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A USEFUL ORTHONORMAL BASIS ON BI-SLANT
SUBMANIFOLDS OF ALMOST HERMITIAN MANIFOLDS

MEHMET GULBAHAR, EROL KILIG AND SADIK KELES

Abstract. In this paper, we study bi-slant submanifolds of an almost Hermitian mani-
fold for different cases. We introduce a new orthonormal basis on bi-slant submanifold,
semi-slant submanifold and hemi-slant submanifold of an almost Hermitian manifold to
compute Chen’s main inequalities. We investigate these inequalities for semi-slant sub-
manifolds, hemi-slant submanifolds and slant submanifolds of a generalized complex
space form. We obtain some characterizations on such submanifolds of a complex space
form.

1. Introduction

The theory of submanifolds of an almost Hermitian manifold or a Kaehlerian manifold
began as a separate field of study in the last century with the investigation of algebraic curves
and algebraic surfaces in classical algebraic geometry. In the early 1950s, invariant submani-
folds of an almost Hermitian manifold were defined by E. Calabi [2, 3] and in the early 1970s,
anti-invariant submanifolds were defined by B. Y. Chen and K. Ogiue [6] as follows:

Let M be a submanifold of an almost Hermitian manifold (M, J, 8). For any X € T,M,JX
can be decomposed into tangential and normal parts given by

JX=TX+FX, PXeTyM, FXE€ T;‘M, (1.1

where T X is the tangential component and F X is the normal component of JX. The manifold
M is called an invariant submanifold if F = 0 and anti-invariant submanifoldif T = 0.

In 1990, B.-Y. Chen [7] introduced slant submanifolds as a generalization of invariant
submanifold and anti-invariant submanifolds as follows:

For a vector 0 # X, € T, M, if the angle 6(X},) between /X, and X, is independent of
the choice of point p € M, then M is called a slant submanifold. Invariant submanifolds and
anti-invariant submanifolds are slant submanifolds with 6 = 0 and 6 = 7, respectively.
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Furthermore, slant distribution was introduced in [1] by J. L. Cabrerizo ef al., as follows:

A differentiable distribution D on M is called a slant distribution, if for each p € M and
each non-zero vector X € Dy, the angle 6p(X) between JX and X is constant and is indepen-
dent of the choice of pe M and X € D,,.

In 2002, the notion of bi-slant submanifolds of an almost Hermitian manifold was intro-

duced as a natural generalization of semi-slant submanifolds by A. Carriazzo [4] as follows:

There exist two orthogonal distributions D; and D, on M, dimD, = 2d; and dimD; =
2d, such that

(i TM= Di® Dy,

(ii) D; and D, are slant distributions with 8, and 6, angles, respectively.

Semi-slant submanifolds, hemi-slant submanifolds, CR-submanifolds, slant submani-
folds are particular cases of bi-slant submanifolds. In fact, M is a semi-slant submanifold if
D is an invariant distribution and D, is a slant distribution, M is a hemi-slant submanifold
if D; is a slant distribution and D, is an anti-invariant distribution, M is a CR-submanifold if

6, =0and 0, = %, M is a slant submanifold if D, or D is equal to zero.

In [15] and [16], the authors consider an orthonormal basis {eq, ..., e,;} of an n-dimensional
bi-slant submanifold on generalized complex space forms to compute Chen inequalities on

complex space forms and Sasakian space forms such that this basis satisfies

1
ey, e = Tey,...,e2m-1,€2m = Team-1,
cos0; cos0O;
1 1
erm+1,€2m+2 = Termet, - €2n—2m= Texpn—2m-1, (1.2)
cosf, cosb,

where dimDy =2m and dimD; = 2n - 2m. Here, Te; is perpendicular to D, and Te; is per-
pendicular to D; for i € {1,...,2m} and j € {2m +1,...,2n}. But one can not know the angle
between JD; and D, or JD, and D; for bi-slant submanifold of almost Hermitian manifolds.
Therefore, this basis isn’t true for bi-slant submanifolds. For this reason, we introduce a useful
basis on bi-slant submanifolds in this study. Using this basis, we compute Chen inequalities

and give some corollaries on bi-slant submanifolds of an almost Hermitian manifold.

