A

)
d t , (5.2)

respectively.

Starting from (5.1) and applying the result∫ ∞

0
e−t t nd t = n!, (5.3)

we can conclude that

1

n1! · · ·np !

∫ ∞

0
t n1+···+np e−t Hn1,...,np

( x1

t
, . . . ,

xp

t
; A

)
d t

=
[

n1
2 ]∑

r1=0
· · ·

[
np
2 ]∑

rp=0

(−1)r1+···+rp (2r1 +·· ·+2rp )!(n1 +·· ·+np − (r1 +·· ·+ rp ))!

(r1 +·· ·+ rp )!(n1 −2r1)! · · · (np −2rp )!

(x1
p

2A)n1+···+np−2r1−···−2rp (x2 +·· ·+xp )r1+···+rp

(2r1)! · · · (2rp )!
. (5.4)
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Thus, we find that

Un1,...,np (x1, . . . , xp ; A)

=
[

n1
2 ]∑

r1=0
· · ·

[
np
2 ]∑

rp=0

(−1)r1+···+rp (2r1 +·· ·+2rp )!(n1 +·· ·+np − (r1 +·· ·+ rp ))!

(r1 +·· ·+ rp )!(n1 −2r1)! · · · (np −2rp )!

(x1
p

2A)n1+···+np−2r1−···−2rp (x2 +·· ·+xp )r1+···+rp

(2r1)! · · · (2rp )!
. (5.5)

Similarly, proceeding on the same lines and instead of integral formula (5.3) using the integral

formula ∫ ∞

0
e−t 2

t nd t = 1

2
Γ(

1

2
n + 1

2
), (5.6)

and applying Legendre duplication formula [8,p17(14)]:

Γ(n + 1

2
) =

p
π(2n)!

22nn!
, or (

1

2
)n = (2n)!

22nn!
, (n = 0,1,2, . . .).

we obtain

Pn1,...,np (x1, . . . , xp ; A)

=
[

n1
2 ]∑

r1=0
· · ·

[
np
2 ]∑

rp=0

(−1)r1+···+rp (2r1 +·· ·+2rp )!
(1

2

)
n1+···+np−r1−···−rp

(r1 +·· ·+ rp )!(n1 −2r1)! · · · (np −2rp )!

(x1
p

2A)n1+···+np−2r1−···−2rp (x2 +·· ·+xp )r1+···+rp

(2r1)! · · · (2rp )!
, (5.7)

=
[

n1
2 ]∑

r1=0
· · ·

[
np
2 ]∑

rp=0

(−1)r1+···+rp (2r1 +·· ·+2rp )!(2n1 +·· ·+2np −2r1 −·· ·−2rp )!

22(n1+···+np−r1−···−rp )(r1 +·· ·+ rp )!(n1 −2r1)! · · · (np −2rp )!

(x1
p

2A)n1+···+np−2r1−···−2rp (x2 +·· ·+xp )r1+···+rp

(n1 +·· ·+np − r1 −·· ·− rp )!(2r1)! · · · (2rp )!
. (5.8)
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