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EXPLICIT BOUNDS ON GAMIDOV TYPE INTEGRAL INEQUALITIES

B. G. PACHPATTE

Abstract. The aim of this paper is to establish explicit upper bounds on certain Gamidov type

integral inequalities which can be used as convenient tools in some applications. The discrete

analogues and applications are given to illustrate the usefulness of one of our results.

1. Introduction

In [4] Sh. G. Gamidov, while studying the boundary value problem for higher or-
der differential equations, initiated the study of obtaining explicit upper bounds on the

integral inequalities of the forms

u(t) ≤ c +

∫ t

α

a(s)u(s)ds +

∫ β

α

b(s)u(s)ds, (1.1)

for t ∈ [α, β], under some suitable conditions on the functions involved in (1.1). The use
of such inequalities (usually called Gronwall or Gronwall-Bellman type inequalities) in

the study of differential equations dates back at least to G.Peano in 1885. For detailed
account on inequalities of the type (1.1) and some recent results, see [2, 3, 6-10]. In the

present paper we shall consider the problem of obtaining explicit upper bounds on the

general versions of (1.1) which can be used as tools in the study of qualitative behavior
of solutions of certain classes of integral equations. The discrete analogues of the main

results and applications of one of our results are also given.

2. Statement of Results

In what follows, R denotes the set of real numbers and R+ = [0,∞), I = [α, β]

are the given subsets of R. Let Z be the set of integers and for α, β ∈ Z, α ≤ β, let
Nα,β = {n ∈ Z : α ≤ n ≤ β}. We denote by E = {(t, s) ∈ I2 : α ≤ s ≤ t ≤ β} and

H = {(n, s) ∈ N2
α,β : α ≤ s ≤ n ≤ β}. For any function w defined on Z, define the

operator ∆ by ∆w(n) = w(n + 1)−w(n). We use the usual conventions that the empty

sums and products are taken to be 0 and 1 respectively
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Our main results are established in the following theorem.

Theorem 1. Let u, a, b, c, f , g ∈ C(I, R+).
(a1) Let a(t) be continuously differentiable on I, a(t) ≥ 0 and

u(t) ≤ a(t) +

∫ t

α

b(s)u(s)ds +

∫ β

α

c(s)u(s)ds, (2.1)

for t ∈ I. If

p1 =

∫ β

α

c(s) exp

(
∫ s

α

b(σ)dσ

)

ds < 1, (2.2)

then

u(t) ≤ M1 exp

(
∫ t

α

b(s)ds

)

+

∫ t

α

a′(s) exp

(
∫ t

s

b(σ)dσ

)

ds, (2.3)

for t ∈ I, where

M1 =
1

1 − p1

[

a(α) +

∫ β

α

c(s)

(
∫ s

α

a′(τ) exp

(
∫ s

τ

b(σ)dσ

)

dτ

)

ds

]

. (2.4)

(a2) Suppose that

u(t) ≤ a(t) + b(t)

∫ t

α

f(s)u(s)ds + c(t)

∫ β

α

g(s)u(s)ds, (2.5)

for t ∈ I. If

p2 =

∫ β

α

g(s)K2(s)ds < 1, (2.6)

then

u(t) ≤ K1(t) + M2K2(t), (2.7)

for t ∈ I, where

K1(t) = a(t) + b(t)

∫ t

α

f(τ)a(τ) exp

(
∫ t

τ

f(σ)b(σ)dσ

)

dτ, (2.8)

K2(t) = c(t) + b(t)

∫ t

α

f(τ)c(τ) exp

(
∫ t

τ

f(σ)b(σ)dσ

)

dτ, (2.9)

and

M2 =
1

1 − p2

∫ β

α

g(s)K1(s)ds. (2.10)

(a3) Let h(t, s) and its partial derivative ∂
∂t

h(t, s) be nonnegative and continuous

functions for α ≤ s ≤ t ≤ β and

u(t) ≤ a(t) +

∫ t

α

h(t, s)u(s)ds +

∫ β

α

c(s)u(s)ds, (2.11)
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for t ∈ I. If

p3 =

∫ β

α

c(s) exp

(
∫ s

α

B(σ)dσ

)

ds < 1, (2.12)

then

u(t) ≤ a(t) + M3 exp

(
∫ t

α

B(σ)dσ

)