The paper has been organized as follows: Section 2 is devoted to preliminaries. In section
3, we give some examples for different cases on bi-slant submanifolds of an almost Hermi-
tian manifold. We introduce an orthonormal basis for bi-slant submanifolds, semi-slant sub-
manifolds, hemi-slant submanifolds, slant submanifolds. In section 4, we establish a sharp
inequality involving the mean curvature vector and the Ricci curvature of bi-slant subman-

ifolds. We investigate this inequality for semi-slant submanifolds, hemi-slant submanifolds
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and slant submanifolds of a generalized complex space form. In section 5, we establish an
optimal inequality involving the Chen-invariant for bi-slant submanifolds of a generalized
complex space form. We study this inequality for some special submanifolds of a generalized

complex space form.

2. Preliminaries

Let (M, g) be a k-dimensional Riemannian manifold with a Riemannian metric g and
(M, g) be an n-dimensional submanifold of (M, g) with the induced metric tensor g. We de-
note the inner product of both the metrics by (,). Let o be the second fundamental form
related to the shape operator Aby (o (X, Y), N) = (Any X, Y). The Gauss equation is given by

R(X,Y,Z,W) =R(X,Y,Z,W)+(a(X,W),0(Y, Z))
—(o(X,2),0(Y,W)) 2.1
for all X,Y,Z,W € I'(TM), where R and R are the Riemann curvature tensors of M and M ,
respectively.

The mean curvature vector H of the submanifold M is given by H = %trace(a). Ifo=0,
then the submanifold is called fotally geodesicin M, if H = 0, then the submanifold is called
minimal, if 0(X,Y) = g(X,Y)H for all X,Y € I'(T M), then the submanifold is called forally
umbilical [19].

Let {e1,...,e,} be an orthonormal basis of the tangent space Ty M and e, belongs to an

orthonormal basis {e;+1,..., e} of the normal space T jM . We put

oi;=(o(eiej),e) and ||0||2=i;1<0(ei,ej),a(ei,ej)). (2.2)

We denote by K;; and K; j the sectional curvature of the plane section spanned by e; and
ej at point p in the submanifold M and in the ambient manifold M, , respectively. In this case,

using the Gauss equation, we get

Ki]‘ZIA('ij+ i (O'T.O'r. —(Ul(j)z). (2.3)

r=n+1 HEJI
From (2.3), it follows that

21(p) = 2% (T,M) + n* | HI* - llo|?. (2.4)
Also, the squared second fundamental form and the squared mean curvature satisfy that

1 1 2
2 2 2 2
lol® = S’ HI" + 5 Y. (@] —oh ==
r=n+l



146 MEHMET GULBAHAR, EROL KILIC AND SADIK KELES

+2 Z Z(U;j)z_z Z Z (U;iU;j_(U;j)z)- (2.5)

r=n+l j=2 r=n+l12<i<jsn

Let (M, ], §) be an almost Hermitian manifold and V be the Riemannian connection of
the Riemannian metric g. The manifold is called

1. a nearly Kaehler manifold [9] if
(VxDX=0

for any vector field X € TM,
2. a Kaehler manifold [19] if
VJ=0.

An almost Hermitian manifold with the J-invariant Riemannian curvature tensor R, that
is,
RUX,JY,JZ,JW)=R(X,Y,Z,W), X,Y,Z,Wel(TM),
is called an RK-manifold [18].

An almost Hermitian manifold M is said to have (pointwise) constant typeif for each p €
M andforall X,Y,Z ¢ T,,]T/f such that

(X,Y)=(X,2)=(X,JY)=(X,J]Z)=0 and
(2.6)
Y, Vy=1=(Z,2).

And consequently, we have

R(X,Y,X,Y)-R(X,Y,JX,JY)=R(X,Z,X,2)-R(X,Z,]X,] Z). 2.7)

It is known that if M is an RK-manifold, then it has (pointwise) constant type if and only
if there is a differentiable function a on M satisfying

RX,Y,X,Y)-R(X,Y,JX,JY) = a((X, XY, V) = (X, Y)* = (X, JY)?) (2.8)

for all X,Y,Z € TM. Furthermore, M has global constant type if a is constant. The function
«a is called the constant type of M [17].

