THE EQUIVALENCE OF MANN AND ISHIKAWA ITERATIONS DEALING WITH ψ–UNIFORMLY PSEUDOCONTRACTIVE MAPS WITHOUT BOUNDED RANGE

B. E. RHOADES AND ŞTEFAN M. ŞOLTUZ

Abstract. We prove that Mann and Ishikawa iterations are equivalent models dealing with ψ-uniformly pseudocontractive or d-weakly contractive maps without bounded range.

1. Introduction

In this paper X denotes a real Banach space with X^* strictly convex, $T : X \to X$ a map and let $x_0, u_0 \in X$. We consider the following iteration known as Mann iteration,

$$u_{n+1} = (1 - \alpha_n)u_n + \alpha_n Tu_n.$$ \hspace{1cm} (1.1)

The sequence $\{\alpha_n\} \subset (0, 1)$ satisfies $\lim_{n \to \infty} \alpha_n = 0$, and $\sum_{n=1}^{\infty} \alpha_n = \infty$. We consider the following iteration known as Ishikawa iteration, (\cite{8})

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Ty_n,$$

$$y_n = (1 - \beta_n)x_n + \beta_n Tx_n.$$ \hspace{1cm} (1.2)

The sequences $\{\alpha_n\} \subset (0, 1)$, $\{\beta_n\} \subset [0, 1)$ satisfy

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = 0, \sum_{n=1}^{\infty} \alpha_n = +\infty.$$ \hspace{1cm} (1.3)

The duality normalized map $J : X \to 2^{X^*}$ is given by

$$J(x) = \{ f \in X^* : \langle f, x \rangle = \|x\|^2, \|x\| = \|f\| \}.$$ \hspace{1cm} (1.4)

We have

$$\langle f, y \rangle \leq \|f\| \|y\|, \forall y \in X.$$ \hspace{1cm} (1.5)

The following Remark is Proposition 12.3 from [7].
Remark 1.1. ([7]) If X is a real Banach space with X^* strictly convex then $J(\cdot)$ is a single map and uniformly continuous on all the bounded sets of X.

The following result is Lemma 1 from [10].

Lemma 1.2. If X is a real normed space, then the following relation is true

$$\|x+y\|^2 \leq \|x\|^2 + 2 \langle y, j(x+y) \rangle; \forall x,y \in X, \forall j(x+y) \in J(x+y).$$

(1.6)

The following definitions are from [3], [5] and [6].

Definition 1.3. Let X be a normed space. A map $T : X \to X$ is called weakly contractive map if for all $x,y \in X$, there exist $\psi : [0, +\infty) \to [0, +\infty)$ a continuous and strictly increasing map such that ψ is positive on $(0, +\infty)$, $\psi(0) = 0$, and the following inequality is satisfied

$$\|Tx - Ty\| \leq \|x-y\| - \psi(\|x-y\|).$$

(1.7)

A map $T : X \to X$ is called d-weakly contractive map if for all $x,y \in X$, there exist $j(x-y) \in J(x-y)$ and $\psi : [0, +\infty) \to [0, +\infty)$ a continuous and strictly increasing map such that ψ is positive on $(0, +\infty)$, $\psi(0) = 0$, and the following inequality is satisfied

$$\langle Tx - Ty, j(x-y) \rangle \leq \|x-y\|^2 - \psi(\|x-y\|).$$

(1.8)

A map $T : X \to X$ is called ψ-uniformly pseudocontractive if there exist $j(x-y) \in J(x-y)$ and $\psi : [0, +\infty) \to [0, +\infty)$ a strictly increasing map such that ψ is positive on $(0, +\infty)$, $\psi(0) = 0$ and the following inequality is satisfied

$$\langle Tx - Ty, j(x-y) \rangle \leq \|x-y\|^2 - \psi(\|x-y\|), \forall x,y \in B.$$

(1.9)

A map $C : X \to X$ is called ψ-uniformly accretive if there exist $j(x-y) \in J(x-y)$ and $\psi : [0, +\infty) \to [0, +\infty)$ a strictly increasing map such that ψ is positive on $(0, +\infty)$, $\psi(0) = 0$ and the following inequality is satisfied

$$\langle Cx - Cy, j(x-y) \rangle \geq \psi(\|x-y\|), \forall x,y \in X.$$

(1.10)

We denote the identity map by I.

