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PRIMITIVE ZEROS OF QUADRATIC FORMS MOD P 2

ALI H. HAKAMI

Abstract. Let Q(x) = Q(x1, x2, . . . , xn) be a quadratic form with integer coefficients, p be
an odd prime and ∥x∥ = maxi |xi | . A solution of the congruence Q(x) ≡ 0 ( mod p2) is said
to be a primitive solution if p - xi for some i . In this paper, we seek to obtain primitive
solutions of this congruence in small rectangular boxes of the type B = {x ∈ Zn : |xi | ≤
Mi , 1 É i É n} where for 1 ≤ i ≤ l we have Mi ≤ p, while for i > l we have Mi > p. In
particular, we show that if n ≥ 4, n even, l ≤ n

2 −2, and Q is nonsingular (mod p), then

there exists a primitive solution with xi = 0, 1 ≤ i ≤ l , and |xi | ≤ 2
4n+3
n−l p

n
n−l +1, for l < i ≤ n.

1. Introduction

Let Q(x) =Q(x1, x2, . . . , xn) be a quadratic form with integer coefficients and p be an odd

prime. Set ∥x∥ = max |xi |. When n is even we let ∆p (Q) = (
(−1)n/2 det AQ /p

)
if p - det AQ and

∆p (Q) = 0 if p|det AQ , where (·/p) denotes the Legendre-Jacobi symbol and AQ is the n ×n

defining matrix for Q(x). Q(x) is called nonsingular ( mod p) if p - det AQ .

Consider the congruence

Q(x) =Q(x1, x2, . . . , xn) ≡ 0 ( mod m), (1)

where m is a positive integer. There has been much interest in obtaining a small nonzero

solution of the congruence (1). The problem of finding a small solution of (1) means finding a

nonzero integral solution x such that ∥x∥ ≤ mδ for some positive constantδ< 1. The constant

δ may depend on n, but not on m.

In this paper we are seeking to find primitive solutions of (1) in a more general box cen-

tered at the origin, in the case where m = p2. A primitive solution is one with gcd(x1, . . . , xn ,m) =
1. A primitive solution is sought to rule out trivial solutions of (1) of the type py where y satis-

fies Q(y) ≡ 0 ( mod p). First, we give some background on what is already known for the case

of small solutions.
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For the quadratic form Q(x) = x2
1 + ·· · + x2

n , it is clear that any nonzero solution x of (1)

must satisfy, max |xi | ≥ 1p
n

m1/2. Thusδ= 1/2 is the best possible exponent for a small solution

in general.

Schinzel, Schlickewei and Schmidt [17] proved that (1) has a nonzero solution with ∥x∥ <
m(1/2)+1/2(n−1) for n ≥ 2, even, and ∥x∥ < m(1/2)+(1/2n) for n ≥ 2, odd. Thus for any ε > 0 we

get a nonzero solution of (1) with ∥x∥ < m(1/2)+ε provided n is sufficiently large. We note that

the solution obtained by their method is not necessarily a primitive solution. Indeed, when

m = p2 they would simply use a trivial solution such as (p,0, . . . ,0).

Dealing with m = p, p an odd prime, Heath-Brown [15] obtained a nonzero solution of

(1) with ∥x∥ ≪ p1/2 log p for n ≥ 4. His result was an improvement on the result of [17] in

this case. Wang Yuan [18], [19] and [20] generalized Heath-Brown’s work to all finite fields.

Cochrane, in a sequence of papers [1], [2] and [3] improved this to ∥x∥ < max{219p1/2,222106}.

The best constant available is due to the author [7, Theorem 1.3] and [11, Theorem 1] who

obtained ∥x∥ < min{p2/3,219p1/2}.

Using the method of exponential sums the author [8, Theorem 1] generalized Cochrane’s

method to find a primitive solution of (1) with ∥x∥ ≪ p for n Ê 4 when m = p2 and Q(y) is

nonsingular ( mod p). The optimal bound, ∥x∥ É p for n Ê 1, was obtained by Cochrane and

Hakami using a geometric method [6, Theorem 1].

For m = p3, the author [9, Theorem 1]. obtained the existence of a primitive solution of

any nonsingular form with ∥x∥≪ p(3/2)+(3/n), provided n Ê 6.