A RK-manifold of constant holomorphic sectional curvature ¢ and constant type «a is de-

noted by M(c, @). The Riemann curvature of M(c, @) is given by

4R(X,Y)Z = (c+3a) (Y, Z)X — (X, Z)Y}
+e-a (X, JZ2)JY =Y, JZ)JX (2.9)
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+2(X,JY)]Z}

forall X,Y,Z e TM.If c = a, then M(c,a) is a space of constant curvature. If a = 0, then M(c)
is a complex space form.
3. Bi-slant submanifolds

Let M be a 2n-dimensional bi-slant submanifold of an almost Hermitian manifold M
such that
TM = D1 @Dz, (3.1)

where D; is a 6; —slant distribution, and D5 is a 8,—slant distribution. Then there exist the

following four cases [5]:

Case 1: M is bi-slant with 8; = 6, = 0 and it is also 0-slant.

Case 2: M is bi-slant with 8; = 0, but it is not slant.

Case 3: M is bi-slant with 8; = 6, = 0 and it is also a-slant with a # 0.

Case 4: M is bi-slant with 0; # 0, and it is not slant.

Now, we are going to give an example of bi-slant submanifold for Case 1 as follows:

Example 3.1. Let J be an almost complex structure on R® such that
J(x1, X2, X3, X4, X5, X6) = (X2, = X1, X4, = X3, X6, = X5).
Let M be a submanifold of R® given by
e, v,w,t)= (u\/i,v ,u+v,u—v,w—t,t—w).

Then we have an orthonormal frame of M as follows:

Xlzl(\/zi+i+i), XZ:l( 214_1_1),
2 0x1 0x3 OX4 2 0.?62 0.?63 0.?64
sti(i_i)’ X4:i(_i+i)_
\/z OX5 0x6 \/E 0.?65 0.?66

Put D, = Span{X;, X»} and D, = Span{Xs, X4}, then M is a bi-slant submanifold with D, and

D, are anti-invariant distributions. Furthermore, M is an anti-invariant submanifold.

Now, we are going to give an example of bi-slant submanifold for Case 2 as follows:
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Example 3.2. We consider the Euclidian space R® with coordinates
(x1, X2, X3, X4, X5, X). Let J be an almost complex structure on RS such that

J(x1, X2, X3, X4) = (— X4, — X5, — X6, X1, X2, X3).
Let M be a submanifold of R® with

@(uy, Uz, V1, V2) = (U3 cosB; — uysinfy, u; sinf; + uy cos 64,0,

vy cosby — vy sinfy, v1sinf, + vo cosHy,0),

for any 61,0, € [0, %]. Then we have an orthonormal frame of M as follows:

0 0 0 0
X3 _003910—1+sm910 % X2—005020—4+sm020 0 Xg:a—xs,
0 0 0 0
Xy = o’ X5 = sm@la—l +Cos(91a o X6 = SlIll920—4 +cosb,— oxs’

If we put D, = Span{Xy, Xs}, D, = Span{Xs, Xg}, then M is bi-slant submanifold with D; and

D5, are 0 = (67 — 0,)—slant distributions. But M is not a slant submanifold.

Now, we are going to give an example of bi-slant submanifold for Case 3 as follows:

Example 3.3. Let J be an almost complex structure on R® such that
J(x1, X2, X3, X4, X5, X6, X7, Xg) = (= X5, = X6, —X7, = Xg, X1, X2, X3, X4).

Let M be a submanifold of R® with

V2

(uth)—(l(u v)l(u+v) u\/szt00)
(p ) ) ) - 2 )2 )2 ) 2 ) y ¥y ) .

Then we have an orthonormal frame of M as follows:

—E(a—xl+a—xz+\/_ ), 2(—a—xl+a—xz+\/_

= x>
3_(9X5’ 4_0.?66.

Put D; = Span{Xy, Xo} and D, = Span{Xs, X4} then M is bi-slant submanifold with D; and D,

are anti-invariant distributions. Futhermore, M is a slant submanifold with slant angle 6 = %
Let P;: TM — D;, i € {1,2}, be orthogonal projections. It is well known that
(PiXi, Yi) = (X, PiYy) 3.2)
for X;, Y; e I'(D;) [5, 10]. Furthermore, it can be proved that

(P;T)?X; = —cos?0; X; (3.3)
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for any X; € I'(D;). From (3.2) and (3.3), we have

(PiTX;, PiTY;) =(TX;, PiTY})

