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A USEFUL ORTHONORMAL BASIS ON BI-SLANT

SUBMANIFOLDS OF ALMOST HERMITIAN MANIFOLDS

MEHMET GÜLBAHAR, EROL KILIÇ AND SADIK KELEŞ

Abstract. In this paper, we study bi-slant submanifolds of an almost Hermitian mani-
fold for different cases. We introduce a new orthonormal basis on bi-slant submanifold,
semi-slant submanifold and hemi-slant submanifold of an almost Hermitian manifold to
compute Chen’s main inequalities. We investigate these inequalities for semi-slant sub-
manifolds, hemi-slant submanifolds and slant submanifolds of a generalized complex
space form. We obtain some characterizations on such submanifolds of a complex space
form.

1. Introduction

The theory of submanifolds of an almost Hermitian manifold or a Kaehlerian manifold

began as a separate field of study in the last century with the investigation of algebraic curves

and algebraic surfaces in classical algebraic geometry. In the early 1950s, invariant submani-

folds of an almost Hermitian manifold were defined by E. Calabi [2, 3] and in the early 1970s,

anti-invariant submanifolds were defined by B. Y. Chen and K. Ogiue [6] as follows:

Let M be a submanifold of an almost Hermitian manifold (M̃ , J , g̃ ). For any X ∈ Tp M , J X

can be decomposed into tangential and normal parts given by

J X =T X +F X , P X ∈ Tp M , F X ∈ T ⊥
p M , (1.1)

where T X is the tangential component and F X is the normal component of J X . The manifold

M is called an invariant submanifold if F = 0 and anti-invariant submanifold if T = 0.

In 1990, B.-Y. Chen [7] introduced slant submanifolds as a generalization of invariant

submanifold and anti-invariant submanifolds as follows:

For a vector 0 6= Xp ∈ Tp M , if the angle θ(Xp ) between J Xp and Xp is independent of

the choice of point p ∈ M , then M is called a slant submanifold. Invariant submanifolds and

anti-invariant submanifolds are slant submanifolds with θ= 0 and θ= π
2 , respectively.
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Furthermore, slant distribution was introduced in [1] by J. L. Cabrerizo et al., as follows:

A differentiable distribution D on M is called a slant distribution, if for each p ∈ M and

each non-zero vector X ∈ Dp , the angle θD (X ) between J X and X is constant and is indepen-

dent of the choice of p ∈ M and X ∈ Dp .

In 2002, the notion of bi-slant submanifolds of an almost Hermitian manifold was intro-

duced as a natural generalization of semi-slant submanifolds by A. Carriazzo [4] as follows:

There exist two orthogonal distributions D1 and D2 on M , di mD1 = 2d1 and di mD2 =
2d2 such that

(i) T M = D1 ⊕D2,

(ii) D1 and D2 are slant distributions with θ1 and θ2 angles, respectively.

Semi-slant submanifolds, hemi-slant submanifolds, CR-submanifolds, slant submani-

folds are particular cases of bi-slant submanifolds. In fact, M is a semi-slant submanifold if

D1 is an invariant distribution and D2 is a slant distribution, M is a hemi-slant submanifold

if D1 is a slant distribution and D2 is an anti-invariant distribution, M is a CR-submanifold if

θ1 = 0 and θ2 = π
2 , M is a slant submanifold if D1 or D2 is equal to zero.

In [15] and [16], the authors consider an orthonormal basis {e1, . . . ,en} of an n-dimensional

bi-slant submanifold on generalized complex space forms to compute Chen inequalities on

complex space forms and Sasakian space forms such that this basis satisfies

e1,e2 =
1

cosθ1
Te1, . . . ,e2m−1,e2m =

1

cosθ1
Te2m−1,

e2m+1,e2m+2 =
1

cosθ2
Te2m+1, . . . ,e2n−2m =

1

cosθ2
Te2n−2m−1, (1.2)

where di mD1 = 2m and di mD2 = 2n −2m. Here, Tei is perpendicular to D2 and Te j is per-

pendicular to D1 for i ∈ {1, . . . ,2m} and j ∈ {2m +1, . . . ,2n}. But one can not know the angle

between JD1 and D2 or JD2 and D1 for bi-slant submanifold of almost Hermitian manifolds.

Therefore, this basis isn’t true for bi-slant submanifolds. For this reason, we introduce a useful

basis on bi-slant submanifolds in this study. Using this basis, we compute Chen inequalities

and give some corollaries on bi-slant submanifolds of an almost Hermitian manifold.

The paper has been organized as follows: Section 2 is devoted to preliminaries. In section

3, we give some examples for different cases on bi-slant submanifolds of an almost Hermi-

tian manifold. We introduce an orthonormal basis for bi-slant submanifolds, semi-slant sub-

manifolds, hemi-slant submanifolds, slant submanifolds. In section 4, we establish a sharp

inequality involving the mean curvature vector and the Ricci curvature of bi-slant subman-

ifolds. We investigate this inequality for semi-slant submanifolds, hemi-slant submanifolds
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and slant submanifolds of a generalized complex space form. In section 5, we establish an

optimal inequality involving the Chen-invariant for bi-slant submanifolds of a generalized

complex space form. We study this inequality for some special submanifolds of a generalized

complex space form.

