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INVERSE PROBLEMS FOR HIGHER ORDER DIFFERENTIAL SYSTEMS
WITH REGULAR SINGULARITIES ON STAR-TYPE GRAPHS

VJACHESLAV YURKO

Abstract. We study an inverse spectral problem for arbitrary order ordinary differen-
tial equations on compact star-type graphs when differential equations have regular sin-
gularities at boundary vertices. As the main spectral characteristics we introduce and
study the so-called Weyl-type matrices which are generalizations of the Weyl function
(m-function) for the classical Sturm-Liouville operator. We provide a procedure for con-
structing the solution of the inverse problem and prove its uniqueness.

1. Introduction

We study an inverse spectral problem for arbitrary order ordinary differential equations

on compact star-type graphs when differential equations have regular singularities at bound-

ary vertices. Boundary value problems on graphs (spatial networks, trees) often appear in

natural sciences and engineering (see [1]-[6]). Inverse spectral problems consist in recovering

operators from their spectral characteristics. We pay attention to the most important nonlin-

ear inverse problems of recovering coefficients of differential equations (potentials) provided

that the structure of the graph is known a priori.

For second-order differential operators on compact graphs inverse spectral problems have

been studied fairly completely in [7-13] and other works. Inverse problems for higher-order

differential operators on graphs were investigated in [14]-[15]. We note that inverse spectral

problems for second-order and for higher-order ordinary differential operators on an inter-

val have been studied by many authors (see the monographs [16]-[22] and the references

therein). Arbitrary order differential operators on an interval with regular singularities were

considered in [23]-[26].

In this paper we study the inverse spectral problem for arbitrary order differential op-

erators with regular singularities on compact star-type graphs. As the main spectral char-

acteristics in this paper we introduce and study the so-called Weyl-type matrices which are
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generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator

(see [27]), of the Weyl matrix for higher-order differential operators on an interval introduced

in [21]-[22], and generalizations of the Weyl-type matrices for higher-order differential op-

erators on graphs (see [14]-[15]). We show that the specification of the Weyl-type matrices

uniquely determines the coefficients of the differential equation on the graph, and we provide

a constructive procedure for the solution of the inverse problem from the given Weyl-type

matrices. For studying this inverse problem we develope the method of spectral mappings

[21]-[22]. We also essentially use ideas from [23] on differential equations with regular singu-

larities. The obtained results are natural generalizations of the well-known results on inverse

problems for differential operators on an interval and on graphs.

2. Formulation of the inverse problem

Consider a compact star-type graph T in Rω with the set of vertices V = {v0, . . . , vp } and

the set of edges E = {e1, . . . ,ep }, where v1, . . . , vp are the boundary vertices, v0 is the inter-

nal vertex, and e j = [v j , v0], j = 1, p,
p∩

j=1
e j = {v0}. Let l j be the length of the edge e j . Each

edge e j ∈ E is parameterized by the parameter x j ∈ [0, l j ] such that x j = 0 corresponds to the

boundary vertices v1, . . . , vp , and x j = l j corresponds to the internal vertex v0. An integrable

function Y on T may be represented as Y = {y j } j=1,p , where the function y j (x j ) is defined on

the edge e j .

Consider the differential equations on T :

y (n)
j (x j )+

n−2∑
µ=0

( νµ j

xn−µ
j

+qµ j (x j )
)

y (µ)
j (x j ) =λy j (x j ), x j ∈ (0, l j ), j = 1, p, (1)

where λ is the spectral parameter, qµ j (x j ) are complex-valued integrable functions. We call

q j = {qµ j }µ=0,n−2 the potential on the edge e j , and we call q = {q j } j=1,p the potential on the

graph T. Let {ξk j }k=1,n be the roots of the characteristic polynomial

δ j (ξ) =
n∑

µ=0
νµ j

µ−1∏
k=0

(ξ−k), νn j := 1, νn−1, j := 0.

For definiteness, we assume that ξk j −ξm j ̸= sn, s ∈ Z, Re ξ1 j < . . . < Re ξn j , ξk j ̸= 0,n −3 (other

cases require minor modifications). We set θ j := n − 1−Re (ξn j − ξ1 j ), and assume that the

functions q (ν)
µ j (x j ), ν= 0,µ−1, are absolutely continuous, and q (µ)

µ j (x j )x
θ j

j ∈ L(0, l j ).