= —(X;, TP;TY;)
= —(X;,P\TP;TY; + P,TP;TY;)
= —(X;,—c0s%0; ;)
= cos?0;(X;, Y;). (3.4)
Since | TX|1? + || FX||? = || ] X|?, we get
IPyTXI?+ 1P, TXI+ I EXI = 17X (3.5)

for any X € T M. Now, we choose orthonormal basis {ey, ..., e,} of T, M such that
D, =Spaniey,...,ean} and Do = Span{ez;+1,...,e2,}. Using (3.4) and (3.5), we have

| P, Te; || + | Fe;I* = sin® 0, (3.6)
and

IP1 Te;jll* + | Fejl|* = sin® 6 3.7)

forie{l,...,2m} and j € 2m+1,...,2n}. Therefore, we can choose a bi-slant orthonormal
basis {ey, ..., ez} of T, M satisfying that

Te, = cosByies + PyTey, Tes = —cosbye; + Py Tey,...,
Teym—1 =cosbiesm+PorTesy 1, Texy = —C0891€2m_1 + Py Tesy,,
Tezmi1 = cosOrermyz + PrTesmi1, Tezmio=—cosbrerpmy1 + PrTes;, 2

..., Tex, =—cosbr,_1e0,+ P1Tes,—1. (3.8)

Since both D; and D, are slant distributions, we note that P; Tey ., is orthogonal to both e,
and ey vectors, where ey, ey, and ey, are any mutually orthogonal vectors in D;, i € {1,2}.

If M is a semi-slant submanifold of M, then 6; = 0. Thus, we have
JX1,Y2)=0 (3.9)

for all X eT'(D;) and Y, € I'(D»). Taking into consideration (3.8) and (3.9), we can choose an
orthonormal basis {e;,..., e2,,} of semi-slant submanifolds satisfies that

Tey =ey,...,Tes-1=e2m,

Tesme1 = c0SO2e21m42,...,Tes,—1 = cosOzes,,. (3.10)
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If M is a hemi-slant submanifold of M, then 0, = % Thus, we have
(JX5,Y2) =0 (3.11)

for all X, Y, € I'(D»). From (3.8) and (3.11), we can choose an orthonormal basis {ey, ..., e2,}
of hemi-slant submanifolds satisfying that

IP1Tejll* = | Tejl?, i€fl,...,.2m},
IP,Tei|?> =0, je2m+1,...,2n}. (3.12)

Now, we shall need the following lemma:

Lemma 3.4 ([5]). Let M be a (6,,0-) bi-slant submanifold of an almost Hermitian manifold
M. Given € [0,%], M is 0-slant if and only if the following equations hold:

P,TP TP, +P,TP,TP; =0, (3.13)

P\TP TP+ P, TP,TP, =0, (3.14)
P, TP, TPy = (cos®0; —cos’0) Py, (3.15)
P, TP, TP, = (cos®> 6, — cos?0) Ps. (3.16)

Let M be a (0,,0,) bi-slant submanifold. Also, if M is a 0-slant submanifold, then taking
into consideration (3.15), we have

| P2 Te;l|* = (P, Te;, Py Te;) = —(e;, TPy Te;)
= —(e;,P1TP,Te;)
= c0s?0 — cos?® 0, (3.17)

forie{l,...,2m}. Using the similar way, we have
| P1Te; 1% = cos?6 — cos? 6, (3.18)

for je{2m+1,...,2n}. From (3.8), (3.17) and (3.18), if M is a slant submanifold with 6; =8, =
0, then we can choose orthonormal basis {e1, ..., e2,} of T, M such that

Tey =cosBey,...,Tes,_1 =cosl ey,. (3.19)

We note that the orthonormal basis given in (3.19) was firstly given by B.-Y. Chen in [7].

4. Ricci curvature

In this section, we are going to give an inequality involving Ricci curvature of bi-slant
submanifold on generalized complex space form and study this inequality for semi-slant
submanifold, hemi-slant submanifold and slant submanifold of generalized complex space
forms.



A USEFUL ORTHONORMAL BASIS 151

Theorem 4.1. Let M be a 2n-dimensional (01,0,) bi-slant submanifold of a 2k-dimensional
generalized complex space form. Then

(@ ForXeTy,M={XeT,M|(X,X)=1}, it follows that

c+3a 3(c—a)

Ric(X) < n?||H||> + 0 @2n-1)+ (cos® 0, + cos? 05)

+IPy T Xp, I* + P, T Xp, 1), 4.1)

where 8, is slant angle of D1, 0, is slant angle of D and Ric(X) is the Ricci curvature of M.
(b) The equality case of (4.1) is satisfied by X € TéM ifand only if
o(X,Y)=0, forall Y € T, M orthogonal to X,
o (X, X) = nH(p). 2
(¢) Theequality case of (4.1) holds forall X € T;M ifand only if p is a totally geodesic point.