Remark 1.4. (i) If T is a d-weakly contractive map, then T is a ψ-uniformly pseudocontractive map.

(ii) The map T is ψ-uniformly pseudocontractive if and only if $C := (I-T)$ is ψ-uniformly accretive.

Proposition 1.5. If T is a weakly contractive map, then T is a ψ-uniformly pseudocontractive map.
Proof. Let $j(x - y) \in J(x - y)$. Using (1.5), (1.7) and (1.4) we get

$$
(Tx - Ty, j(x - y)) \leq \|Tx - Ty\| \|j(x - y)\|
= \|Tx - Ty\| \|x - y\| \leq \|x - y\|^2 - \|x - y\| \phi(\|x - y\|) \quad (1.11)
$$

Denote $\psi(a) := a \cdot \phi(a), \forall a \in [0, \infty)$ to obtain that ψ is strictly increasing and positive.

The convergence of Mann iteration for a d-weakly contractive map in Hilbert spaces, was studied in [3]. It was shown in [5] that Mann iteration (1.1) for a d-weakly contractive map without a bounded range, converges in a Banach space more general then a Hilbert space. Also, it was shown in [6] that the same iteration for a ψ-uniformly pseudocontractive map without a bounded range, converges in a normed space.

If T is a weakly contractive, then T is a nonexpansive map. In this case the equivalence between Mann and Ishikawa iterations follows from Theorem 3 of the paper [11].

The above two motivations lead us to prove, in this note, the equivalence between Mann and Ishikawa iterations, (1.1) and (1.2), dealing with ψ-uniformly pseudocontractive maps without bounded range. As a corollary we obtain the convergence of Ishikawa iteration for the above operatorial classes. Also, we give a positive answer to the following conjecture, (see [11], page 452), "If Mann iteration converges, so does Ishikawa iteration".

For a ψ-uniformly pseudocontractive (respectively, ψ-uniformly accretive) map, the equivalence between Mann and Ishikawa iterations was shown also in Theorem 2.1 and Corollary 3.1 from [12]. There, in [12], the set $T(X)$ was assumed to be bounded. Removing the boundedness of the range, forces us to pay a price: both $\{\alpha_n\}$ and $\{\beta_n\}$ will depend on T and x^* (see condition (2.1)).

Remark 1.6. Let X be a normed space and $T : X \to X$ a uniformly continuous map. Then $I - T$ is a uniformly continuous map.

The following result is Proposition 2.1.2 from [4].

Proposition 1.7 ([4]) Let X be a normed space and $T : X \to X$ be a uniformly continuous map. Then T is bounded; i.e. it maps any bounded set into a bounded set.

Remark 1.6 and Proposition 1.7 lead to the following result.

Remark 1.8. Let X be a normed space and $T : X \to X$ a uniformly continuous map. Then $I - T$ is bounded; i.e. it maps any bounded set into a bounded set.

The following result, stated below, is Lemma 3.1 from [1]. In [1], the map ψ is assumed to be continuous in order to obtain an estimate for the convergence rate of the sequence $\{\lambda_n\}$. Another proof for the Lemma 3.1 can be found in ([2], pages 12-13). The same lemma, without the continuity assumption on ψ, appears in [6].

Lemma 1.9. ([1]) Let $\{\lambda_n\}$ and $\{\gamma_n\}$ be sequences of nonnegative numbers and $\{\alpha_n\}$ a sequence of positive numbers satisfying the conditions $\sum_{n=1}^{\infty} \alpha_n = +\infty$ and $(\gamma_n/\alpha_n) \to 0$.
as \(n \to +\infty \). Suppose that
\[
\lambda_{n+1} \leq \lambda_n - 2\alpha_n \psi(\lambda_n) + \gamma_n,
\]
is satisfied, where \(\psi : [0, +\infty) \to [0, +\infty) \) is a strictly increasing map such that \(\psi \) is positive on \((0, +\infty)\), with \(\psi(0) = 0 \). Then \(\lim_{n \to \infty} \lambda_n = 0 \).