For a general prime power m = pk and nonsingular form ( mod pk ) in n Ê 4 variables (n

even) a primitive solution of size ∥x∥≪ m(1/2)+(1/n) is obtained by the author [10, Theorem 1].

For m = pq a product of two distinct primes, the optimal bound, ∥x∥ ≪ m1/2 for n > 4

was obtained by Cochrane [4] and [5], building upon the work of Heath-Brown [14]. But no

attempt was made to obtain a primitive solution in this work.

As we mentioned our interest in this paper is the case m = p2 with p a prime. We wish to

obtain the existence of primitive solutions of the congruence

Q(x) =Q(x1, x2, . . . , xn) ≡ 0 ( mod p2), (2)

in a box of points of the type

B = {x ∈Zn : |xi | ≤ Mi , 1 ≤ i ≤ n}, (3)

centered about the origin, where Mi ∈ Z, and 0 É Mi É p2−1
2 for 1 É i É n. We shall assume

that exactly l of the edges are of length at most p, while the remaining edges all have lengths

strictly greater than p, say

2Mi +1 ≤ p, 1 ≤ i ≤ l , 2Mi +1 > p, l +1 ≤ i ≤ n.



QUADRATIC FORMS MOD P 2 351

We also restrict our attention to the case where n is even and Q is nonsingular (mod p), so

that ∆p (Q) is as defined in the opening paragraph.

For the case ∆p (Q) = 1, we establish in Corollary 1 that if n is even, n ≥ 4,

|B| Ê 24n+2pn , and
l∏

i=1

p

2Mi +1
É 2−4n−2p(n/2)−1,

(where the product is set equal to 1 if l = 0 ), then there exists a primitive solution of (2) in the

box B+B, that is, a primitive solution with |xi | ≤ 2Mi , 1 ≤ i ≤ n. A similar result (where 4n+2

is replaced by 4n +3) is established in Corollary 2 for the case ∆p (Q) =−1. In the case where

the first l edges are all of length zero, we deduce the following theorem.

Theorem 1. Let p be an odd prime, Q be a quadratic form over Z in n ≥ 4 variables with n

even, and Q nonsingular (mod p), and let l be a nonnegative integer with l ≤ n
2 −2. Suppose

that p ≥ 2
2(n+3)
n−2l−2 . Then there exists a primitive solution to (2) with xi = 0, 1 ≤ i ≤ l , and |xi | ≤

2
4n+3
n−l p

n
n−l +1, for l < i ≤ n.

In the case where l = 0, the theorem gives us a primitive solution of (2) with ∥x∥ ≤ 24+ 3
n p,

recovering the type of bound obtained in [8] and [6]. To prove these results we shall use finite

Fourier series over Zp2 , the modular ring in p2 elements. The proof here builds upon the work

of [6] and [8].

2. Basic identities and lemmas

In this section we shall assume that n is even, p is an odd prime, and that Q(x) is a non-

singular quadratic form (mod p) with ∆p (Q) = ±1. Let ep2 (α) = e2πiα/p2
. Let Vp2 = Vp2 (Q)

be the set of zeros of Q contained in Zn
p2 and let Q∗(y) be the quadratic form associated with

inverse of the matrix for Q ( mod p). For y ∈Zn
p2 set

ϕ(Vp2 ,y) =


∑

x∈V
ep2 (x ·y) for y ̸= 0,∣∣Vp2

∣∣−p2(n−1) for y ̸= 0.

We abbreviate complete sums over Zn
p2 and Zn

p in the manner

∑
x
= ∑

x mod p2

=
p2∑

x1=1
· · ·

p2∑
xn=1

,
∑

x mod p
=

p∑
x1=1

· · ·
p∑

xn=1
.

The following lemma gives us a formula for ϕ(Vp2 ,y).
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Lemma 1. Suppose n is even, Q is nonsingular (mod p) and ∆ = ∆p (Q). For y ∈ Zn , put

y′ = 1
p y in case p

∣∣y Then for any y,

ϕ(V ,y) =



pn −pn−1 i f p - yi f or some i and p2|Q∗(y),

−pn−1 i f p - yi f or some i and p|Q∗(y),

0 i f p - yi f or some i and p -Q∗(y),

−∆p3n/2−2 +pn−1(p −1) i f p|yi f or al l i and p -Q∗(y),

∆(p −1)p3n/2−2 +pn−1(p −1) i f p|yi f or al l i and p |Q∗(y′).