Proof. From (2.4) and (2.5), we have

B 1 2k
PIHI? =7 (p) =T(T,M)+ 5 3 (0] =05 == 07,)°
r=n+1
2k 2n 5 2k 5
+ ) 2= Y Y (op0% =) (4.3)
r=2n+1 j=2 r=2n+11#£i<j<2n
Using
2k
YooY opoli-@ipt= Y Kij-Kij (4.4)
r=2n+11#i<j<2n 1#4i<j<2n
and
Y. Kij=1(p)-Ric(er), 4.5)
1#£i<j<2n
we obtain .
2k 2
Ri — 2 2. pi- - r N2
ic(er) = n*|HI" + Ricr,m(e)— Y, } (07))
r=2n+1;j=2
__l 2k ro_ r _ _ T 2
Z (01 =0 = —0y,,)". (4.6)
4r:2n+1

Since we can choose e; = X as any unit vector in T; M, we get the following inequality:
Ric (X) < n®||H||* + Ric(z, m (X). (4.7)

Now, we calculate fﬁE(TpM) (X). Letpe M and {ey,...,e2m, €2m+1,--., €2, be orthonormal basis
of M such that {ey,...,e»,,} is an orthonormal basis of D; and {e»,,+1,...,€2,} is an orthonor-
mal basis of D,. From (2.9) and (3.8), we have the following equalities:

2m
Ricp,(e1) = )_ &(R(ey,ej)ej, er)
j=1



152 MEHMET GULBAHAR, EROL KILIC AND SADIK KELES

c+3a 3(c—a)

=——@m-D+ cos® 0y, 4.8)
Ricp,(eams1) = ), &R(ezms1,€j)e),€2m+1)
j=2m+2
c+3a 3(c—a
=—,@n-2m-1+ ( )008202, (4.9)
2n 2n
JUPS c+3a 3(c—a
Y. &(R(er,ejej,e) = 2n-2m)+ ( ) Y (PyTeiej)?,  (4.10)
j=2m+1 4 j=2m+1
m c+3a 3(c—a) 3 )
Y 8R(ezms1,e))ej, e2my1) = 2Zm) + Y (PiTeypmi €))7, (4.11)
j=1 4 S |
2m s S(C—(X) 2m
Y &(R(e1,ej)ej, eame1) = Y (Tei,ej)(Tezms1, €))
j=1 j=1
3(c—a)
i (Jer, Jeam+1)
=0. (4.12)

Now, we choose X = %(el +e,+1). Then | X||=1and X € TéM. Thus, we get

__ 1 __
Ricr,m(X) = E{Rchl (e1) + Ricp,(e2m+1)

2n 2m
+ Y. &(R(er,epej, e+ Y. §R(ezme1,€j)ej, e2me1)}
j=2m+1 j=1
2m _
+ Y g(R(e1,e))ej, eams1). (4.13)
j=1

If we put (4.8), (4.9), (4.10), (4.11) and (4.12) in (4.13), we have

— c+3a 3(c—a
RichM(X): 1 2n-1)+ ( )(c03291+c05202)
2n 2m
+ Y (PTer,e)*+ Y (PiTeymer,e)%) (4.14)
j=2m+1 j=1

From (4.14) and (4.7), we get (4.1). The equality in (4.1) is valid if and only if
Ol,==0],,=0and o, =0+ +0%,,, T€2n+1,...,2k}, (4.15)

which is equivalent to (4.2).

Now, we prove the statement (c). Assuming the equality case of (4.1) for all X € Té M, in
view of (4.15), foreachre 2n+1,...,2k}, we have

ol =0, i#]j, (4.16)
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200, =0, +09+ +05,5,, iefl,...,2n}. 4.17)
From (4.17), we have 20{1 = 2052 =...= 20£n2n = 0{1 + 052 +eeet O-SnZn’ which implies that
2(n-1) (o] +05 ++0%,5,) =0.

Since n # 1, 0, + 0%, ++--+07,, = 0 is valid. Then in view of (4.17), we get O';i =0forallie
{1,...,n}. This together with (4.16) gives U;j =0foralli,je{l,...,.2n}and r e 2n+1,...,2k},
thatis, p is a totally geodesic point. The proof of the converse part is straightforward.

From Theorem 4.1, we get the following corollaries:

Corollary 4.2.