2. Preliminaries

Let (M̃ , g̃ ) be a k-dimensional Riemannian manifold with a Riemannian metric g̃ and

(M , g ) be an n-dimensional submanifold of (M̃ , g̃ ) with the induced metric tensor g . We de-

note the inner product of both the metrics by 〈,〉. Let σ be the second fundamental form

related to the shape operator A by 〈σ(X ,Y ), N 〉 = 〈AN X ,Y 〉. The Gauss equation is given by

R(X ,Y , Z ,W ) = R̃(X ,Y , Z ,W )+〈σ(X ,W ),σ(Y , Z )〉

−〈σ(X , Z ),σ(Y ,W )〉 (2.1)

for all X ,Y , Z ,W ∈ Γ(T M ), where R̃ and R are the Riemann curvature tensors of M̃ and M ,

respectively.

The mean curvature vector H of the submanifold M is given by H = 1
n trace(σ). If σ= 0,

then the submanifold is called totally geodesic in M̃ , if H = 0, then the submanifold is called

minimal, if σ(X ,Y ) = g (X ,Y )H for all X ,Y ∈ Γ(T M ), then the submanifold is called totally

umbilical [19].

Let {e1, . . . ,en} be an orthonormal basis of the tangent space Tp M and er belongs to an

orthonormal basis {en+1, . . . ,em} of the normal space T ⊥
p M . We put

σr
i j =

〈
σ

(
ei ,e j

)
,er

〉
and ‖σ‖2 =

n∑

i , j=1

〈
σ

(
ei ,e j

)
,σ

(
ei ,e j

)〉
. (2.2)

We denote by Ki j and K̃i j the sectional curvature of the plane section spanned by ei and

e j at point p in the submanifold M and in the ambient manifold M̃ , respectively. In this case,

using the Gauss equation, we get

Ki j = K̃i j +
m∑

r=n+1

(
σr

i iσ
r
j j − (σr

i j )2
)

. (2.3)

From (2.3), it follows that

2τ(p) = 2τ̃
(
Tp M

)
+n2 ‖H‖2 −‖σ‖2 . (2.4)

Also, the squared second fundamental form and the squared mean curvature satisfy that

‖σ‖2 =
1

2
n2‖H‖2 +

1

2

m∑

r=n+1
(σr

11 −σr
22 −·· ·−σr

nn )2
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+ 2
m∑

r=n+1

n∑

j=2

(σr
1 j )2 −2

m∑

r=n+1

∑

2≤i< j≤n

(σr
i iσ

r
j j − (σr

i j )2). (2.5)

Let (M̃ , J , g̃ ) be an almost Hermitian manifold and ∇̃ be the Riemannian connection of

the Riemannian metric g̃ . The manifold is called

1. a nearly Kaehler manifold [9] if

(∇̃X J)X = 0

for any vector field X ∈ T M̃ ,

2. a Kaehler manifold [19] if

∇̃J = 0.

An almost Hermitian manifold with the J-invariant Riemannian curvature tensor R̃, that

is,

R̃(J X , JY , J Z , JW ) = R̃(X ,Y , Z ,W ), X ,Y , Z ,W ∈Γ(T M̃ ),

is called an RK-manifold [18].

An almost Hermitian manifold M̃ is said to have (pointwise) constant type if for each p ∈
M̃ and for all X ,Y , Z ∈ Tp M̃ such that

〈X ,Y 〉 = 〈X , Z 〉= 〈X , JY 〉 = 〈X , J Z 〉 = 0 and
(2.6)

〈Y ,Y 〉 = 1 = 〈Z , Z 〉.

And consequently, we have

R̃(X ,Y , X ,Y )− R̃(X ,Y , J X , JY ) = R̃(X , Z , X , Z )− R̃(X , Z , J X , J Z ). (2.7)

It is known that if M̃ is an RK-manifold, then it has (pointwise) constant type if and only

if there is a differentiable function α on M̃ satisfying

R̃(X ,Y , X ,Y )− R̃(X ,Y , J X , JY ) =α(〈X , X 〉〈Y ,Y 〉−〈X ,Y 〉2 −〈X , JY 〉2) (2.8)

for all X ,Y , Z ∈ T M̃ . Furthermore, M̃ has global constant type if α is constant. The function

α is called the constant type of M̃ [17].

A RK-manifold of constant holomorphic sectional curvature c and constant type α is de-

noted by M̃(c ,α). The Riemann curvature of M̃(c ,α) is given by

4R̃(X ,Y )Z = (c +3α){〈Y , Z 〉X −〈X , Z 〉Y }

+(c −α){〈X , J Z 〉JY −〈Y , J Z 〉J X (2.9)
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+2〈X , JY 〉J Z }

for all X ,Y , Z ∈ T M̃ . If c =α, then M̃(c ,α) is a space of constant curvature. If α= 0, then M̃ (c)

is a complex space form.

3. Bi-slant submanifolds

Let M be a 2n-dimensional bi-slant submanifold of an almost Hermitian manifold M̃

such that

T M = D1 ⊕D2, (3.1)

where D1 is a θ1−slant distribution, and D2 is a θ2−slant distribution. Then there exist the

following four cases [5]:

Case 1: M is bi-slant with θ1 = θ2 = θ and it is also θ-slant.

Case 2: M is bi-slant with θ1 = θ2 but it is not slant.

Case 3: M is bi-slant with θ1 = θ2 = θ and it is also α-slant with α 6= 0.