The proof of Lemma 1 is given (with some work) in Carlitz [14], and in complete detail in

[13, Theorem 1].

Let α(x) be a complex valued function defined on Zn
p2 with Fourier expansion α(x) =∑

y a(y)ep2 (x ·y) where a(y) = p−2n ∑
xα(x)ep2 (−x ·y). Then

∑
x∈V

α(x) =
∑

x∈V

∑
y

a(y)ep2 (y ·x)

=∑
y

a(y)
∑

x∈V
ep2 (y ·x)

= a(0) |V |+
∑
y ̸=0

a(y)
∑

x∈V
ep2 (y ·x).

Since a(0) = p−2n ∑
xα(x), we obtain

∑
x∈V

α(x) = p−2n |V |∑
x
α(x)+ ∑

y ̸=0
a(y)ϕ(Vp3 ,0),y).

Also by noticing that |V | =ϕ(Vp2 ,0)+p2(n−1), we obtain that

∑
x∈V

α(x) = p−2
∑

x
α(x)+

∑
y

a(y)ϕ(V ,y). (4)

Inserting the value of ϕ(Vp2 ,y) from Lemma 1 in (4) we obtain (see [8, Lemma 2])

Lemma 2 (The Fundamental Identity). Suppose n is even, Q is nonsingular (mod p) and

∆=∆p (Q). Then, for any complex valued α(x) on Zn
p2 ,

∑
x∈V

α(x) =p−2
∑

x
α(x)+pn

∑
p2|Q∗(y)

a(y)−pn−1
∑

p|Q∗(y)
a(y)

−∆p(3n/2)−2
p∑

y ′
i=1

a(py′)+∆p(3n/2)−1
p∑

p|yi , p|Q∗(y′)
a(py′). (5)
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3. Proof of main results in the case where ∆p (Q) = 1

Let B be the box of points in Zn given by

B = {x ∈Zn |ai ≤ xi < ai +mi ,1 ≤ i ≤ n}, (6)

where mi = qi p + ri , 0 É ri < p and qi ,ri ∈ Z. Thus the cardinality B is |B| = ∏n
i=1 mi .

Consider the congruence

Q(x) ≡ 0 ( mod p). (7)

Our first step is to obtain an upper bound on the number of solutions of (7) contained in B.

First, we treat the case where all mi É p. In this case we can view the box B in (6) as a subset

of Zn
p and appeal to the following result of Cochrane [1, Lemma 3].

Lemma 3. Suppose that ∆p (Q) = 1. Let B be a box of type (6) with all mi É p, and Vp =Vp (Q)

denote the set of zeros of (7) in Zn
p . Then

∣∣B∩Vp
∣∣É 2n

( |B|
p

+pn/2
)

. (8)

Next we consider larger boxes where the mi may exceed p. We define

NB =
n∏

i=1

([
mi

p

]
+1

)
. (9)

Partition the box B in (6) into N = NB smaller boxes Bi ,

B = B1 ∪B2 ∪·· ·∪BN ,

where each Bi has all of its edge lengths É p. Thus Lemma 3 can be applied to each Bi . We

obtain

∣∣B∩Vp,Z
∣∣= N∑

i=1

∣∣Bi ∩Vp
∣∣

É
N∑

i=1
2n

( |Bi |
p

+ pn/2
)

= 2n

p

N∑
i=1

|Bi |+N 2n pn/2

= 2n
( |B|

p
+N pn/2

)
.

Thus we have proved
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Lemma 4. Suppose that ∆p (Q) = 1. Let Vp,Z = Vp,Z(Q) be the set of integer solutions of the

congruence (7). Then for any box B of type (6), we have

∣∣B∩Vp,Z
∣∣É 2n

( |B|
p

+NB pn/2
)

, (10)

where NB as defined in (9).