(@) Let M be a2n-dimensional submanifold of a generalized complex space form M(c, &). We
have the following table:

M M Inequality

(1) | M(c,@) | bi-slant Ric(X) < n?|H|? + <3¢ 2n-1) + W(cos2 0; +cos?0,

+|PyTXp, 12+ |P2TXp, %)

(2) | M(c,@) | semi-—slant Ric(X) < n?|H|? + %(Zn— 1)+ W(l +cos205)
(3) | M(c,a) | hemi—slant Ric(X) < n?| H||? + <22 2n-1) + 352 (cos? 0, + | TXp, |12
+IP2TXp, %)
@ | M(c,a) CR Ric (X) < n?| H||? + <22 (2p-1) + 39
(5) | M(c,@) | 0-slant with Ric (X) < n?||H|? + #(Zn— D+ @ cos? 0
01 = 02 =0 or
0,=0,#0
(6) | M(c,a) | invariant Ric (X) < n?| H||? + <22 (2n-1) + 32

(7 | M(c,a) anti —invariant | Ric(X) < n?|H|? + % 2n-1)
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(b) The equality case of inequalities in the previous table is satisfied for X € TéM ifand only if

o(X,Y)=0, forall Y € T, M orthogonal to X,
20 (X,X)=nH(p).

IfH(p)=0,thenXeT ;,M satisfies the equality case of inequalities in the previous table if
andonlyifXe ¥, ={XeT,M:0(X,Y)=0, VY € T, M}.

(¢) The equality case of inequalities (1)—(4) is satisfied for all X € T,},M ifand only if p is a
totally geodesic point.

(d) The equality case of inequalities (5)—(7) is satisfied for all X € T,},M ifand only if either p is

a totally geodesic point or n = 1 and p is a totally umbilical point.

Proof. From Theorem 4.1, we have the inequality (1) immediately. Taking (3.10) into consid-

eration, we have
P1TXp,=P>TXp, =0, (4.18)

where X = Xp, + Xp, for Xp, € D; and Xp, € D,. If we write (4.18) and (3.12) in the inequality
(1), we get the inequalities (2) and (3), respectively. Next, putting 6> = 7 in the inequality (2),
we have the inequality (4) or putting 8, = 0 in the inequality (3), then

TXp, = P,TXp, =0. (4.19)

Thus, we have the inequality (4) again. If we put (3.17) and (3.18) in the inequality (1), we
get the inequality (5). Writing 6 = 0 and 6 = 7 in the inequality (5), we obtain the inequal-
ities (6) and (7), respectively. Hence proof of the (a) is complete. The statements (b-d) are

straightforward from Theorem 4.1.

Remark 4.3. The inequalities (5-7) on the above table were proved by S. Hong and M. M.
Tripathiin [11]. The authors also studied generic submanifolds of generalized complex space
forms. Since generic submanifolds don’t contain slant distributions, we note that bi-slant

submanifolds are not a particular case of generic submanifold.

Corollary 4.4.

(@) Let M be a 2n-dimensional submanifold of a complex space form M(4c). We have the

following table:
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M M Inequality

(1) | M@c¢) | bi-slant Ric(X) < n?|H|?+ (2n-1)c+ % (cos? 6 + cos? 0,

+|P1TXp, |12+ |1P2T Xp, 1?)

(2) | M(4c) | semi-slant Ric(X) < n?| H||* + 2n—1)c+ 3£ (1+ cos®0;)

(3) | M(4c) | hemi—slant Ric(X) < n?|H|?+ 2n-1)c+ 3¢ (cos® 0, + | T Xp, 1
+IP2TXp, %)

@ | Mo CR Ric(X) < n?|H|? +2(n+1)c+ 3¢

(5) | M(4c) | 6 - slant with Ric(X) < n?||H|?+ (2n—-1)c +3ccos?0
01 = 02 =0 or
0:=0,#0

6) | Mo anti — invariant | Ric(X) <n?|H||?>+ @2nrn-1)c

(b) The equality case of inequalities in the previous table is satisfied for X € T;,M ifand only if

o(X,Y)=0, forall Y € T, M orthogonal to X,
20(X,X)=nH(p).

IfH(p)=0,thenXeT ;M satisfies the equality case of inequalities in the previous table if
andonlyifXe N, ={XeTyM:0(X,Y)=0, VY € T, M}.

(¢) The equality case of inequalities (1)—(4) is satisfied for all X € T;M ifand only if p is a
totally geodesic point.