Case 4: M is bi-slant with θ1 6= θ2 and it is not slant.

Now, we are going to give an example of bi-slant submanifold for Case 1 as follows:

Example 3.1. Let J be an almost complex structure on R6 such that

J(x1, x2, x3, x4, x5, x6) = (x2,−x1, x4,−x3, x6,−x5).

Let M be a submanifold of R6 given by

ϕ(u, v, w, t )= (u
p

2, v
p

2,u +v,u −v, w − t , t −w ).

Then we have an orthonormal frame of M as follows:

X1 =
1

2
(
p

2
∂

∂x1
+

∂

∂x3
+

∂

∂x4
), X2 =

1

2
(
p

2
∂

∂x2
+

∂

∂x3
−

∂

∂x4
),

X3 =
1
p

2
(
∂

∂x5
−

∂

∂x6
), X4 =

1
p

2
(−

∂

∂x5
+

∂

∂x6
).

Put D1 = Span{X1, X2} and D2 = Span{X3, X4}, then M is a bi-slant submanifold with D1 and

D2 are anti-invariant distributions. Furthermore, M is an anti-invariant submanifold.

Now, we are going to give an example of bi-slant submanifold for Case 2 as follows:
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Example 3.2. We consider the Euclidian space R6 with coordinates

(x1, x2, x3, x4, x5, x6). Let J be an almost complex structure on R6 such that

J(x1, x2, x3, x4) = (−x4,−x5,−x6, x1, x2, x3).

Let M be a submanifold of R6 with

ϕ(u1,u2, v1, v2) = (u1 cosθ1 −u2 sinθ1,u1 sinθ1 +u2 cosθ1,0,

v1 cosθ2 −v2 sinθ2, v1 sinθ2 +v2 cosθ2,0),

for any θ1,θ2 ∈ [0, π2 ]. Then we have an orthonormal frame of M as follows:

X1 = cosθ1
∂

∂x1
+sinθ1

∂

∂x2
, X2 = cosθ2

∂

∂x4
+sinθ2

∂

∂x5
, X3 =

∂

∂x3
,

X4 =
∂

∂x6
, X5 =−sinθ1

∂

∂x1
+cosθ1

∂

∂x2
, X6 =−sinθ2

∂

∂x4
+cosθ2

∂

∂x5
.

If we put D1 = Span{X1, X2}, D2 = Span{X5, X6}, then M is bi-slant submanifold with D1 and

D2 are θ= (θ1 −θ2)−slant distributions. But M is not a slant submanifold.

Now, we are going to give an example of bi-slant submanifold for Case 3 as follows:

Example 3.3. Let J be an almost complex structure on R8 such that

J(x1, x2, x3, x4, x5, x6, x7, x8) = (−x5,−x6,−x7,−x8, x1, x2, x3, x4).

Let M be a submanifold of R8 with

ϕ(u, v, w, t )= (
1

2
(u −v),

1

2
(u +v),

p
2

2
u,

p
2

2
v, w, t ,0,0).

Then we have an orthonormal frame of M as follows:

X1 =
1

2
(
∂

∂x1
+

∂

∂x2
+
p

2
∂

∂x3
), X2 =

1

2
(−

∂

∂x1
+

∂

∂x2
+
p

2
∂

∂x4
),

X3 =
∂

∂x5
, X4 =

∂

∂x6
.

Put D1 = Span{X1, X2} and D2 = Span{X3, X4} then M is bi-slant submanifold with D1 and D2

are anti-invariant distributions. Futhermore, M is a slant submanifold with slant angle θ = π
3 .

Let Pi : T M → Di , i ∈ {1,2}, be orthogonal projections. It is well known that

〈Pi Xi ,Yi 〉 = 〈Xi ,Pi Yi 〉 (3.2)

for Xi ,Yi ∈Γ(Di ) [5, 10]. Furthermore, it can be proved that

(Pi T )2 Xi =−cos2θi Xi (3.3)
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for any Xi ∈Γ(Di ). From (3.2) and (3.3), we have

〈Pi T Xi ,Pi T Yi 〉 = 〈T Xi ,Pi T Yi 〉

= −〈Xi ,T Pi T Yi 〉

= −〈Xi ,P1T Pi T Yi +P2T Pi T Yi 〉

= −〈Xi ,−cos2θi Yi 〉

= cos2θi 〈Xi ,Yi 〉. (3.4)

Since ‖T X ‖2+‖F X ‖2 = ‖J X ‖2, we get

‖P1T X ‖2 +‖P2T X ‖2 +‖F X ‖2 = ‖J X ‖2 (3.5)

for any X ∈ T M . Now, we choose orthonormal basis {e1, . . . ,en} of Tp M such that

D1 = Span{e1, . . . ,e2m} and D2 = Span{e2n+1, . . . ,e2n}. Using (3.4) and (3.5), we have

‖P2Tei‖2 +‖Fei‖2 = sin2θ1 (3.6)

and

‖P1Te j‖2 +‖Fe j‖2 = sin2θ2 (3.7)

for i ∈ {1, . . . ,2m} and j ∈ {2m + 1, . . . ,2n}. Therefore, we can choose a bi-slant orthonormal

basis {e1, . . . ,e2n} of Tp M satisfying that

Te1 = cosθ1e2 +P2Te1, Te2 =−cosθ1e1 +P2Te2, . . . ,

Te2m−1 = cosθ1e2m +P2Te2m−1, Te2m =−cosθ1e2m−1 +P2Te2m,

Te2m+1 = cosθ2e2m+2 +P1Te2m+1, Te2m+2 =−cosθ2e2m+1 +P1Te2m+2

, . . . ,Te2n =−cosθ2n−1e2n +P1Te2n−1. (3.8)

Since both D1 and D2 are slant distributions, we note that Pi Teℓ+2 is orthogonal to both eℓ

and eℓ+1 vectors, where eℓ, eℓ+1 and eℓ+2 are any mutually orthogonal vectors in Di , i ∈ {1,2}.