Let B be a box of points in Zn as in (3) centered about the origin with edge lengths mi :=
2Mi + 1 É p2, 1 ≤ i ≤ n, and view this box as a subset of Zn

p2 . Let χB be its characteristic

function with Fourier expansion χB(x) =∑
y aB(y)ep2 (x·y). Let α(x) =χB∗χB =∑

y a(y)ep2 (x·
y). Then for any y ∈Zn

p2 ,

a(y) = p−2n
n∏

i=1

sin2πmi yi /p2

sin2πyi /p2
, (11)

where the term in the product is taken to be mi if yi = 0. In particular, if we take
∣∣yi

∣∣ É p2/2

for all i , then using the fact that |sin(x)| Ê 2
π
|x| for |x| Éπ/2, we have

a(y) É p−2n
n∏

i=1
min

{
m2

i ,

(
p2

2yi

)2}
. (12)

Since B is centered about the origin, the Fourier coefficients a(y) are positive real numbers

(as can be seen by (11)). Thus by applying the Fundamental Identity (5) to α(x) =χB ∗χB , we

obtain ∑
x∈V

α(x) Ê p−2
∑

x
α(x)︸ ︷︷ ︸

Main Term

−pn−1
∑

p|Q∗(y)

a(y)

︸ ︷︷ ︸
E1

−p(3n/2)−2
∑

y ( mod p)
a(py)︸ ︷︷ ︸

E2

Ê Main Term−E1 −E2. (13)

The main term in (13) is

p−2
∑

x
α(x) = p−2

∑
x
χB ∗χB(x) = |B|2

p2 ,

and the others are error terms. We proceed to bound these error terms.

First, we consider

E1 = pn−1
∑

Q∗(y)≡0 ( mod p)
a(y). (14)

Let
∑∗ be an abbreviation for

∑
Q∗(y)≡0( mod p),|yi |<p2/2 . Define δi by

δi =
2ki−1 for ki ≥ 1,

0 for ki = 0.
(15)
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Using (12) yields

∑
Q∗(y) ≡ 0( mod p)

|yi | ≤ p2/2

|a(y)| ≤
∞∑

k1=0
· · ·

∞∑
kn=0

∑∗
y

δi
p2
mi

≤ |yi | ≤ 2ki p2
mi

n∏
i=1

min

{
m2

i

p2 ,
p2

4y2
i

}

≤
∞∑

k1=0
· · ·

∞∑
kn=0

∑∗
y

|yi | ≤ 2ki p2
mi

n∏
i=1

p2

4(2ki−1p2/mi )2

= |B|2
p2n

∞∑
k1=0

· · ·
∞∑

kn=0

∑∗
y

|yi | ≤ 2ki p2
mi

n∏
i=1

1

22ki
. (16)

For non-negative integers k1,k2, . . . ,kn , let

B′ =
{

y ∈Zn
p2 : |yi | ≤ 2ki

p2

mi
, 1 ≤ i ≤ n

}
.

Put

m′
i = 2

[
2ki p2

mi

]
+1,

so that

|B′| =
n∏

i=1
m′

i ≤
n∏

i=1

(
2ki+1p2

mi
+1

)
≤

n∏
i=1

2ki+2p2

mi
= 4n p2n

|B|
n∏

i=1
2ki . (17)

Now, from the upper bound (10), we have

|B′∩Vp,Z| ≤ 2n |B′|
p

+2n NB′ pn/2, (18)

where by utilizing (9),

NB′ =
n∏

i=1

([
m′

i

p

]
+1

)
=

n∏
i = 1

2ki ≥ mi
4p

([
m′

i

p

]
+1

)
. (19)

The last equality in (19) follows, since

2ki < mi

4p
⇒ 2ki+1p2

mi
+1 < p ⇒ m′

i < p.

But the right-hand side of (19), is less than or equal to

n∏
i = 1

2ki ≥ mi
4p

(
2ki+1p

mi
+ 1

p
+1

)
≤ 2n

n∏
i = 1

2ki ≥ mi
4p

(
2ki p

mi
+1

)
.
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It follows that

NB′ ≤ 2n
n∏

i = 1

2ki ≥ mi
4p

(
2ki p

mi
+1

)
. (20)