+

∫ t

α

A(s) exp

(
∫ t

s

B(σ)dσ

)

ds, (2.13)

for t ∈ I, where

A(t) = h(t, t)a(t) +

∫ t

α

∂

∂t
h(t, s)a(s)ds, (2.14)

B(t) = h(t, t) +

∫ t

α

∂

∂t
h(t, s)ds, (2.15)

and

M3 =
1

1 − p3

∫ β

α

c(s)

[

a(s) +

∫ s

α

A(τ) exp

(
∫ s

τ

B(σ)dσ

)

dτ

]

ds. (2.16)

Remark 1. If we take a(t) = d (a constant) and hence a′(t) = 0, then the inequality
established in (a1) reduces to the slight variant of the inequality given by Bainov and
Simeonov in [2, p.11]. The inequality established in (a2) is a variant of the inequality
given by Gamidov in [4, Lemma 1.2]. By taking c(t) = 0 in the inequality given in (a3),
we recapture the inequality given in Theorem 1.8 in [2, p.11].

The discrete analogues of the inequalities in Theorem 1 are given in the following
theorem.

Theorem 2. Let u, a, b, c, f , g be real-valued nonnegative functions on Nα,β.

(b1) Suppose that ∆a(n) ≥ 0 for n ∈ Nα,β and

u(n) ≤ a(n) +

n−1
∑

s=α

b(s)u(s) +

β
∑

s=α

c(s)u(s), (2.17)

for n ∈ Nα,β. If

q1 =

β
∑

s=α

c(s)

s−1
∏

τ=α

[1 + b(τ)] < 1, (2.18)

then

u(n) ≤ N1

n−1
∏

s=α

[1 + b(s)] +

n−1
∑

s=α

∆a(s)

n−1
∏

σ=s+1

[1 + b(σ)], (2.19)

for n ∈ Nα,β, where

N1 =
1

1 − q1

[

a(α) +

β
∑

s=α

c(s)

s−1
∑

τ=α

∆a(τ)

s−1
∏

σ=τ+1

[1 + b(σ)]

]

. (2.20)



4 B. G. PACHPATTE

(b2) Suppose that

u(n) ≤ a(n) + b(n)

n−1
∑

s=α

f(s)u(s) + c(n)

β
∑

s=α

g(s)u(s), (2.21)

for n ∈ Nα,β. If

q2 =

β
∑

s=α

g(s)L2(s) < 1 (2.22)

then

u(n) ≤ L1(n) + N2L2(n), (2.23)

for n ∈ Nα,β, where

L1(n) = a(n) + b(n)

n−1
∑

s=α

f(s)a(s)

n−1
∏

σ=s+1

[1 + f(σ)b(σ)], (2.24)

L2(n) = c(n) + b(n)

n−1
∑

s=α

f(s)c(s)

n−1
∏

σ=s+1

[1 + f(σ)b(σ)], (2.25)

and

N2 =
1

1 − q2

β
∑

s=α

g(s)L1(s). (2.26)

(b3) Let r(n, s), ∆nr(n, s) = r(n + 1, s)− r(n, s) be real-valued nonnegative functions

for α ≤ s ≤ n ≤ β and

u(n) ≤ a(n) +
n−1
∑

s=α

r(n, s)u(s) +

β
∑

s=α

c(s)u(s), (2.27)

for n ∈ Nα,β. If

q3 =

β
∑

s=α

c(s)

s−1
∏

τ=α

[1 + B̄(τ)] < 1, (2.28)

then

u(n) ≤ a(n) + N3

n−1
∏

s=α

[1 + B̄(s)] +

n−1
∑

s=α

Ā(s)

n−1
∏

σ=s+1

[1 + B̄(σ)], (2.29)

for n ∈ Nα,β, where

Ā(n) = r(n + 1, n)a(n) +

n−1
∑

s=α

∆nr(n, s)a(s), (2.30)

B̄(n) = r(n + 1, n) +
n−1
∑

s=α

∆nr(n, s), (2.31)
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and

N3 =
1

1 − q3

β
∑

s=α

c(s)

[

a(s) +

s−1
∑

τ=α

Ā(τ)

s−1
∏

σ=τ+1

[1 + B̄(σ)]

]

. (2.32)

Remark 2. By taking c(n) = 0 in (b1) we get the inequality given in Theorem 1.2.6
in [7]. The inequalities in (b2) and (b3) can be considered as the useful variants of the

inequalities in Theorem 1.2.3 and Theorem 1.3.4 given in [7].