Let λ= ρn , εk = exp(2πi k/n), k = 0,n −1. It is known that the ρ – plane can be partitioned

into sectors S of angle π
n

(
argρ ∈

(
k0π

n , (k0+1)π
n

)
, k0 =−n,n −1

)
in which the roots R1,R2, . . . ,Rn

of the equation Rn −1 = 0 can be numbered in such a way that

Re(ρR1) < Re(ρR2) < . . . < Re(ρRn), ρ ∈ S. (2)
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Clearly, Rk = εηk , where η1, . . . ,ηn is a permutation of the numbers 0,1, . . . ,n−1, depending on

the sector. Let us agree that

ρµ = exp(µ(ln |ρ|+ i arg ρ)), arg ρ ∈ (−π,π], Rµ

k = exp(2πiµηk /n).

Let the numbers ck j 0, k = 1,n, be such that

n∏
k=1

ck j 0 =
(

det[ξν−1
k j ]k,ν=1,n

)−1
.

Then the functions

Ck j (x j ,λ) = x
ξk j

j

∞∑
µ=0

ck jµ(ρx j )nµ, ck jµ = ck j 0

( µ∏
s=1

δ j (ξk j + sn)
)−1

,

are solutions of the differential equation in the case when qµ j (x j ) ≡ 0, µ= 0,n −2. Moreover,

det[C (ν−1)
k j (x j ,λ)]k,ν=1,n ≡ 1. Denote ρ∗ = 2n max

µ, j
∥qµ j∥L(0,l j ), µ = 0,n −2, j = 1, p. In [23] we

constructed special fundamental systems of solutions {Sk j (x j ,λ)}k=1,n and {Ek j (x j ,ρ)}k=1,n

of equation (1) on the edge e j , possessing the following properties.

(1) For each x j ∈ (0, l j ], the functions S(ν)
k j (x j ,λ), ν= 0,n −1, are entire in λ. For each fixed λ,

and x j → 0,

Sk j (x j ,λ) ∼ ck j 0x
ξk j

j , (Sk j (x j ,λ)−Ck j (x j ,λ))x
−ξk j

j = o(x
ξn j−ξ1 j

j ).

Moreover, det[S(ν−1)
k j (x j ,λ)]k,ν=1,n ≡ 1, and |S(ν)

k j (x j ,λ)| ≤C |xξk j−ν|, |ρ|x j ≤ 1. Here and be-

low, we shall denote by the same symbol C various positive constants in the estimates

independent of λ and x j .

(2) For each x j > 0 and for each sector S with property (2), the functions E (ν)
k j (x j ,ρ), ν =

0,n −1, are regular with respect to ρ ∈ S, |ρ| > ρ∗, and continuous for ρ ∈ S, |ρ| ≥ ρ∗.

Moreover,

|E (ν)
k j (x j ,ρ)(ρRk )−ν exp(−ρRk x j )−1| ≤C (|ρ|x j ), ρ ∈ S, |ρ|x j ≥ 1.

(3) The relation

Ek j (x j ,ρ) =
n∑

µ=1
bk jµ(ρ)Sµ j (x j ,λ), (3)

holds, where

bk jµ(ρ) = b0
µ j R

ξµ j

k ρξµ j [1], b0
µ j ̸= 0, ρ ∈ S, ρ→∞,

(4)
n∏

µ=1
b0
µ j = det[Rν−1

k ]k,ν=1,n

(
det[R

ξµ j

k ]k,µ=1,n

)−1
,

where [1] = 1+O(ρ−1).
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Note that the asymptotical formula (4) is the most important and nontrivial property

of these solutions. This property allows one to study both direct and inverse problems for

arbitrary order differential operators with regular singularities (see [24]-[26]).

Consider the linear forms

U jν(y j ) =
ν∑

µ=0
γ jνµy (µ)

j (l j ), j = 1, p, ν= 0,n −1,

where γ jνµ are complex numbers, γ jν := γ jνν ̸= 0. The linear forms U jν will be used in match-

ing conditions at the internal vertex v0 for boundary value problems and for the correspon-

dung special solutions of equation (1).

Fix s = 1, p, k = 1,n −1. Let Ψsk = {ψsk j } j=1,p be solutions of equation (1) on the graph T

under the boundary conditions

ψsks(xs ,λ) ∼ cks0xξks
s , xs → 0, (5)

ψsk j (x j ,λ) = O(x
ξn−k+1, j

j ), x j → 0, j = 1, p, j ̸= s, (6)

and the matching conditions at the vertex v0:

U1ν(ψsk1) = U jν(ψsk j ), j = 2, p, ν= 0,k −1, (7)
p∑

j=1
U jν(ψsk j ) = 0, ν= k,n −1. (8)

The function Ψsk is called the Weyl-type solution of order k with respect to the boundary

vertex vs . Define additionally ψsns(xs ,λ) := Sns(xs ,λ).