Apply the upper bound (18) to the inner sum
∑∗

y in (16). This gives

∑
Q∗(y) ≡ 0( mod p)

|yi | ≤ p2/2

a(y) = |B|2
p2n

∞∑
k1=0

· · ·
∞∑

kn=0

∣∣B′∩Vp,Z
∣∣ n∏

i=1

1

22ki

≤ |B|2
p2n

∞∑
k1=0

· · ·
∞∑

kn=0

(
2n

∣∣B′∣∣
p

+2n NB′ pn/2
) n∏

i=1

1

22ki

=σ1 +σ2, (21)

say. By employing the inequality (17), we find that

σ1 =
|B|2
p2n

∞∑
k1=0

· · ·
∞∑

kn=0

(
n∏

i=1

1

22ki

)
2n

∣∣B′∣∣
p

É |B|2
p2n

∞∑
k1=0

· · ·
∞∑

kn=0

(
n∏

i=1

1

22ki

) (
2n

p
4n p2n

|B|
n∏

i=1
2ki

)

= 8n |B|
p

∞∑
k1=0

· · ·
∞∑

kn=0

(
n∏

i=1

1

2ki

)

É 8n ·2n |B|
p

= 16n |B|
p

, (22)

and by the inequality (21),

σ2 = |B|2
p2n

∞∑
k1=0

· · ·
∞∑

kn=0
2n NB′pn/2

n∏
i=1

1

22ki

= 2n |B|2
p2n pn/2

∞∑
k1=0

· · ·
∞∑

kn=0
2n

n∏
i = 1

2ki ≥ mi /4p

(
2ki p

mi
+1

)
n∏

i=1

1

22ki

= 4n |B|2
p2n pn/2

n∏
i=1

 ∞∑
ki = 0

2ki < mi /4p

1

22ki
+

∑
ki

2ki Ê mi /4p

(
2ki p

mi
+1

)
1

22ki



≤ 4n |B|2
p3n/2

n∏
i=1

 ∞∑
ki=0

1

22ki
+ ∑

ki
2ki ≥ mi /4p

p

2ki mi



= 4n |B|2
p3n/2

n∏
i=1

4

3
+ p

mi

∞∑
ki = 0

2ki Ê mi /4p

1

2ki
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≤ 4n |B|2
p3n/2

n∏
i=1

[
4

3
+min

(
2p

mi
,

8p2

m2
i

)]
. (23)

Thus by (14), (21), (22) and (23), we have

E1 É 16n |B|
p

pn−1 + 4n |B|2
p3n/2

pn−1
n∏

i=1

[
4

3
+min

(
2p

mi
,

8p2

m2
i

)]

= 24n pn−2|B|︸ ︷︷ ︸
E1,1

+ 4n |B|2
pn/2+1

n∏
i=1

[
4

3
+min

(
2p

mi
,

8p2

m2
i

)]
︸ ︷︷ ︸

E1,2

, (24)

where E1,1, E1,2 denote the terms underlined.

Let us now assume that for some positive integer l we have,

m1 ≤ ·· · ≤ ml ≤ p < ml+1 ≤ ·· · ≤ mn . (25)

Then for mi ≤ p,
4

3
+min

(
2p

mi
,8

(
p

mi

)2)
≤ 4

3
+ 2p

mi
≤ 4p

mi
, (26)

and for mi > p,
4

3
+min

(
2p

mi
,8

(
p

mi

)2)
≤ 4

3
+2 ≤ 10

3
. (27)

By (26) and (27), we can write

n∏
i=1

[
4

3
+min

(
2p

mi
,

8p2

m2
i

)]
≤

l∏
i=1

4p

mi
·

n∏
i=l+1

10

3
= 4l p l∏l

i=1 mi

(
10

3

)n−l

≤ 4n p l∏l
i=1 mi

, (28)

and consequently (using (23) and (28)),

E1,2 ≤ 4n |B|2
pn/2+1

4n p l∏l
i=1 mi

= 24n ∏n
i=1 m2

i

pn/2−l+1 ·∏l
i=1 mi

= 24n p l−(n/2)−1|B|
n∏

i=l+1
mi . (29)

Therefore, by inequalities (24) and (29), we arrive at

E1 ≤ 24n pn−2|B|︸ ︷︷ ︸
E1,1

+24n p l−(n/2)−1|B|
n∏

i=l+1
mi︸ ︷︷ ︸

E1,2

.