2. Main Result

Let \(F(T) \) denote the fixed point set of \(T \).

Theorem 2.1. Let \(X \) be a real Banach space with \(X^\ast \) strictly convex. If \(T : X \to X \) is a \(\psi \)-uniformly pseudocontractive and uniformly continuous map with \(x^\ast \in F(T) \), \(x_0 = u_0 \in X \) and there exists a constant \(d_0 := d_0(T, x^\ast) \in (0,1) \), which depends on \(T \) and \(x^\ast \), such that \(\{\alpha_n\}, \{\beta_n\} \) satisfy
\[
\alpha_n, \beta_n \leq d_0, \forall n \in \mathbb{N},
\]
and (1.3), then the following are equivalent:
(i) the Mann iteration (1.1) converges to the \(x^\ast \in F(T) \),
(ii) the Ishikawa iteration (1.2) converges to the same \(x^\ast \).

Proof. The fixed point \(x^\ast \) is unique. If not, then there exists at least another fixed point \(y^\ast \in F(T) \), with \(x^\ast \neq y^\ast \). Relation (1.9) leads to
\[
\langle Tx^\ast - Ty^\ast, J(x^\ast - y^\ast) \rangle \leq \|x^\ast - y^\ast\|^2 - \psi(\|x^\ast - y^\ast\|)
\]
\[
(x^\ast - y^\ast, J(x^\ast - y^\ast)) \leq \|x^\ast - y^\ast\|^2 - \psi(\|x^\ast - y^\ast\|)
\]
\[
\|x^\ast - y^\ast\|^2 \leq \|x^\ast - y^\ast\|^2 - \psi(\|x^\ast - y^\ast\|)
\]
\[
\psi(\|x^\ast - y^\ast\|) \leq 0 \Rightarrow \|x^\ast - y^\ast\| = 0.
\]

The implication (ii)\(\Rightarrow\)(i) is obvious, by setting, in (1.2), \(\beta_n = 0 \), for all \(n \in \mathbb{N} \). We will prove the implication (i)\(\Rightarrow\)(ii). Suppose that \(\lim_{n \to \infty} u_n = x^\ast \). If
\[
\lim_{n \to \infty} \|x_n - u_n\| = 0,
\]
then
\[
0 \leq \|x^\ast - x_n\| \leq \|u_n - x^\ast\| + \|x_n - u_n\|
\]
and it follows that
\[
\lim_{n \to \infty} x_n = x^\ast.
\]
Thus, to complete the proof it suffices to verify relation (2.3).
With $A := (I - T)$ in (1.9), we have
\[
 \langle Ax - Ay, J(x - y) \rangle = \langle (x - Tx) - (y - Ty), J(x - y) \rangle \\
 = \|x - y\|^2 - \langle Tx - Ty, J(x - y) \rangle \\
 \geq \|x - y\|^2 - \|x - y\|^2 + \psi(\|x - y\|) \\
 = \psi(\|x - y\|). \tag{2.6}
\]

Taking $x := x_n$ and $y := u_n$ in (2.6) we obtain
\[
 \langle Ax_n - Au_n, J(x_n - u_n) \rangle \geq \psi(\|x_n - u_n\|). \tag{2.7}
\]

Choose $R > 0$ such that $\{u_n : n \in \mathbb{N}\} \subset B_R(x^*)$ and $x_0 \in B_{2R}(x^*)$. Remark 1.8 assures that $A(B_{2R}(x^*))$ is bounded. Denote
\[
 \sigma := \text{diam}(A(B_{2R}(x^*))) + R. \tag{2.8}
\]

Since the map $J(\cdot)$ is uniformly continuous on bounded subsets of X, with
\[
 \varepsilon := \frac{\psi(\frac{R}{2})}{4\sigma} > 0, \tag{2.9}
\]
there exists a $\delta_1 > 0$ such that $\|x - y\| \leq \delta_1$ implies $\|J(x) - J(y)\| \leq \varepsilon$.