If M is a semi-slant submanifold of M̃ , then θ1 = 0. Thus, we have

〈J X1,Y2〉 = 0 (3.9)

for all X1 ∈ Γ(D1) and Y2 ∈ Γ(D2). Taking into consideration (3.8) and (3.9), we can choose an

orthonormal basis {e1, . . . ,e2n} of semi-slant submanifolds satisfies that

Te1 = e2, . . . ,Te2m−1 = e2m,

Te2m+1 = cosθ2e2m+2, . . . ,Te2n−1 = cosθ2e2n . (3.10)
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If M is a hemi-slant submanifold of M̃ , then θ2 = π
2 . Thus, we have

〈J X2,Y2〉 = 0 (3.11)

for all X2,Y2 ∈ Γ(D2). From (3.8) and (3.11), we can choose an orthonormal basis {e1, . . . ,e2n}

of hemi-slant submanifolds satisfying that

‖P1Te j‖2 = ‖Te j‖2, i ∈ {1, . . . ,2m},

‖P2Tei‖2 = 0, j ∈ {2m +1, . . . ,2n}. (3.12)

Now, we shall need the following lemma:

Lemma 3.4 ([5]). Let M be a (θ1,θ2) bi-slant submanifold of an almost Hermitian manifold

M̃. Given θ ∈ [0, π2 ], M is θ-slant if and only if the following equations hold:

P2T P1T P1 +P2T P2T P1 = 0, (3.13)

P1T P1T P2 +P1T P2T P2 = 0, (3.14)

P1T P2T P1 = (cos2θ1 −cos2θ)P1, (3.15)

P2T P1T P2 = (cos2θ2 −cos2θ)P2. (3.16)

Let M be a (θ1,θ2) bi-slant submanifold. Also, if M is a θ-slant submanifold, then taking

into consideration (3.15), we have

‖P2Tei‖2 = 〈P2Tei ,P2Tei 〉 = −〈ei ,T P2Tei 〉

= −〈ei ,P1T P2Tei 〉

= cos2θ−cos2θ1 (3.17)

for i ∈ {1, . . . ,2m}. Using the similar way, we have

‖P1Te j‖2 = cos2θ−cos2θ2 (3.18)

for j ∈ {2m+1, . . . ,2n}. From (3.8), (3.17) and (3.18), if M is a slant submanifold with θ1 = θ2 =
θ, then we can choose orthonormal basis {e1, . . . ,e2n} of Tp M such that

Te1 = cosθe2, . . . ,Te2n−1 = cosθ e2n . (3.19)

We note that the orthonormal basis given in (3.19) was firstly given by B.-Y. Chen in [7].

4. Ricci curvature

In this section, we are going to give an inequality involving Ricci curvature of bi-slant

submanifold on generalized complex space form and study this inequality for semi-slant

submanifold, hemi-slant submanifold and slant submanifold of generalized complex space

forms.
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Theorem 4.1. Let M be a 2n-dimensional (θ1,θ2) bi-slant submanifold of a 2k-dimensional

generalized complex space form. Then

(a) For X ∈ T 1
p M =

{
X ∈ Tp M | 〈X , X 〉 = 1

}
, it follows that

Ric (X ) ≤ n2‖H‖2 +
c +3α

4
(2n −1)+

3(c −α)

8
(cos2θ1 +cos2θ2)

+‖P1T XD2‖
2 +‖P2T XD1‖

2), (4.1)

where θ1 is slant angle of D1, θ2 is slant angle of D2 and Ri c(X ) is the Ricci curvature of M.

(b) The equality case of (4.1) is satisfied by X ∈ T 1
p M if and only if




σ (X ,Y )= 0, for all Y ∈ Tp M orthogonal to X ,

σ (X , X )= nH (p).
(4.2)

(c) The equality case of (4.1) holds for all X ∈ T 1
p M if and only if p is a totally geodesic point.

Proof. From (2.4) and (2.5), we have

n2‖H‖2 = τ(p)− τ̃(Tp M )+
1

4

2k∑

r=n+1
(σr

11 −σr
22 −·· ·−σr

nn )2

+
2k∑

r=2n+1

2n∑

j=2

(σr
1 j )2 −

2k∑

r=2n+1

∑

1 6=i< j≤2n

(σr
i iσ

r
j j − (σr

i j )2). (4.3)

Using

2k∑

r=2n+1

∑

1 6=i< j≤2n

σr
i iσ

r
j j − (σr

i j )2 =
∑

1 6=i< j≤2n

Ki j − K̃i j (4.4)

and ∑

1 6=i< j≤2n

Ki j = τ(p)−Ri c(e1), (4.5)

we obtain

Ri c(e1) = n2‖H‖2 + R̃i cTp M (e1)−
2k∑

r=2n+1

2n∑

j=2

(σr
1 j )2

−
1

4

2k∑

r=2n+1
(σr

11 −σr
22 −·· ·−σr

nn )2. (4.6)