Using the fundamental system of solutions {Sµ j (x j ,λ)} on the edge e j , one can write

ψsk j (x j ,λ) =
n∑

µ=1
Msk jµ(λ)Sµ j (x j ,λ), j = 1, p, k = 1,n −1, (9)

where the coefficients Msk jµ(λ) do not depend on x j .

It follows from (9) and the boundary condition (6) for the Weyl-type solutions that

ψsk j (x j ,λ) =
n∑

µ=n−k+1
Msk jµ(λ)Sµ j (x j ,λ), j = 1, p \ s. (10)

Similarly, using (5) one gets

ψsks(xs ,λ) = Sks(xs ,λ)+
n∑

µ=k+1
Mskµ(λ)Sµs(xs ,λ), Mskµ(λ) := Msksµ(λ). (11)

We introduce the matrices Ms(λ), s = 1, p, as follows:

Ms(λ) = [Mskµ(λ)]k,µ=1,n , Mskµ(λ) := δkµ for k ≥ ν.
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The matrix Ms(λ) is called the Weyl-type matrix with respect to the boundary vertex vs . The

inverse problem is formulated as follows. Fix N = 1, p.

Inverse problem 1. Given {Ms(λ)}, s = 1, p \ N , construct q on T.

We note that the notion of the Weyl-type matrices Ms is a generalization of the notion

of the Weyl function (m-function) for the classical Sturm-Liouville operator ([19, 27]) and is

a generalization of the notion of Weyl matrices introduced in [14, 15, 21, 22, 24] for higher-

order differential operators on an interval and on graphs. Thus, Inverse Problem 1 is a gener-

alization of the well-known inverse problems for differential operators on an interval and on

graphs.

We also note that in Inverse problem 1 we do not need to specify all matrices Ms(λ),

s = 1, p; one of them can be omitted. This last fact was first noticed in [8], where the inverse

problem was solved for the Sturm-Liouville operators on an arbitrary tree.

In Section 3 properties of the Weyl-type solutions and the Weyl-type matrices are studied.

Section 4 is devoted to the solution of auxiliary inverse problems of recovering the potential

on a fixed edge. In section 5 we study Inverse Problem 1. For this inverse problem we provide

a constructive procedure for the solution and prove its uniqueness.

3. Properties of spectral characteristics

Fix s = 1, p, k = 1,n −1. Substituting (10)-(11) into matching conditions (7)-(8), we ob-

tain a linear algebraic system with respect to Msk jµ(λ). Solving this system by Cramer’s rule

one gets Msk jµ(λ) =∆sk jµ(λ)/∆sk (λ), where the functions ∆sk jµ(λ) and ∆sk (λ) are entire in λ.

Thus, the functions Msk jµ(λ) are meromorphic in λ, and consequently, the Weyl-type solu-

tions and the Weyl-type matrices are meromorphic in λ. In particular,

Mskµ(λ) = ∆skµ(λ)

∆sk (λ)
, k ≤µ, (12)

where ∆skµ(λ) :=∆sksµ(λ). We note that the function ∆sk (λ) in (12) is the characteristic func-

tion for the boundary value problem Lsk for equation (1) under the conditions

ys(xs) =O(x
ξk+1,s
s ), xs → 0, y j (x j ) =O(x

ξn−k+1, j

j ), x j → 0, j = 1, p, j ̸= s,

U1ν(y1) =U jν(y j ), j = 2, p, ν= 0,k −1,
p∑

j=1
U jν(y j ) = 0, ν= k,n −1.

Zeros of ∆sk (λ) coincide with the eigenvalues of Lsk . Denote

Ωk j = det[R
ξµ j

l ]l ,µ=1,k , Ω0 j := 1, ωk j := Ωk−1, j

Ωk j
, k = 1,n.
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Lemma 1. Fix j = 1, p, and fix a sector S with property (2).