The map $T(\cdot)$ is also uniformly continuous. Thus for the same ε, there exits a $\delta_2 > 0$ such that $\|x - y\| \leq \delta_2$ implies $\|Tx - Ty\| \leq \varepsilon$.

We shall prove by induction that $\{x_n\}$ is bounded. We know that $0 = \|x_0 - u_0\| \leq R$. Suppose that $\|x_k - u_k\| \leq R, \forall k \in \{1, \ldots, n\}$. We shall prove that
\[
 \|x_{n+1} - u_{n+1}\| \leq R. \tag{2.10}
\]

Assume that $\|x_n - u_n\| \leq R$ and that
\[
 \|x_{n+1} - u_{n+1}\| > R. \tag{2.11}
\]

From $\|x_k - u_k\| \leq R, \forall k \in \{1, \ldots, n\}$ we know
\[
 \|x_k - x^*\| \leq \|x_k - u_k\| + \|u_k - x^*\| \leq 2R, \forall k \in \{1, \ldots, n\}. \tag{2.12}
\]

From (2.12), we have $x_n \in B_{2R}(x^*)$ and the following inequality satisfied
\[
 \|x_k\| \leq \|x_k - x^*\| + \|x^*\| \leq 2R + \|x^*\|, \forall k \in \{1, \ldots, n\}. \tag{2.13}
\]

Using $\text{diam}(A(B_{2R}(x^*))) \leq \sigma$ and $x_n \in B_{2R}(x^*)$, (i. e. $\|Ax_n\| \leq \sigma)$, we get
\[
 \|Ty_n - Tx_n\| \leq \|y_n + Ty_n + x_n - Tx_n\| + \|y_n - x_n\| \\
 = \|Ay_n - Ax_n\| + \|y_n - x_n\| \\
 \leq \|Ay_n\| + \|Ax_n\| + \|y_n - x_n\| \\
 \leq S + \sigma + \beta_n \|x_n - Tx_n\| = S + \sigma + \beta_n \|Ax_n\| \\
 \leq S + \sigma + \beta_n \sigma. \tag{2.14}
\]
Such a $S > 0$ exists because
\[
\|y_k\| \leq \|x_k\| + \beta_k \|Ax_k\| \leq \|x_k\| + \|Ax_k\| \leq 2R + \|x^*\| + \sigma, \forall k \in \{1, \ldots, n\},
\]
and A is a bounded map.

For all $n \in \mathbb{N}$, we have
\[
\|u_{n+1} - u_n\| = \alpha_n \|(I - T)u_n\| = \alpha_n \|Au_n\| \leq \alpha_n \sigma. \tag{2.15}
\]

Set
\[
\delta := \min\{\delta_1, \delta_2\}. \tag{2.16}
\]

Defining
\[
d_0 := \min\{1, \frac{\delta}{2\sigma}, \frac{R}{2(4\sigma + S)}\}. \tag{2.17}
\]

it follows that, for all $n \in \mathbb{N}$, using (2.1) and (2.16), that
\[
\alpha_n (3\sigma + S + \beta_n \sigma) \leq \alpha_n (4\sigma + S) < \frac{R}{2},
\]
\[
\beta_n < \frac{\delta}{\sigma} \quad \text{and} \quad \alpha_n < \frac{\delta}{2\sigma}. \tag{2.18}
\]

From (1.1) and (1.2),
\[
\|x_{n+1} - u_{n+1}\| = \|(1 - \alpha_n) (x_n - u_n) + \alpha_n (Ty_n - Tu_n)\|
\]
\[
= \|(x_n - u_n) - \alpha_n (Ax_n - Au_n) + \alpha_n (Ty_n - Tx_n)\|
\]
\[
\leq \|x_n - u_n\| + \alpha_n \|Ax_n - Au_n\| + \alpha_n \|Ty_n - Tx_n\|. \tag{2.19}
\]