Since we can choose e1 = X as any unit vector in T 1
p M , we get the following inequality:

Ric(X )≤ n2‖H‖2+ R̃ic(Tp M) (X ) . (4.7)

Now, we calculate R̃ic(Tp M) (X ). Let p ∈ M and {e1, . . . ,e2m ,e2m+1, . . . ,e2n} be orthonormal basis

of M such that {e1, . . . ,e2m} is an orthonormal basis of D1 and {e2m+1, . . . ,e2n} is an orthonor-

mal basis of D2. From (2.9) and (3.8), we have the following equalities:

R̃i cD1 (e1) =
2m∑

j=1

g̃ (R̃(e1,e j )e j ,e1)
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=
c +3α

4
(2m −1)+

3(c −α)

4
cos2θ1, (4.8)

R̃i cD2 (e2m+1) =
2n∑

j=2m+2

g̃ (R̃(e2m+1,e j )e j ,e2m+1)

=
c +3α

4
(2n −2m −1)+

3(c −α)

4
cos2θ2, (4.9)

2n∑

j=2m+1

g̃ (R̃(e1,e j )e j ,e1) =
c +3α

4
(2n −2m)+

3(c −α)

4

2n∑

j=2m+1

〈P2Te1,e j 〉2, (4.10)

2m∑

j=1

g̃ (R̃(e2m+1,e j )e j ,e2m+1) =
c +3α

4
(2m)+

3(c −α)

4

2m∑

j=1

〈P1Te2m+1,e j 〉2, (4.11)

2m∑

j=1

g̃ (R̃(e1,e j )e j ,e2m+1) =
3(c −α)

4

2m∑

j=1

〈Te1,e j 〉〈Te2m+1,e j 〉

=
3(c −α)

4
〈Je1, Je2m+1〉

= 0. (4.12)

Now, we choose X = 1p
2

(e1 +e2m+1). Then ‖X ‖= 1 and X ∈ T 1
p M . Thus, we get

R̃i cTp M (X ) =
1

2
{R̃i cD1 (e1)+ R̃i cD2 (e2m+1)

+
2n∑

j=2m+1

g̃ (R̃(e1,e j )e j ,e1)+
2m∑

j=1

g̃ (R̃(e2m+1,e j )e j ,e2m+1)}

+
2m∑

j=1

g̃ (R̃(e1,e j )e j ,e2m+1). (4.13)

If we put (4.8), (4.9), (4.10), (4.11) and (4.12) in (4.13), we have

R̃i cTp M (X ) =
c +3α

4
(2n −1)+

3(c −α)

8
(cos2θ1 +cos2θ2)

+
2n∑

j=2m+1

〈P2Te1,e j 〉2 +
2m∑

j=1

〈P1Te2m+1,e j 〉2}. (4.14)

From (4.14) and (4.7), we get (4.1). The equality in (4.1) is valid if and only if

σr
12 = ·· · =σr

12n = 0 and σr
11 =σr

22 +·· ·+σr
2n2n , r ∈ {2n +1, . . . ,2k} , (4.15)

which is equivalent to (4.2).

Now, we prove the statement (c). Assuming the equality case of (4.1) for all X ∈ T 1
p M , in

view of (4.15), for each r ∈ {2n +1, . . . ,2k}, we have

σr
i j = 0, i 6= j , (4.16)
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2σr
i i = σr

11 +σr
22 +·· ·+σr

2n2n , i ∈ {1, . . . ,2n} . (4.17)

From (4.17), we have 2σr
11 = 2σr

22 = ·· · = 2σr
2n2n =σr

11 +σr
22 +·· ·+σr

2n2n , which implies that

2(n −1)
(
σr

11 +σr
22 +·· ·+σr

2n2n

)
= 0.

Since n 6= 1, σr
11 +σr

22 + ·· ·+σr
nn = 0 is valid. Then in view of (4.17), we get σr

i i
= 0 for all i ∈

{1, . . . ,n}. This together with (4.16) gives σr
i j

= 0 for all i , j ∈ {1, . . . ,2n} and r ∈ {2n +1, . . . ,2k},

that is, p is a totally geodesic point. The proof of the converse part is straightforward.

From Theorem 4.1, we get the following corollaries:

Corollary 4.2.

(a) Let M be a 2n-dimensional submanifold of a generalized complex space form M̃ (c ,α). We

have the following table:

M̃ M Inequality

(1) M̃(c ,α) bi− slant Ric(X ) ≤ n2‖H‖2 + c+3α
4

(2n −1)+ 3(c−α)
8

(cos2
θ1 +cos2

θ2

+‖P1T XD2‖2 +‖P2T XD1‖2)

(2) M̃(c ,α) semi− slant Ric(X ) ≤ n2‖H‖2 + c+3α
4

(2n −1)+ 3(c−α)
8

(1+cos2
θ2)

(3) M̃(c ,α) hemi− slant Ric(X ) ≤ n2‖H‖2 + c+3α
4

(2n −1)+ 3(c−α)
8

(cos2
θ1 +‖T XD2‖2

+‖P2T XD1‖2)