We next estimate the error term E2, but to do that and also for future reference, we first

prove

Lemma 5. Let B be any box of type (3) and suppose that α(x) =χB∗χB(x), and that condition

(25) holds. Then we have ∑
y∈Zn

p

a(py) É 2n−l p l−2n |B|
n∏

i=l+1
mi .
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Proof. We first observe,

p∑
yi=1

a(py) =
p∑

yi=1

p2∑
xi=1

1

p2n α(x)ep2 (−x ·py)

=
p2∑

xi=1

1

p2n α(x)
p∑

yi=1
ep (−x ·y)

=
p2∑

xi=1
x≡0 ( mod p)

pn

p2n α(x)

= 1

pn

∑
x≡0 ( mod p)

α(x)

= 1

pn

∑
u∈B

∑
v∈B

1

u+v≡0 ( mod p)

≤ 1

pn

n∏
i=1

mi

([
mi

p

]
+1

)
. (30)

To obtain the last inequality in (30), we must count the number of solutions of the congruence

u+v ≡ 0 ( mod p),

with u,v ∈B. In fact for each choice of v, there are at most
∏n

i=1([mi /p]+1) choices for u. So

the total number of solutions is less than or equal to

n∏
i=1

mi

([
mi

p

]
+1

)
.

Using the hypothesis (25) then continuing from (30), we have

p∑
yi=1

a(py) ≤ 1

pn

l∏
i=1

mi

n∏
i=l+1

mi

(
mi

p
+1

)

≤ |B|
pn

n∏
i=l+1

(
2mi

p

)
≤ 2n−l |B|

p2n−l

n∏
i=l+1

mi .

The lemma is established. ���

Now in view of Lemma 5, it is clear that the error term E2 has the estimate

E2 = p(3n/2)−2
∑

y( mod p)
a(py) É 2n−l p l−(n/2)−2 |B|

n∏
i=l+1

mi .

The following theorem summarizes the final outcome of our investigation for the error

terms
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Theorem 2. Suppose that n ≥ 4, is even and that ∆p (Q) = 1, V = Vp2 (Q). Then for any box B

centered at the origin, with sides of length mi = 2Mi +1, 1 ≤ i ≤ n, satisfying (25), we have

∑
x∈V

α(x) ≥ |B |2
p2

−|Er r or |,

where

|Er r or | ≤ 24n pn−2|B|︸ ︷︷ ︸
E1,1

+24n p l−(n/2)−1|B|
n∏

i=l+1
mi︸ ︷︷ ︸

E1,2

+2n p l−(n/2)−2|B|
n∏

i=l+1
mi︸ ︷︷ ︸

E2

.

In Theorem 2 we have indicated below each term, the error term bounded by the given

value.

Next we compare each error term in Theorem 2 to the main term |B |2 /p2. To make the

left-hand side positive, we make each error term less than 1/4 of the main term. For the error

term E1,1, we need
1

4

|B|2
p2 ≥ 24n pn−2|B|⇐⇒ |B| ≥ 24n+2pn ,

and for the error term E1,2,

1

4

|B|2
p2 ≥ 24n p l−(n/2)−1|B|

n∏
i=l+1

mi ⇐⇒
l∏

i=1
mi ≥ 24n+2p l−(n/2)+1 ⇐⇒

l∏
i=1

p

mi
≤ 2−4n−2p(n/2)−1.

Finally for the error term E2,

1

4

|B|2
p2 ≥ 2n p l−(n/2)−2|B|

n∏
i=l+1

mi ⇐⇒|B| ≥ 4 ·2n p l−(n/2)
n∏

i=l+1
mi ⇐⇒

l∏
i=1

p

mi
≤ 2−(n+2)p(n/2).

Putting the pieces together, we deduce

Theorem 3. Suppose that n ≥ 4 is even, ∆p (Q) = 1 and that V =Vp2 (Q). Let B be a box centered

at the origin satisfying (25). If |B| Ê 24n+2pn and
∏l

i=1(p/mi ) É 2−4n−2p(n/2)−1 (where L.H .S =
1 if l = 0 ), then ∑

x∈V
α(x) ≥ |B|2

p2 − 3

4

|B|2
p2 = 1

4

|B|2
p2 .

In particular,

|V ∩ (B+B)| ≥ |B|
4p2 .

Recall that a solution of (3) is called primitive if some coordinate is not divisible by p, i.e

p /| xi for some i . We write p |x for imprimitive points.