1) Let k = 1,n −1, and let y j (x j ,λ) be a solution of equation (1) on the edge e j under the

condition

y j (x j ,λ) =O(x
ξk+1, j

j ), x j → 0. (13)

Then for x j ∈ (0, l j ], ν= 0,n −1, ρ ∈ S, |ρ|→∞,

y (ν)
j (x j ,λ) =

n∑
µ=k+1

Aµ j (ρ)(ρRµ)ν exp(ρRµx j )[1], (14)

where the coefficients Aµ j (ρ) do not depend on x j . Here and below we assume that argρ =
const, when |ρ|→∞.

2) Let k = 1,n, and let y j (x j ,λ) be a solution of equation (1) on the edge e j under the condition

y j (x j ,λ) ∼ ck j 0x
ξk j

j , x j → 0. (15)

Then for x j ∈ (0, l j ], ν= 0,n −1, ρ ∈ S, |ρ|→∞,

y (ν)
j (x j ,λ) = ωk j

ρξk j
(ρRk )ν exp(ρRk x j )[1]+

n∑
µ=k+1

Bµ j (ρ)(ρRµ)ν exp(ρRµx j )[1], (16)

where the coefficients Bµ j (ρ) do not depend on x j .

Proof. It follows from (13) that

y j (x j ,λ) =
n∑

µ=k+1
aµ j (λ)Sµ j (x j ,λ). (17)

Using the fundamental system of solutions {Ek j (x j ,ρ)}k=1,n , one can write

y j (x j ,λ) =
n∑

m=1
Am j (ρ)Em j (x j ,ρ). (18)

By virtue of (3), we calculate

y j (x j ,λ) =
n∑

m=1
Am j (ρ)

n∑
µ=1

bm jµ(ρ)Sµ j (x j ,λ) =
n∑

µ=1
Sµ j (x j ,λ)

n∑
m=1

Am j (ρ)bm jµ(ρ).

Comparing this relation with (17), we obtain

n∑
m=1

Am j (ρ)bm jµ(ρ) = 0, µ= 1,k. (19)

We consider (19) as a linear algebraic system with respect to A j (ρ), A2 j (ρ), . . . , Ak j (ρ). Solving

this system by Cramer’s rule and taking (4) into account we get

Am j (ρ) =
n∑

µ=k+1
(αmµ j +O(ρ−1))Aµ j (ρ), m = 1,k, (20)
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where αmµ j are constants. Substituting (20) into (18) and using (2) we arrive at (14). Relations

(16) are proved analogously by using (15) instead of (13). ���

Now we are going to study the asymptotic behavior of the Weyl-type solutions.

Lemma 2. Fix s = 1, p, k = 1,n, and fix a sector S with property (2). For xs ∈ (0, ls), ν= 0,n −1,

the following asymptotic formula holds

ψ(ν)
sks(xs ,λ) = ωks

ρξks
(ρRk )ν exp(ρRk xs)[1], ρ ∈ S, |ρ|→∞. (21)

Proof. For k = n, (21) follows from Lemma 1. Fix s = 1, p, k = 1,n −1. Using Lemma 1 and

boundary conditions for Ψsk we get the following asymptotic formulae for ρ ∈ S, |ρ|→∞:

ψ(ν)
sks(xs ,λ) = ωks

ρξks
(ρRk )ν exp(ρRk xs)[1]+

n∑
µ=k+1

Ask
µs(ρ)(ρRµ)ν exp(ρRµxs)[1], xs ∈ (0, ls], (22)

ψ(ν)
sk j (x j ,λ) =

n∑
µ=n−k+1

Ask
µ j (ρ)(ρRµ)ν exp(ρRµx j )[1], j = 1, p \ s, x j ∈ (0, l j ]. (23)

Substituting (22)-(23) into matching conditions (7)-(8) for Ψsk , we obtain the linear algebraic

system with respect to Ask
µ j (ρ). Solving this system by Cramer’s rule, we obtain in particular,

Ask
µ j (ρ) =O(ρ−ξks exp(ρ(Rk −Rµ)l j )). (24)

Substituting (24) into (22) we arrive at (21). ���

It follows from the proof of Lemma 2 that one can also get the asymptotics for ψ(ν)
sk j (x j ,λ),

j ̸= s; but for our purposes only (21) is needed.

4. Auxiliary inverse problems

In this section we consider auxiliary inverse problems of recovering differential operator

on each fixed edge. Fix s = 1, p, and consider the following inverse problem on the edge es .

IP(s). Given the Weyl-type matrix Ms , construct the potential qs on the edge es .

In this inverse problem we construct the potential only on the edge es , but the Weyl-type

matrix Ms brings a global information from the whole graph. In other words, this problem is

not a local inverse problem related only to the edge es .

