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NOTE ON ALZER’S INEQUALITY

CHAO-PING CHEN AND FENG QI

Abstract. If the sequence {ai}
∞

i=1 satisfies △ai = ai+1 − ai > 0, △2ai = △(△ai) = ai+2 −

2ai+1 + ai > 0, i = 0, 1, 2, . . ., a0 = 0. Then
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for all natural numbers n, and all real r > 0.

1. Introduction

The Alzer’s inequality to which title refers is

n

n + 1
<

(

1

n

n
∑

i=1

ir
/

1

n + 1

n+1
∑

i=1

ir

)1/r

(1)

for all natural numbers n, and all real r > 0 (see [1, 2, 4, 5]).
Elezović and Pečarić [3] genealized Alzer’s inequality as follows: If the positive se-

quence {an}
∞
n=1 satisfies
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, n > 0, a0 = 0, (2)

then, for r > 0,
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. (3)

In this paper, we consider the sufficient conditions relating to the sequence {an}
∞
n=1

only, so that (3) strictly holds for all natural numbers n, and all real r > 0.
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Theorem . If the sequence {ai}
∞
i=1 satisfies

△ai = ai+1 − ai > 0 (4)

and

△2ai = △(△ai) = ai+2 − 2ai+1 + ai ≥ 0 (5)

for i = 0, 1, 2, . . . , a0 = 0, then
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for all natural numbers n, and all real r > 0.

2. Lemma

Lemma. For any fixed real r > 0, the function

f(x, y) =
(x + y)r+1 − xr+1

(x + y)r
(x > 0, y > 0)

is strictly increasing with both x and y.

Proof. Easy calculation yields

f ′
x(x, y) =

[(x + y)r+1 − xr+1] − (r + 1)xry

(x + y)r+1
.

By Lagrange’s mean value theorem, there exists at least one point ξ ∈ (x, x + y) such
that

(x + y)r+1 − xr+1 = (r + 1)yξr, x < ξ < x + y

and therefore

[(x + y)r+1 − xr+1] − (r + 1)xry = (r + 1)y(ξr − xr) > 0,

which implies that f ′
x(x, y) > 0. Clearly,

f ′
y(x, y) = 1 +

rxr+1

(x + y)r+1
> 0.

The proof is complete.

3. Proofs of Theorem.

The first proof. (6) is equivalent to
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We now prove (7) by mathematical induction. When n = 1, (7) is ar
1 >
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> 1, so (7) is ture.

Suppose (7) holds for some n ≥ 1, then
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In order to prove (7) for n + 1, it is sufficient to show that
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which can be rearranged as

ar+1
n+1 − ar+1

n

ar
n+1

<
ar+1

n+2 − ar+1
n+1

ar
n+2

. (9)

From (4) and (5) we have

0 = a0 < an < an+1, n = 1, 2, . . . ,

△an = an+1 − an ≤ an+2 − an+1 = △an+1, n = 0, 1, 2, . . . .

In other words, the sequence {an}
∞
n=1 is a positive, strictly increasing and convex one.

By Lemma , we have
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The proof of the theorem is complete.

The second proof. (8) is also equivalant to
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It is easy to see that
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Define

f(x) = (x + △an+1)
r+1, x ∈ [an, an + △an],

g(x) = xr+1, x ∈ [an, an + △an].

By Cauchy’s mean value theorem, there exists at least one point η ∈ (an, an +△an) such
that

(an + △an + △an+1)
r+1 − (an + △an+1)

r+1
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n
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Because of 1/η > 1/(an + △an) = 1/an+1, we have
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The combination of (11), (12) and (13) implies (10), and thus, the proof of the theorem

is complete.
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