3. Proofs of Theorems 1 and 2

(a1) Define a function z(t) by the right hand side of (2.1). Then u(t) ≤ z(t),

z(α) = a(α) +

∫ β

α

c(s)u(s)ds, (3.1)

and

z′(t) = a′(t) + b(t)u(t) ≤ a′(t) + b(t)z(t),

which implies

u(t) ≤ z(t) ≤ z(α) exp

(
∫ t

α

b(σ)dσ

)

+

∫ t

α

a′(s) exp

(
∫ t

s

b(σ)dσ

)

ds. (3.2)

From (3.1) and (3.2) we have

z(α) ≤ a(α) +

∫ β

α

c(s)

{

z(α) exp

(
∫ s

α

b(σ)dσ

)

+

∫ s

α

a′(τ) exp

(
∫ s

τ

b(σ)dσ

)

dτ

}

ds,

i.e.

z(α)

{

1 −

∫ β

α

c(s) exp

(
∫ s

α

b(σ)dσ

)

ds

}

≤ a(α) +

∫ β

α

c(s)

(
∫ s

α

a′(τ) exp

(
∫ s

τ

b(σ)dσ

)

dτ

)

ds,

which implies
z(α) ≤ M1. (3.3)

Using (3.3) and (3.2) we get the desired inequality in (2.3).

(a2) Let

z(t) =

∫ t

α

f(s)u(s)ds, (3.4)

k =

∫ β

α

g(s)u(s)ds. (3.5)
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Then z(α) = 0, (2.5) can be restated as

u(t) ≤ a(t) + b(t)z(t) + c(t)k, (3.6)

and

z′(t) = f(t)u(t). (3.7)

From (3.7) and (3.6) we have

z′(t) ≤ {f(t)a(t) + kf(t)c(t)} + f(t)b(t)z(t),

which implies

z(t) ≤

∫ t

α

{f(τ)a(τ) + kf(τ)c(τ)} exp

(
∫ t

τ

f(σ)b(σ)dσ

)

dτ. (3.8)

Using (3.8) in (3.6) we get

u(t) ≤ {a(t) + kc(t)} + b(t)

∫ t

α

{f(τ)a(τ) + kf(τ)c(τ)} exp

(
∫ t

τ

f(σ)b(σ)dσ

)

dτ

= K1(t) + kK2(t). (3.9)

From (3.5), (3.9) and in view of (2.6), as in the proof of (a1), it is easy to observe that

k ≤ M2. (3.10)

Using (3.10) in (3.9) we get (2.7).

(a3) Define a function z(t) by

z(t) =

∫ t

α

h(t, s)u(s)ds +

∫ β

α

c(s)u(s)ds. (3.11)

Then, (2.11) can be restated as

u(t) ≤ a(t) + z(t), (3.12)

z(α) =

∫ β

α

c(s)u(s)ds. (3.13)

and

z′(t) = h(t, t)u(t) +

∫ t

α

∂

∂t
h(t, s)u(s)ds

≤ h(t, t){a(t) + z(t)} +

∫ t

α

∂

∂t
h(t, s){a(s) + z(s)}ds

≤ A(t) + B(t)z(t),
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which implies

z(t) ≤ z(α) exp

(
∫ t

α

B(σ)dσ

)

+

∫ t

α

A(s) exp

(
∫ t

s

B(σ)dσ

)

ds. (3.14)

The rest of the proof can be completed by following the proofs of (a1), (a2) given above.
(b1) Define a function z(n) by the right hand side of (2.17). Then u(n) ≤ z(n),

z(α) = a(α) +

β
∑

s=α

c(s)u(s), (3.15)

and
∆z(n) = ∆a(n) + b(n)u(n) ≤ ∆a(n) + b(n)z(n). (3.16)