From (2.20), using (2.11), (2.8), (2.14) and the first evaluation from (2.19),
\[
\|x_n - u_n\| \geq \|x_{n+1} - u_{n+1}\| - \alpha_n \|Ax_n - Au_n\| - \alpha_n \|Ty_n - Tx_n\|
\]
\[
\geq R - 2\alpha_n \sigma - \alpha_n (S + \sigma + \beta_n \sigma)
\]
\[
= R - \alpha_n (3\sigma + S + \beta_n \sigma) \geq R - R/2 = R/2. \tag{2.20}
\]

Using the induction assumption,
\[
\|x_{n+1} - u_{n+1}\| = \|(1 - \alpha_n) (x_n - u_n) + \alpha_n (Ty_n - Tu_n)\|
\]
\[
= \|(x_n - u_n) - \alpha_n (x_n - u_n - Tx_n + Tu_n) + \alpha_n (Ty_n - Tx_n)\|
\]
\[
\leq \|x_n - u_n\| + \alpha_n \|Ax_n - Au_n\| + \alpha_n \|Ty_n - Tx_n\|
\]
\[
\leq R + 2\alpha_n \sigma + \alpha_n S + \alpha_n \sigma + \alpha_n \beta_n \sigma = R + \alpha_n S + 3\alpha_n \sigma + \alpha_n \beta_n \sigma
\]
\[
< R + \frac{R}{2} \leq 2R. \tag{2.21}
\]
Thus we get

$$-1 \leq - \frac{\|x_{n+1} - u_{n+1}\|}{2R}.$$ \hfill (2.23)

By setting (1.6),

$$x := (x_n - u_n) - \alpha_n (Ax_n - Au_n),$$
$$y := \alpha_n (Ty_n - Tx_n),$$
$$x + y = x_{n+1} - u_{n+1}. \hfill (2.24)$$

we obtain

$$\|x_{n+1} - u_{n+1}\|^2 = \|(1 - \alpha_n) (x_n - u_n) + \alpha_n (Ty_n - Tu_n)\|^2$$
$$= \|(x_n - u_n) - \alpha_n (x_n - u_n) + \alpha_n (Tx_n - Tu_n) + \alpha_n (Ty_n - Tx_n)\|^2$$
$$= \|(x_n - u_n) - \alpha_n (Ax_n - Au_n) + \alpha_n (Ty_n - Tx_n)\|^2$$
$$\leq \|(x_n - u_n) - \alpha_n (Ax_n - Au_n)\|^2 + 2\alpha_n \langle Ty_n - Tx_n, J (x_{n+1} - u_{n+1}) \rangle.$$ \hfill (2.25)

We again apply (1.6) with

$$x := x_n - u_n,$$
$$y := -\alpha_n (Ax_n - Au_n),$$
$$x + y = (x_n - u_n) - \alpha_n (Ax_n - Au_n),$$ \hfill (2.26)

to obtain,

$$\|(x_n - u_n) - \alpha_n (Ax_n - Au_n)\|^2$$
$$\leq \|x_n - u_n\|^2 - 2\alpha_n \langle Ax_n - Au_n, J ((x_n - u_n) - \alpha_n (Ax_n - Au_n)) \rangle$$
$$\leq \|x_n - u_n\|^2 - 2\alpha_n \langle Ax_n - Au_n, J (x_n - u_n) - \alpha_n (Ax_n - Au_n) - J (x_n - u_n) \rangle$$
$$- 2\alpha_n \langle Ax_n - Au_n, J (x_n - u_n) \rangle$$
$$\leq \|x_n - u_n\|^2 - 2\alpha_n \langle Ax_n - Au_n, J (x_n - u_n) \rangle$$
$$+ 2\alpha_n \|Ax_n - Au_n\| \times \|J ((x_n - u_n) - \alpha_n (Ax_n - Au_n)) - J (x_n - u_n)\|.$$ \hfill (2.27)