Corollary 1. Under the hypothesis of Theorem 3, B+B contains a primitive solution of (2).
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Proof. We need to show that ∑
x∈V

α(x) >
∑

x∈V
p|x

α(x).

First by Lemma 5,

∑
x∈V
p|x

α(x) = ∑
p|xi ,
1≤i≤n

α(x) = pn
p∑

y=1
a(py) ≤ 2n−l p l−n |B|

n∏
i=l+1

mi

= 1

2l
· 2n |B|

pn−l

n∏
i=l+1

mi ≤
1

2l
· |B|2

4p2 .

The last inequality is guaranteed by our hypothesis (Theorem 3) that

l∏
i=1

p

mi
≤ 2−4n−2p(n/2)−1. (31)

More precisely, assume (31), then certainly

l∏
i=1

p

mi
≤ p(n/2)−1

24n+2 ⇒ 2n

pn−l

n∏
i=l+1

mi <
|B|
4p2 .

So we have now on the one hand, ∑
x∈V
p|x

α(x) < |B|2
4p2 .

On the other hand, by Theorem 3, we have

∑
x∈V

α(x) ≥ |B|2
4p2 .

We therefore get ∑
x∈V
p-x

α(x) Ê |B|2
4p2 − ∑

x∈V
p|x

α(x) > 0.

The proof of the corollary is complete. ���

4. Proof of Main Results in the case where ∆p (Q) =−1

Suppose now that n is even and that ∆p (Q) =−1. We first need to produce analogues of

Lemmas 3 and 4 as follows; see [7, Lemma 2.9] and [12, Theorem 1].

Lemma 6. Let B be any box of type (6) with all mi É p, and Vp = Vp (Q) denote to the set of

solutions of (7) in Zn
p . Then ∣∣B∩Vp

∣∣É 2n+1
( |B|

p
+ pn/2

)
.
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Lemma 7. Let Vp,Z =Vp,Z(Q) be the set of integer solutions of the congruence (7). Then for any

box of type (6), ∣∣B∩Vp,Z
∣∣É 2n+1

( |B|
p

+NB pn/2
)

, (32)

where NB is given in (9).

Applying the Fundamental Identity (5) to α(x) =χB ∗χB as in the preceding section, but

this time with ∆=−1, we have∑
x∈V

α(x) Ê p−2
∑

x
α(x)︸ ︷︷ ︸

Main Term

− pn−1
∑

p|Q∗(y)

a(y)

︸ ︷︷ ︸
E1

− p(3n/2)−1
∑

p|Q∗(y′)
y′( mod p)

a(py′)

︸ ︷︷ ︸
E3

. (33)

Next we seek bounds on the error terms in (33). For the error term E1 we have already

seen in the case ∆= 1 how this error term is bounded. The same strategy will work in the case

∆ = −1, except we shall make use of the upper bound (32) in Lemma 7 instead of the upper

bound (10) in Lemma 4. We find that

∑
Q∗(y) ≡ 0( mod p)

|yi | ≤ p2/2

|a(y)| = |B|2
p2n

∞∑
k1=0

· · ·
∞∑

kn=0
|B′∩VZ|

n∏
i=1

1

22ki

≤ |B|2
p2n

∞∑
k1=0

· · ·
∞∑

kn=0

(
2n+1 |B′|

p
+2n+1NB′ pn/2

) n∏
i=1

1

22ki

...

≤ 2 ·16n |B|
p

+ |B|24n

p3n/2

n∏
i=1

[
4

3
+min

(
2p

mi
,

8p2

m2
i

)]
.

Thus, it follows that

E1 É 24n+1pn−2 |B|︸ ︷︷ ︸
E1,1

+ 2 ·4n |B|2
pn/2+1

n∏
i=1

[
4

3
+min

(
2p

mi
,

8p2

m2
i

)]
︸ ︷︷ ︸

E1,2

· (34)

Assume (as before) that

m1 É ·· · É ml É p < ml+1 É ·· · É mn .

Then for mi É p,
4

3
+min

(
2p

mi
,8

(
p

mi

))2

É 4

3
+ 2p

mi
É 4p

mi
,
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and for mi > p,

4

3
+min

(
2p

mi
,8

(
p

mi

)2 )
É 4

3
+2 É 10

3
.