Now a suitable application of Theorem 1.2.1 given in [7] to (3.16) yields

u(n) ≤ z(n) ≤ z(α)

n−1
∏

s=α

[1 + b(s)] +

n−1
∑

s=α

∆a(s)

n−1
∏

σ=s+1

[1 + b(σ)]. (3.17)

From (3.15), (3.17) and in view of (2.18) we have

z(α) ≤ N1 (3.18)

Using (3.18) in (3.17) we get the required inequality in (2.19).
The proofs of (b2) and (b3) follows by closely looking at the proofs of (a2), (a3) and

(b1) (see also [7]). Here we leave the details to the reader.

4. Some Applications

In this section, we present applications of the inequality in Theorem 1, part (a2) to
study certain properties of the solutions of Volterra-Fredholm integral equation

x(t) = e(t) +

∫ t

α

F (t, s, x(s))ds +

∫ β

α

G(t, s, x(s))ds, (4.1)

for t ∈ I, where x(t) is an unknown function, e ∈ C(I, R), F , G ∈ C(E × R, R). Here
we note that the existence proofs for the solution of equation (4.1) show either that the
operator T defined by the right hand side of (4.1) is a contraction (in which case one also
has uniqueness) or T is compact and continuous on a suitable subspace of the space of
continuous functions (see also [1, 5]).

The following theorem deals with the estimate on the solution of equation (4.1).

Theorem 3. Suppose that the functions e, F , G in equation (4.1) satisfy the condi-

tions

|e(t)| ≤ a(t), (4.2)

|F (t, s, x)| ≤ b(t)f(s)|x|, (4.3)

|G(t, s, x)| ≤ c(t)g(s)|x|, (4.4)
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where a, b, c, f , g are as defined in Theorem 1. Let p2 be as in (2.6). If x(t) is a solution

of equation (4.1) on I, then

|x(t)| ≤ K1(t) + M2K2(t), (4.5)

for t ∈ I, where K1, K2, M2 are as given in Theorem 1, part (a2).

Proof. Let x(t) be a solution of equation (4.1) on I. Using the fact that x(t) is a

solution of equation (4.1) and (4.2)-(4.4) we have

|x(t)| ≤ a(t) + b(t)

∫ t

α

f(s)|x(s)|ds + c(t)

∫ β

α

g(s)|x(s)|ds. (4.6)

Now an application of the inequality in Theorem 1, part (a2) to (4.6) yields the required

estimate in (4.5).

The next result deals with the uniqueness of solutions of equation (4.1).

Theorem 4. Suppose that the functions F , G in equation (4.1) satisfy the conditions

|F (t, s, x) − F (t, s, x̄)| ≤ b(t)f(s)|x − x̄|, (4.7)

|G(t, s, x) − G(t, s, x̄)| ≤ c(t)g(s)|x − x̄|, (4.8)

where b, c, f , g are as in Theorem 1. Let p2 be as in (2.6). Then the equation (4.1) has

at most one solution on I.

Proof. Let u(t) and v(t) be two solutions of (4.1) on I. Using the facts that u(t)

and v(t) are the solutions of (4.1) on I and (4.7), (4.8) we have

|u(t) − v(t)| ≤ b(t)

∫ t

α

f(s)|u(s) − v(s)|ds + c(t)

∫ β

α

g(s)|u(s) − v(s)|ds. (4.9)

Now an application of the inequality given in Theorem 1, part (a2) (with a(t) = 0 which

in fact implies K1(t) = 0, M2 = 0) to (4.9) yields u(t) = v(t), i.e. there is at most one

solution of equation (4.1) on I.

Remark 3. We note that the inequality given in Theorem 2, part (b2) can be used

to study similar properties as in Theorems 3 and 4 for the solutions of sum-difference

equation

z(n) = e(n) +

n−1
∑

s=α

F (n, s, z(s)) +

β
∑

s=α

G(n, s, z(s)), (4.10)

for n ∈ Nα,β , under some suitable conditions on the functions involved in (4.10). For

various other applications of the inequalities of the type given here, see [2, 3, 6-10] and
some of the references cited therein.
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