Let us formulate the uniqueness theorem for the solution of the inverse problem I P (s).

For this purpose together with q we consider a potential q̃ . Everywhere below if a symbol α

denotes an object related to q, then α̃ will denote the analogous object related to q̃ .
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Theorem 1. Fix s = 1, p. If Ms = M̃s , then qs = q̃s . Thus, the specification of the Weyl-type

matrix Ms uniquely determines the potential qs on the edge es .

We omit the proof since it is similar to that in [22, Ch.2]. Moreover, using the method of

spectral mappings and Lemma 2, one can get a constructive procedure for the solution of the

inverse problem I P (s). It can be obtained by the same arguments as for n-th order differential

operators on a finite interval (see [22, Ch.2] for details). Note that like in [22], the nonlinear

inverse problem I P (s) is reduced to the solution of a linear equation in the corresponding

Banach space of sequences. The unique solvability of this linear equation is proved by the

same arguments as in [22].

Fix j = 1, p. Now we define an auxiliary Weyl-type matrix with respect to the internal

vertex v0 and the edge e j . Let φk j (x j ,λ), k = 1,n, be solutions of equation (1) on the edge e j

under the conditions

φ(ν−1)
k j (l j ,λ) = δkν, ν= 1,k, φk j (x j ,λ) =O(x

ξn−k+1, j

j ), x j → 0.

We introduce the matrix m j (λ) = [m j kν(λ)]k,ν=1,n , where m j kν(λ) :=φ(ν−1)
k j (l j ,λ). Clearly, m j kν(λ) =

δkν for k ≥ ν, and detm j (λ) ≡ 1. The matrix m j (λ) is called the Weyl-type matrix with respect

to the internal vertex v0 and the edge e j . Consider the following inverse problem on the edge

e j .

IP[j]. Given the Weyl-type matrix m j , construct the potential q j on the edge e j .

This inverse problem is the classical one, since it is the inverse problem of recovering a

higher-order differential equation on a finite interval from its Weyl-type matrix. This inverse

problem has been solved in [22], where the uniqueness theorem is proved. Moreover, in [22]

an algorithm for the solution of the inverse problem I P [ j ] is given, and necessary and suffi-

cient conditions for the solvability of this inverse problem are provided.

5. Solution of Inverse Problem 1

In this section we obtain a constructive procedure for the solution of Inverse problem 1

and prove its uniqueness. First we prove an auxiliary assertion.

Lemma 3. Fix j = 1, p. Then for each fixed s = 1, p \ j ,

m j 1ν(λ) =
ψ(ν−1)

s1 j (l j ,λ)

ψs1 j (l j ,λ)
, ν= 2,n, (25)

m j kν(λ) =
det[ψsµ j (l j ,λ), . . . ,ψ(k−2)

sµ j (l j ,λ),ψ(ν−1)
sµ j (l j ,λ)]

µ=1,k

det[ψ(ξ−1)
sµ j (l j ,λ)]

ξ,µ=1,k

, 2 ≤ k < ν≤ n. (26)
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Proof. Denote

w j s(x j ,λ) := ψs1 j (x j ,λ)

ψs1 j (l j ,λ)
.

The function w j s(x j ,λ) is a solution of equation (1) on the edge e j , and w j s(l j ,λ) = 1. More-

over, by virtue of the boundary conditions onΨs1, one has w j s(x j ,λ) =O(x
ξn j

j ), x j → 0. Hence,

w j s(x j ,λ) ≡φ1 j (x j ,λ), i.e.

φ1 j (x j ,λ) = ψs1 j (x j ,λ)

ψs1 j (l j ,λ)
. (27)

Similarly, we calculate

φk j (x j ,λ) =
det[ψsµ j (l j ,λ), . . . ,ψ(k−2)

sµ j (l j ,λ),ψsµ j (x j ,λ)]
µ=1,k

det[ψ(ξ−1)
sµ j (l j ,λ)]

ξ,µ=1,k

, k = 2,n −1. (28)

Since m j kν(λ) = φ(ν−1)
k j (l j ,λ), it follows from (27) that (25) holds. Similarly, (26) follows from

(28). ���

Now we are going to obtain a constructive procedure for the solution of Inverse problem

1. Our plan is the following.

Step 1. Let the Weyl-type matrices {Ms(λ)}, s = 1, p \ N , be given. Solving the inverse problem

I P (s) for each fixed s = 1, p \ N , we find the potentials qs on the edges es , s = 1, p \ N .