(d) The equality case of inequalities (5)—(6) is satisfied for all X € T;M if and only if either p is
a totally geodesic point or n = 2 and p is a totally umbilical point.

Remark 4.5. In [13], K. Matsumoto, I. Mihai and A. Oiaga compute the inequalities (5-6). In
addition to this, using the fact that every invariant submanifold of a (nearly) Kaehler manifold
is minimal, they gave the following corollary.

Corollary 4.6. Let M be an 2n-dimensional invariant submanifold of a complex space form
M (4c). Then
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(@) Any X € TyM ={X € T,M | (X, X) = 1} satisfies

Ric(X)<2(n+1)c. (4.20)

(b) AnXe T;M satisfies the equality case of (4.20) if and only if X € ).

(c) The equality case of (4.20) is satisfied for all X € TéM ifand only if p is a totally geodesic

point.

5. Scalar curvature and 6 -invariant

Now, we recall the following definition of B.-Y. Chen and the following Lemma for future
uses [8].

Definition 5.1. Let M be a submanifold of a Riemannian manifold M. The Chen invariant at

a point p € M, denoted by d/(p), is defined by
Sm(p) =t(p) —inf(K)(p), 5.1
where 7(p) is the scalar curvature and
inf(K)(p) = inf{K(IT) : K(IT) is a plane section of T}, M}.

Lemmab5.2. Ifn>k=2anda,...,ay, a arereal numbers such that

2 n
(Z ai) = n-1D} a +a), (5.2)
i=1 i=1
then
2a1a; = a,
with equality holding if and only if
a)t+ar=dads=---=day.

Let 1= Span{X, Y} be any 2-dimensional plane section of T,, M. We set

T =(T X, Y)?. (5.3)

Now, we are going to give an optimal inequality involving the Chen invariant as follows:



A USEFUL ORTHONORMAL BASIS 157

Theorem 5.3. Let M be a 2n-dimensional (01,0,) bi-slant submanifold of a 2k-dimensional

generalized complex space form. For any 2-dimensional plane sectionIl = Span{X, Y} in T, M,

we have
2(n-2 +3 3(c—
np) < 2 2 3 -1+ 22 (cos,
2(n—-1)
1 1
+ncos292+5||P1T||2+EHPZTMZ—ZT(H)]. (5.4)

The equality case of the inequality (5.4) holds at a point p € M if and only if there exists an
orthonormal basis {ey, ..., exn} of Ty M and an orthonormal basis {e2p+1,..., €k} ofT,}M such
that the shape operators of M have the following forms:

a0o0...
0boO...

0

0
00p...0, a+b=y, (5.5)
S

1)

A2n+1

000...

cdao...
d-cO0...

0

0
A,r=1000...01, rei2n+2,...,2k}. (5.6)

TR

0

000O0...

Proof. From the Gauss equation and (4.14), we have

c+3a 3(c—a)

21(p) = nZIIHIIZ— ||0||2+ @2n-1)n+ [2n003201

+2nc0s?0, + | P1TI? + IP> T|?]. (5.7)

In equation (5.7), if we put
we2e(p)— D e CE3
- erp n-2 2

3(c—a

X )[2n003201+2nc03292+IIP1T||2+||P2T||2], (5.8)
we get

2 2 _ 2

n“|H|I"=m-Dw+ o). (5.9

If we choose e2,,+1 in the direction of the mean curvature vector H(p), then (5.9) gives

2n 2n 2k 2n
Qo2 ==L @2+ Y 0+ Y Y 0]+ wl. (5.10)
i=1 i=1 i£] r=2n+2i,j=1
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Applying Lemma 5.2 and equation (5.10), we obtain

2k 2n

20_2n+10_§£z+1 > Z(O.Zn+l)2 Z Z (O.”) +w. (511)
i#] r=2n+2i,j=1
Therefore, we have
c+3a 3(c—a) 2k
K(I) = + T+ Y [o},0%,—(012)%]
4 4 r=2n+1
+3 3(c—
, c+3a (c a)T(H)+—[Z( 2n+1y2
4 4 25
2k 2n 2k 2k 5
+ Z Z (Ul]) +wl+ Z 0{1052_ Z (012)
r=2n+2i,j=1 r=2n+2 r=2n+2
c+3a 3(c—a
= WD gy 5207 antlyz
4 4 27
1 2k 2n 2k X
+s 2 D (o] ) "“ Y. (o], +0%)
r=2n+2i,j=1 2 om+2
j>2 2
c+3a 3(c—a) w
> + T+ —. (5.12)
4 4 2
From (5.8) and (5.12), we have
) c+3a 3(c—-a) n(n-1)
infK(IT) = 1 + n TID+7(p) - 7||H||
n-—

3(c—a
- ( )(choszﬁl+2nc03202+||P1T||

+IP,T|I%). (5.13)

From (5.1) and (5.13), we get (5.4).