(4) M̃(c ,α) CR Ric(X ) ≤ n2‖H‖2 + c+3α
4

(2n −1)+ 3(c−α)
8

(5) M̃(c ,α) θ− slant with Ric(X ) ≤ n2‖H‖2 + c+3α
4

(2n −1)+ 3(c−α)
4

cos2
θ

θ1 = θ2 = θ or

θ1 = θ2 6= θ

(6) M̃(c ,α) invariant Ric(X ) ≤ n2‖H‖2 + c+3α
4

(2n −1)+ 3(c−α)
4

(7) M̃(c ,α) anti− invariant Ric(X ) ≤ n2‖H‖2 + c+3α
4 (2n −1)



154 MEHMET GÜLBAHAR, EROL KILIÇ AND SADIK KELEŞ

(b) The equality case of inequalities in the previous table is satisfied for X ∈ T 1
p M if and only if

{
σ (X ,Y ) = 0, for all Y ∈ Tp M orthogonal to X ,

2σ (X , X )= nH
(
p

)
.

If H (p) = 0, then X ∈ T 1
p M satisfies the equality case of inequalities in the previous table if

and only if X ∈N p = {X ∈ Tp M : σ(X ,Y ) = 0, ∀Y ∈ Tp M }.

(c) The equality case of inequalities (1)–(4) is satisfied for all X ∈ T 1
p M if and only if p is a

totally geodesic point.

(d) The equality case of inequalities (5)–(7) is satisfied for all X ∈ T 1
p M if and only if either p is

a totally geodesic point or n = 1 and p is a totally umbilical point.

Proof. From Theorem 4.1, we have the inequality (1) immediately. Taking (3.10) into consid-

eration, we have

P1T XD2 = P2T XD1 = 0, (4.18)

where X = XD1 +XD2 for XD1 ∈ D1 and XD2 ∈ D2. If we write (4.18) and (3.12) in the inequality

(1), we get the inequalities (2) and (3), respectively. Next, putting θ2 = π
2 in the inequality (2),

we have the inequality (4) or putting θ1 = 0 in the inequality (3), then

T XD2 =P2T XD1 = 0. (4.19)

Thus, we have the inequality (4) again. If we put (3.17) and (3.18) in the inequality (1), we

get the inequality (5). Writing θ = 0 and θ = π
2 in the inequality (5), we obtain the inequal-

ities (6) and (7), respectively. Hence proof of the (a) is complete. The statements (b-d) are

straightforward from Theorem 4.1.

Remark 4.3. The inequalities (5-7) on the above table were proved by S. Hong and M. M.

Tripathi in [11]. The authors also studied generic submanifolds of generalized complex space

forms. Since generic submanifolds don’t contain slant distributions, we note that bi-slant

submanifolds are not a particular case of generic submanifold.

Corollary 4.4.

(a) Let M be a 2n-dimensional submanifold of a complex space form M̃ (4c). We have the

following table:
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M̃ M Inequality

(1) M̃(4c) bi− slant Ric(X ) ≤ n2‖H‖2 + (2n −1)c + 3c
2

(cos2
θ1 +cos2

θ2

+‖P1T XD2‖2 +‖P2T XD1‖2)

(2) M̃(4c) semi− slant Ric(X ) ≤ n2‖H‖2 + (2n −1)c + 3c
2

(1+cos2
θ2)

(3) M̃(4c) hemi− slant Ric(X ) ≤ n2‖H‖2 + (2n −1)c + 3c
2

(cos2
θ1 +‖T XD2‖2

+‖P2T XD1‖2)

(4) M̃(4c) CR Ric(X ) ≤ n2‖H‖2 +2(n +1)c + 3c
2

(5) M̃(4c) θ− slant with Ric(X ) ≤ n2‖H‖2 + (2n −1)c +3c cos2
θ

θ1 = θ2 = θ or

θ1 = θ2 6= θ

(6) M̃(4c) anti− invariant Ric(X ) ≤ n2‖H‖2 + (2n −1)c

(b) The equality case of inequalities in the previous table is satisfied for X ∈ T 1
p M if and only if

{
σ (X ,Y ) = 0, for all Y ∈ Tp M orthogonal to X ,

2σ (X , X )= nH
(
p

)
.

If H (p) = 0, then X ∈ T 1
p M satisfies the equality case of inequalities in the previous table if

and only if X ∈Np = {X ∈ Tp M : σ(X ,Y ) = 0, ∀Y ∈ Tp M }.

(c) The equality case of inequalities (1)–(4) is satisfied for all X ∈ T 1
p M if and only if p is a

totally geodesic point.

(d) The equality case of inequalities (5)–(6) is satisfied for all X ∈ T 1
p M if and only if either p is

a totally geodesic point or n = 2 and p is a totally umbilical point.

Remark 4.5. In [13], K. Matsumoto, I. Mihai and A. Oiaga compute the inequalities (5-6). In

addition to this, using the fact that every invariant submanifold of a (nearly) Kaehler manifold

is minimal, they gave the following corollary.

Corollary 4.6. Let M be an 2n-dimensional invariant submanifold of a complex space form

M̃ (4c). Then



156 MEHMET GÜLBAHAR, EROL KILIÇ AND SADIK KELEŞ

(a) Any X ∈ T 1
p M =

{
X ∈ Tp M | 〈X , X 〉 = 1

}
satisfies

Ric (X )≤ 2(n +1)c. (4.20)

(b) An X ∈ T 1
p M satisfies the equality case of (4.20) if and only if X ∈Np .