Step 2. Using the knowledge of the potential on the edges es , s = 1, p \ N , we construct the

Weyl-type matrix mN (λ).

Step 3. Solving the inverse problem I P [N ], we find the potential qN on eN .

Steps 1 and 3 have been already studied in Section 4. It remains to fulfil Step 2.

Suppose that Step 1 is already made, and we found the potentials qs , s = 1, p \ N , on the

edges es , s = 1, p \ N . Then we calculate the functions Sk j (x j ,λ), j = 1, p \ N , k = 1,n.

Fix s = 1, p \ N . All calculations below will be made for this fixed s.

Our goal now is to construct the Weyl-type matrix mN (λ). For this purpose we will use

Lemma 3. According to (25)-(26), in order to construct mN (λ) we have to calculate the func-

tions

ψ(ν)
skN (lN ,λ), k = 1,n −1, ν= 0,n −1. (29)

We will find the functions (29) by the following steps.

1) Using (11) we construct the functions

ψ(ν)
sks(ls ,λ), k = 1,n −1, ν= 0,n −1, (30)
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by the formula

ψ(ν)
sks(ls ,λ) = S(ν)

ks (ls ,λ)+
n∑

µ=k+1
Mskµ(λ)S(ν)

µs (ls ,λ). (31)

2) Using the matching conditions (7) on Ψsk , we get, in particular,

U jν(ψsk j ) =Usν(ψsks), 0 ≤ ν< k ≤ n −1, j = 1, p \ s. (32)

Since the functions (30) were already calculated, it follows that the right-hand sides in (32)

are known. For each fixed k = 1,n −1, we successively use (32) for ν = 0,1, . . . ,k −1, and

calculate recurrently the functions

ψ(ν)
sk j (l j ,λ), k = 1,n −1, ν= 0,k −1, j = 1, p \ s. (33)

In particular we found the functions (29) for ν= 0,k −1.

3) It follows from (10) that

n∑
µ=n−k+1

Msk jµ(λ)S(ν)
µ j (l j ,λ) =ψ(ν)

sk j (l j ,λ), k = 1,n −1, j = 1, p \ s, ν= 0,n −1. (34)

Fix k = 1,n −1, j = 1, p, j ̸= s, j ̸= N , and consider a part of relations (34), namely, for

ν = 0,k −1. For this choice of the parameters, the right-hand sides in (34) are known,

since the functions (33) are known. Relations (34) for ν = 0,k −1, form a linear algebraic

system σsk j with respect to the coefficients Msk jµ(λ), µ= n −k +1,n. Solving this system

by Cramer’s rule, we find this functions. Substituting them into (34), we calculate the

functions

ψ(ν)
sk j (l j ,λ), k = 1,n −1, j = 1, p \ N , ν= 0,n −1. (35)

Note that for j = s these functions were found earlier (see (31)).

4) Let us now use the generalized Kirchhoff’s conditions (8) for Ψsk . Since the functions (35)

are known, one can construct by (8) the functions (29) for k = 1,n −1, ν = k,n −1. Thus,

the functions (29) are known for k = 1,n −1, ν= 0,n −1.

Since the functions (29) are known, we construct the Weyl-type matrix mN (λ) via (25)-

(26) for j = N . Thus, we have obtained the solution of Inverse problem 1 and proved its

uniqueness, i.e. the following assertion holds.

Theorem 2. The specification of the Weyl-type matrices Ms(λ), s = 1, p \ N , uniquely deter-

mines the potential q on T. The solution of Inverse problem 1 can be obtained by the following

algorithm.

Algorithm 1. Given the Weyl-type matrices Ms(λ), s = 1, p \ N .
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1) Find the potentials qs , s = 1, p \ N , by solving the inverse problem I P (s) for each fixed s =
1, p \ N .

2) Calculate S(ν)
k j (l j ,λ), j = 1, p \ N , k = 1,n, ν= 0,n −1.

3) Fix s = 1, p \ N . All calculations below will be made for this fixed s. Construct the functions

(30) via (31).

4) Calculate the functions (33) using (32).

5) Find the functions Msk jµ(λ), by solving the linear algebraic systems σsk j .

6) Construct the functions (35) using (34).

7) Find the functions (29) using (33), (35) and (8).

8) Calculate the Weyl-type matrix mN (λ) via (25)-(26) for j = N .

9) Construct the potential qN on the edge eN by solving the inverse problem I P [N ].
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