Substituting (2.27) into (2.25) and using (2.21) we have

$$\|x_{n+1} - u_{n+1}\|^2$$
$$\leq \|x_n - u_n\|^2 - 2\alpha_n \langle Ax_n - Au_n, J (x_n - u_n) \rangle$$
$$+ 2\alpha_n \|Ty_n - Tx_n\| \times \|x_{n+1} - u_{n+1}\|.$$
\[
\leq \|x_n - u_n\|^2 - 2\alpha_n \psi \left(\frac{R}{2}\right) + 2\alpha_n \|Ax_n - Au_n\| \times \|J((x_n - u_n) - \alpha_n(Ax_n - Au_n)) - J(x_n - u_n)\| + 2\alpha_n \|Ty_n - Tx_n\| \|x_{n+1} - u_{n+1}\| \\
\leq \|x_n - u_n\|^2 - 2\alpha_n \psi \left(\frac{R}{2}\right) + 4\alpha_n \sigma \tau_n + 2\alpha_n \zeta_n \|x_{n+1} - u_{n+1}\|. \tag{2.28}
\]

Setting
\[
\tau_n := \|J((x_n - u_n) - \alpha_n(Ax_n - Au_n)) - J(x_n - u_n)\| \tag{2.29}
\]
and
\[
\zeta_n := \|Ty_n - Tx_n\|, \tag{2.30}
\]
and using (2.8) and (2.23),
\[
\|x_{n+1} - u_{n+1}\|^2 \\
\leq \|x_n - u_n\|^2 - 2\alpha_n \psi \left(\frac{R}{2}\right) \frac{\|x_{n+1} - u_{n+1}\|}{2R} + 4\alpha_n \sigma \tau_n + 2\alpha_n \zeta_n \|x_{n+1} - u_{n+1}\|. \tag{2.31}
\]

Using (2.14) and (2.19) we obtain
\[
\|(x_n - u_n) - \alpha_n(Ax_n - Au_n) - (x_n - u_n)\| \\
= \|\alpha_n(Ax_n - Au_n)\| \leq 2\alpha_n \sigma < \delta. \tag{2.32}
\]

From the uniform continuity of \(J(\cdot)\),
\[
\tau_n \leq \epsilon. \tag{2.33}
\]
Relation (2.19) leads to
\[
\|y_n - x_n\| = \|-\beta_n x_n + \beta_n Tx_n\| = \beta_n \|Ax_n\| \leq \beta_n \sigma < \delta. \tag{2.34}
\]
Since \(T\) is uniformly continuous,
\[
\zeta_n < \epsilon. \tag{2.35}
\]
Substituting (2.33), (2.35) (with ε given by (2.9)), and (2.23) in (2.31) we obtain

$$\|x_{n+1} - u_{n+1}\|^2 \leq \|x_n - u_n\|^2 - 2\alpha_n \psi \left(\frac{R}{2} \right) \frac{\|x_{n+1} - u_{n+1}\|}{2R} + 4\alpha_n \sigma \psi \left(\frac{R}{4\sigma} \right) + 2\alpha_n \zeta \|x_{n+1} - u_{n+1}\|$$

Substituting (2.33), (2.35) (with ε given by (2.9)), and (2.23) in (2.31) we obtain

$$\|x_{n+1} - u_{n+1}\|^2 \leq \|x_n - u_n\|^2 - 2\alpha_n \psi \left(\frac{R}{2} \right) \frac{\|x_{n+1} - u_{n+1}\|}{2R} + 4\alpha_n \sigma \psi \left(\frac{R}{4\sigma} \right) + 2\alpha_n \zeta \|x_{n+1} - u_{n+1}\|$$

Thus there exists an $\varepsilon > 0$ such that

$$\|x_{n+1} - u_{n+1}\| \leq \varepsilon.$$

Relation (2.36) is in contradiction with $\|x_{n+1} - u_{n+1}\| > R$.