(c) The equality case of (4.20) is satisfied for all X ∈ T 1
p M if and only if p is a totally geodesic

point.

5. Scalar curvature and δ-invariant

Now, we recall the following definition of B.-Y. Chen and the following Lemma for future

uses [8].

Definition 5.1. Let M be a submanifold of a Riemannian manifold M̃ . The Chen invariant at

a point p ∈ M , denoted by δM (p), is defined by

δM (p) = τ(p)− inf(K )(p), (5.1)

where τ(p) is the scalar curvature and

inf(K )(p) = inf{K (Π) : K (Π) is a plane section of Tp M }.

Lemma 5.2. If n > k ≥ 2 and a1, . . . , an , a are real numbers such that

( n∑

i=1

ai

)2
= (n −1)(

n∑

i=1

a2
i +a), (5.2)

then

2a1a2 ≥ a,

with equality holding if and only if

a1 +a2 = a3 = ·· · = an .

Let Π= Span{X ,Y } be any 2-dimensional plane section of Tp M . We set

T (Π) = 〈T X ,Y 〉2. (5.3)

Now, we are going to give an optimal inequality involving the Chen invariant as follows:
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Theorem 5.3. Let M be a 2n-dimensional (θ1,θ2) bi-slant submanifold of a 2k-dimensional

generalized complex space form. For any 2-dimensional plane sectionΠ= Span{X ,Y } in Tp M,

we have

δM (p) ≤
n2(n −2)

2(n −1)
‖H‖2 +

c +3α

4
(2n +1)(n −1)+

3(c −α)

8
[n cos2θ1

+n cos2θ2 +
1

2
‖P1T ‖2 +

1

2
‖P2T ‖2 −2T (Π)]. (5.4)

The equality case of the inequality (5.4) holds at a point p ∈ M if and only if there exists an

orthonormal basis {e1, . . . ,e2n} of Tp M and an orthonormal basis {e2n+1, . . . ,e2k } of T ⊥
p M such

that the shape operators of M have the following forms:

A2n+1 =




a 0 0 . . . 0

0 b 0 . . . 0

0 0 µ . . . 0
...

...
...

. . . 0

0 0 0 . . . µ




, a +b =µ, (5.5)

Ar =




c d 0 . . . 0

d −c 0 . . . 0

0 0 0 . . . 0
...

...
...

. . . 0

0 0 0 . . . 0




, r ∈ {2n +2, . . . ,2k}. (5.6)

Proof. From the Gauss equation and (4.14), we have

2τ(p) = n2‖H‖2 −‖σ‖2 +
c +3α

2
(2n −1)n +

3(c −α)

8
[2n cos2θ1

+2n cos2θ2 +‖P1T ‖2 +‖P2T ‖2]. (5.7)

In equation (5.7), if we put

w = 2τ(p)−
n2(n −1)

n −2
‖H‖2 −

c +3α

2
(2n −1)n

−
3(c −α)

8
[2n cos2θ1 +2n cos2θ2 +‖P1T ‖2 +‖P2T ‖2], (5.8)

we get

n2‖H‖2 = (n −1)(w +‖σ‖2). (5.9)

If we choose e2n+1 in the direction of the mean curvature vector H (p), then (5.9) gives

(
2n∑

i=1

σ2n+1
i i )2 = (n −1)[

2n∑

i=1

(σ2n+1
i i )2 +

∑

i 6= j

(σ2n+1
i j )2 +

2k∑

r=2n+2

2n∑

i , j=1

(σr
i j )2 +w ]. (5.10)
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Applying Lemma 5.2 and equation (5.10), we obtain

2σ2n+1
11 σ2n+1

22 ≥
∑

i 6= j

(σ2n+1
i j )2 +

2k∑

r=2n+2

2n∑

i , j=1

(σr
i j )2 +w. (5.11)

Therefore, we have

K (Π) =
c +3α

4
+

3(c −α)

4
T (Π)+

2k∑

r=2n+1
[σr

11σ
r
22 − (σ12)2]

≥
c +3α

4
+

3(c −α)

4
T (Π)+

1

2
[
∑

i 6= j

(σ2n+1
i j )2

+
2k∑

r=2n+2

2n∑

i , j=1

(σr
i j )2 +w ]+

2k∑

r=2n+2
σr

11σ
r
22 −

2k∑

r=2n+2
(σ12)2

=
c +3α

4
+

3(c −α)

4
T (Π)+

1

2

∑

i 6= j

(σ2n+1
i j )2

+
1

2

2k∑

r=2n+2

2n∑

i , j=1

(σr
i j )2 +

1

2

2k∑

r=2n+2
(σr

11 +σr
22)2

+
∑

j>2

[(σ2n+1
1 j )2 + (σ2n+1

2 j )2]+
w

2

≥
c +3α

4
+

3(c −α)

4
T (Π)+

w

2
. (5.12)

From (5.8) and (5.12), we have

infK (Π) ≥
c +3α

4
+

3(c −α)

4
T (Π)+τ(p)−

n2(n −1)

n −2
‖H‖2

−
3(c −α)

8
(2n cos2θ1 +2n cos2θ2 +‖P1T ‖2

+‖P2T ‖2). (5.13)

From (5.1) and (5.13), we get (5.4).