By taking account of these two inequalities, we have

n∏
i=1

[
4

3
+min

(
2p

mi
,

8p2

m2
i

)]
É

l∏
i=1

4p

mi
·

n∏
i=l+1

10

3
= 4l p l∏l

i=1 mi

(
10

3

)n−l

É 4n p l∏l
i=1 mi

. (35)

Using (34) and (35), we infer that

E1,2 É 2 ·4n |B|2
pn/2+1

4n p l∏l
i=1 mi

= 24n+1 ∏n
i=1 m2

i

pn/2−l+1 ·∏l
i=1 mi

= 24n+1p l−(n/2)−1 |B|
n∏

i=l+1
mi .

To estimate the error term E3, we just need to apply Lemma 5. It is easily seen that

E3 = p(3n/2)−1
∑

y( mod p)
a(py) É 2n−l p l−(n/2)−1 |B|

n∏
i=l+1

mi . (36)

Thus, we have established,

Theorem 4. Suppose that n Ê 4 is even, ∆p (Q) =−1 and that V =Vp2 (Q). Then for any box B

centered at the origin, ∑
x∈V

α(x) Ê |B|2
p2 −|Er r or | ,

where

|Er r or | É 24n+1pn−2 |B|︸ ︷︷ ︸
E1,1

+24n+1p l−(n/2)−1 |B|
n∏

i=l+1
mi︸ ︷︷ ︸

E1,2

+2n p l−(n/2)−1 |B|
n∏

i=l+1
mi︸ ︷︷ ︸

E3

.

As before, in order to obtain a positive sum we seek conditions such that each error term

is less than 1/4 of the main term.

E1,1 :
1

4

|B|2
p2 Ê 24n+1pn−2 |B|⇐⇒ |B| Ê 24n+3pn .

E1,2 :
1

4

|B|2
p2 Ê 24n+1p l−(n/2)−1 |B|

n∏
i=l+1

mi ⇐⇒
l∏

i=1

p

mi
É 2−4n−3p(n/2)−1.

E3 :
1

4

|B|2
p2 Ê 2n−l p l−(n/2)−1 |B|

n∏
i=l+1

mi ⇐⇒
l∏

i=1

p

mi
É 2l−n−2p(n/2)−1.

Thus we obtain,
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Theorem 5. Suppose that n Ê 4 is even, ∆p (Q) =−1 and that V =Vp2 (Q). If B is a box satisfying

(25), |B| Ê 24n+3pn and
∏l

i=1(p/mi ) É 2−4n−3p(n/2)−1 (with L.H .S = 1 if l = 0), then

∑
x∈V

α(x) Ê |B|2
p2 − 3

4

|B|2
p2 = 1

4

|B|2
p2 .

In particular,

|V ∩ (B+B)| Ê |B|
4p2 .

As a consequence of Theorem 5, we have the following analogue of Corollary 1 for prim-

itive solutions; the proof is identical to the proof of Corollary 1.

Corollary 2. Under the hypotheses of Theorem 5, B+B contains a primitive solution of (2).

5. Proof of Theorem 1

Let p be an odd prime, Q be a quadratic form over Z in n ≥ 4 variables with n even, and

Q nonsingular (mod p), and let l be a nonnegative integer with l ≤ n
2 −2. Set mi = 2Mi +1,

1 ≤ i ≤ n. For 0 ≤ i ≤ l , set Mi = 0, while for l < i ≤ n, set Mi = ⌈2
4n+3
n−l −1p

n
n−l − 1

2⌉. Then for

1 ≤ i ≤ l we have mi = 1, while for l < i ≤ n we have mi > 2
4n+3
n−l p

n
n−l , and so

|B| =
n∏

i=l+1
mi > 24n+3pn ,

and
l∏

i=1

p

mi
= p l ≤ 2−4n−3p

n
2 −1,

for p ≥ 2
2(n+3)
n−2l−2 . Thus the hypotheses of both Corollary 1 and Corollary 2 are satisfied, and so

there exists a primitive solution of the congruence Q(x) ≡ 0 (mod p2) in the box B+B, that

is a solution with xi = 0, 1 ≤ i ≤ l and for l < i ≤ n,

|xi | ≤ 2Mi = 2⌈2
4n+3
n−l −1p

n
n−l − 1

2⌉ ≤ 2
4n+3
n−l p

n
n−l +1.
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