The equality case of (5.4) is satisfied at p € M if and only if

02”+1—0 Vi#j, i,j>2,

l.j:O, VYi#j, i,j>2, re{2n+1,...,2k},
o1, +0% =0, Vre{2n+2,...,2k},
ottt =03t =0,Vj>2,

2n+1 2n+1 2n+1 _ 2n+1
017 =03 =033 =...=0%,, (5.14)

which shows that the shape operators of M at p € M take the form of (5.5) and (5.6).

From Theorem 5.3, we get the following corollaries:
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Corollary 5.4. Let M be a submanifold of a generalized complex space form M(c,«). For any

2-dimensional plane sectionI1 in T, M, we have the following table:

M M Inequality
(1) | M(c, @) | bi—slant dup) < ';2((:__12)) | H|IZ + #(2n+ Dn-1)+ w [ncos? 6,
+ncos?0y + 1 ||PyT|2+ L[| P2T|* - 2T (ID)]
(2)| M(c, @) | semi —slant Su(p) < BUD | H|2 + <32 20 4 1)(n— 1) + 252 [n(1 + cos? 62)
—2T(D]
(3)|M(c,a) |hemi-slant  |8p(p) < B2 H|? + 3% 2n+1)(n-1) + 25D [ncos? 6, + LI T|12
+3 P2 T||>— 2T ()]
@) |M(c,@)| CR Su(p) < BUD | H|2 + €32 20 4 1)(n—1) + 2D [n - 2T(ID)]
(5)| M(c,@) |0 —slant with  |8p(p) < B2 | H|? + <32 2n+ 1) (n-1) + 3D [ncos? 6 — T(ID)]
01 = 02 =0 or
01=0,#0
(6)|M(c,a)| invariant Su(p) = SO H|? + <32 2n + 1) (n-1) + 252 [n - T(ID)
(7)|M(c,a)| anti—invariant|&y(p) < % IH|?+ <32 @2n+1)(n—-1)

The equality case of the inequalities holds at a point p € M if and only if the shape opera-
tors of M take the form of (5.5) and (5.6).

Remark 5.5. The inequalities (5-7) were proved by J-S. Kim, Y-M. Song and M. M. Tripathi in

[12] and by A. Mihai in [14].

Corollary5.6. Let M be a submanifold of a complex space form M(4c). For any 2-dimensional
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plane section Il in T,, M, we have the following table:

M M Inequality

(1) | M(c,@) | bi—slant Su(p) < BUD|H|2 + @n+1)(n-1c+ ¥ [ncos? 6,

+ncos?0, + 1|Py T2+ L[| P T|* - 2T (ID)]

(2) | M(c,a) | semi-slant Su(p) < BUDIH|2 + @n+1)(n-De+ ¥ [n(l +cos?6>)
—2T (D]
(3) | M(c,a) | hemi-slant Su(p) < BUD|H|2 + @n+1)(n-1c+ ¥ [ncos? 6y + | T2

+3 P2 T||> - 2T ()]

@ | M(c,a) CR Su(p) < BUD |2+ @n+1)(n-1c+ ¥ [n-2T(D)

(5) M(C,a) 0 —slant with om(p) < ';((,:' 12)) IH|I? + 2nr+1)(n—1)c+3c[ncos?0 — T(ID)]
01 = 02 =0 or
0:=0,#0

6) | M(c,@ | anti-invariant | 8y (p) < @D IH|? + @n+1)(n-1De

The equality case of the inequalities holds at a point p € M if and only if the shape opera-
tors of M take the form of (5.5) and (5.6).

Corollary 5.7. Let M be a 2n-dimensional invariant submanifold of a complex space form

M (4c). For any 2-dimensional plane sectionIl in T, M, we have
opm(p)<@n+1)(n—1c+3cln—-TIAD)]. (5.15)

The equality case of (5.15) satisfied at p € M if and only if the shape operators of M take form
as (5.5) and (5.6).
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