The equality case of (5.4) is satisfied at p ∈ M if and only if

σ2n+1
i j = 0, ∀i 6= j , i , j > 2,

σr
i j = 0, ∀i 6= j , i , j > 2, r ∈ {2n +1, . . . ,2k},

σr
11 +σr

22 = 0, ∀r ∈ {2n +2, . . . ,2k},

σ2n+1
1 j =σ2n+1

2 j = 0, ∀ j > 2,

σ2n+1
11 =σ2n+1

22 =σ2n+1
33 = . . . =σ2n+1

2n2n , (5.14)

which shows that the shape operators of M at p ∈ M take the form of (5.5) and (5.6).

From Theorem 5.3, we get the following corollaries:
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Corollary 5.4. Let M be a submanifold of a generalized complex space form M̃ (c ,α). For any

2-dimensional plane section Π in Tp M, we have the following table:

M̃ M Inequality

(1) M̃(c ,α) bi− slant δM (p) ≤ n2(n−2)
2(n−1)

‖H‖2 + c+3α
4

(2n +1)(n −1)+ 3(c−α)
8

[n cos2
θ1

+n cos2
θ2 + 1

2
‖P1T ‖2 + 1

2
‖P2T ‖2 −2T (Π)]

(2) M̃(c ,α) semi− slant δM (p) ≤ n2(n−2)
2(n−1) ‖H‖2 + c+3α

4 (2n +1)(n −1)+ 3(c−α)
8 [n(1+cos2

θ2)

−2T (Π)]

(3) M̃(c ,α) hemi− slant δM (p) ≤ n2(n−2)
2(n−1) ‖H‖2 + c+3α

4 (2n +1)(n −1)+ 3(c−α)
8 [n cos2

θ1 + 1
2‖T ‖2

+ 1
2
‖P2T ‖2 −2T (Π)]

(4) M̃(c ,α) CR δM (p) ≤ n2(n−2)
2(n−1)

‖H‖2 + c+3α
4

(2n +1)(n −1)+ 3(c−α)
8

[n −2T (Π)]

(5) M̃(c ,α) θ− slant with δM (p) ≤ n2(n−2)
2(n−1) ‖H‖2 + c+3α

4 (2n +1)(n −1)+ 3(c−α)
4 [n cos2

θ−T (Π)]

θ1 = θ2 = θ or

θ1 = θ2 6= θ

(6) M̃(c ,α) invariant δM (p) ≤ n2(n−2)
2(n−1)

‖H‖2 + c+3α
4

(2n +1)(n −1)+ 3(c−α)
4

[n −T (Π)]

(7) M̃(c ,α) anti− invariant δM (p) ≤ n2(n−2)
2(n−1)

‖H‖2 + c+3α
4

(2n +1)(n −1)

The equality case of the inequalities holds at a point p ∈ M if and only if the shape opera-

tors of M take the form of (5.5) and (5.6).

Remark 5.5. The inequalities (5-7) were proved by J-S. Kim, Y-M. Song and M. M. Tripathi in

[12] and by A. Mihai in [14].

Corollary 5.6. Let M be a submanifold of a complex space form M̃(4c). For any 2-dimensional
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plane section Π in Tp M, we have the following table:

M̃ M Inequality

(1) M̃(c ,α) bi− slant δM (p) ≤ n2(n−2)
2(n−1) ‖H‖2 + (2n +1)(n −1)c + 3c

2 [n cos2
θ1

+n cos2
θ2 + 1

2‖P1T ‖2 + 1
2‖P2T ‖2 −2T (Π)]

(2) M̃(c ,α) semi− slant δM (p) ≤ n2(n−2)
2(n−1)

‖H‖2 + (2n +1)(n −1)c + 3c
2

[n(1+cos2
θ2)

−2T (Π)]

(3) M̃(c ,α) hemi− slant δM (p) ≤ n2(n−2)
2(n−1)

‖H‖2 + (2n +1)(n −1)c + 3c
2

[n cos2
θ1 + 1

2
‖T ‖2

+ 1
2
‖P2T ‖2 −2T (Π)]

(4) M̃(c ,α) CR δM (p) ≤ n2(n−2)
2(n−1) ‖H‖2 + (2n +1)(n −1)c + 3c

2 [n −2T (Π)]

(5) M̃(c ,α) θ− slant with δM (p) ≤ n2(n−2)
2(n−1) ‖H‖2 + (2n +1)(n −1)c +3c[n cos2

θ−T (Π)]

θ1 = θ2 = θ or

θ1 = θ2 6= θ

(6) M̃(c ,α) anti− invariant δM (p) ≤ n2(n−2)
2(n−1) ‖H‖2 + (2n +1)(n −1)c

The equality case of the inequalities holds at a point p ∈ M if and only if the shape opera-

tors of M take the form of (5.5) and (5.6).

Corollary 5.7. Let M be a 2n-dimensional invariant submanifold of a complex space form

M̃ (4c). For any 2-dimensional plane section Π in Tp M, we have

δM (p) ≤ (2n +1)(n −1)c +3c[n −T (Π)]. (5.15)

The equality case of (5.15) satisfied at p ∈ M if and only if the shape operators of M take form

as (5.5) and (5.6).



A USEFUL ORTHONORMAL BASIS 161

Acknowledgement

The second author of this work is supported by 113F388 coded project in the Scientific

and Technological Research Council of Turkey (TÜBİTAK). The authors would like to express
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