Thus there exists an $R > 0$ such that

$$\|x_n - u_n\| \leq R, \forall n \in \mathbb{N}. \quad (2.37)$$

Relations (2.28) and (2.37) lead to

$$\|x_{n+1} - u_{n+1}\|^2 \leq \|x_n - u_n\|^2 - 2\alpha_n \psi \left(\|x_n - u_n\| \right) + 2\alpha_n \|Ax_n - Au_n\| \times \|J \left((x_n - u_n) - \alpha_n (Ax_n - Au_n) \right) - J (x_n - u_n)\|$$

$$+ 2\alpha_n \|Ty_n - Tx_n\| \|x_{n+1} - u_{n+1}\|$$

Recalling that $\lim_{n \to \infty} \|u_n - x^*\| = 0$, then $\lim_{n \to \infty} \|u_{n+1} - u_n\| = 0$, and using (2.32) one obtains using (1.3),

$$\|J((x_n - u_n) - \alpha_n (Ax_n - Au_n)) - J(x_n - u_n)\| \leq 2\alpha_n \sigma \to 0 \text{ as } n \to \infty. \quad (2.39)$$

The uniformly continuity of $J(\cdot)$ implies that

$$\lim_{n \to \infty} \|J((x_n - u_n) - \alpha_n (Ax_n - Au_n)) - J(x_n - u_n)\| = 0. \quad (2.40)$$
Also, from (2.34) and (1.3), we have
\[
\|y_n - x_n\| = \| -\beta_n x_n + \beta_n Tx_n \| \leq \beta_n \sigma \to 0, \quad n \to \infty.
\]
(2.41)
The uniformly continuity of \(T(\cdot)\) leads to
\[
\lim_{n \to \infty} \|Ty_n - Tx_n\| = 0.
\]
(2.42)
Relations (2.38), (2.40) and (2.42) with
\[
\lambda_n := \|x_n - u_n\|^2,
\gamma_n := \alpha_n (4\sigma \|J((x_n - u_n) - \alpha_n (Ax_n - Au_n)) - J(x_n - u_n)\| + 2R \|Ty_n - Tx_n\|),
\]
lead to (1.12). Using now Lemma 1.9 one obtains \(\lim_{n \to \infty} \|x_n - u_n\|^2 = 0\).

Using Remark 1.4 (i), Proposition 1.5, and Theorem 2.1 one obtains the following corollary.

Corollary 2.2. Let \(X\) be a real Banach space with \(X^\prime\) strictly convex. If \(T : X \to X\) is a \(d\)-weakly contractive (respectively weakly contractive) and uniformly continuous map with \(x^* \in F(T), x_0 = u_0 \in X\) and there exists a constant \(d_0 = d_0(T, x^*) \in (0, 1)\), which depends on \(T\) and \(x^*\), such that \(\{\alpha_n\}, \{\beta_n\}\) satisfy \(\alpha_n, \beta_n \leq d_0, \forall n \in \mathbb{N}\) and (1.3), then the following are equivalent:

(i) the Mann iteration (1.1) converges to the solution of \(Cx = f\),

(ii) the Ishikawa iteration (1.2) converges to the same \(x^*\).

Let \(C\) be a \(\psi\)-uniformly accretive map. Suppose the equation \(Cx = f\) has a solution for a given \(f\). Remark 1.4 (ii) ensures that
\[
Tx := f + x - Cx, \forall x \in X,
\]
(2.44)
is a \(\psi\)-uniformly pseudocontractive map. A fixed point for \(T\) is a solution for \(Cx = f\) and conversely.

Theorem 2.1 also implies the following corollary.

Corollary 2.3. Let \(X\) be a real Banach space with \(X^\prime\) strictly convex. If \(C : X \to X\) is a \(\psi\)-uniformly accretive and uniformly continuous map with \(x^* \in F(T), x_0 = u_0 \in X\) and there exists a constant \(d_0 = d_0(T, x^*) \in (0, 1)\), which depends on \(T\) and \(x^*\), such that \(\{\alpha_n\}, \{\beta_n\}\) satisfy \(\alpha_n, \beta_n \leq d_0, \forall n \in \mathbb{N}\) and (1.3), then the following are equivalent:

(i) the Mann iteration (1.1), with \(T\) given by (2.44), converges to the solution of \(Cx = f\),

(ii) the Ishikawa iteration (1.2), with \(T\) given by (2.44), converges to the solution of \(Cx = f\).
References

Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, U.S.A.
E-mail: rhoades@indiana.edu

E-mail: soltuzul@yahoo.com smsoltuz@gmail.com