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ON SOME PARAMETRIC CLASSIFICATIONS OF
QUASI-SYMMETRIC 2-DESIGNS

DEBASHIS GHOSH AND LAKSHMI KANTA DEY

Abstract. Quasi-symmetric 2-designs with block intersection numbers x and y , where
y = x + 4 and x > 0 are considered. If D(v,b,r,k,λ; x, y) is a quasi-symmetric 2-design
with above condition, then it is shown that the number of such designs is finite, whenever
3 ≤ x ≤ 68. Moreover, the non-existence of triangle free quasi-symmetric 2-designs under
these parameters is obtained.

1. Introduction

During the last several decades quasi-symmetric 2-designs and their classification play

an important role to the study of design theory see for example [6, 10, 12, 13, 15, 16, 18]. Many

results have been developed in the theory of binary codes, basically on self-complementary

codes, self-dual codes using such designs. The main aim of this article is to classify these

designs with certain parametrical restrictions.

Before going further, we recall some of the necessary definitions and results. Let X be a

finite set with v elements, called points and β be a finite family of b distinct k-subset of X ,

called blocks. Then the pair D = (X ,β) is called a balanced incomplete block design (or 2-

design) with parameters (v,b,r,k,λ), (v > k ≥ 3), if each element of X is contained in exactly

r blocks, each block is of size k and any 2-subset of X is contained in exactly λ blocks. This r

is also known as replication parameter.

For 0 ≤ x < k, x is known to be a block intersection number, if there exist B , B ′ ∈ β such

that |B ∩B ′| = x. A symmetric design is a 2-(v,k,λ) design such that b =λ0 = v, r =λ1 = k and

any 2 distinct blocks intersect in λ points. Now a slight generalization in the above defini-

tion will sufficiently broaden to include all symmetric designs. That generalization has been

done in Fisher’s inequality by b ≥ v . Under this consideration we get 2-designs having more

than one intersection number. A 2-design with exactly two intersection numbers is said to be
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a quasi-symmetric 2-design. We denote these intersection numbers by x and y and assume

to be 0 ≤ x < y < k. In this article we consider only the proper quasi-symmetric 2-designs,

i.e. both the intersection numbers are positive and not equal. Examples of quasi-symmetric

2-designs which are not related to symmetric designs or affine designs are rare, therefore con-

struction methods for such quasi-symmetric 2-designs are of great interest. However, some

examples of quasi-symmetric 2-designs can be introduced through symmetric designs by ad-

joining some new blocks to the symmetric designs, so that it has exactly two intersection

numbers λ and 0. Again if D is a multiple of a symmetric 2-(v,k,λ) design, then D is clearly a

quasi-symmetric 2-design with x =λ and y = k.

Let Γ be the usual block graph associated with a quasi-symmetric 2-design D , whose ver-

tices are the blocks of D and two distinct vertices are adjacent iff the corresponding blocks

intersect in y points. In [5], it has been shown that Γ is a strongly regular graph. A reasonable

number of investigations on quasi-symmetric 2-designs are simplified by such block graphs Γ

or sometimes by the complement Γ̄ of Γ. Let c̄ denote the number of triangles on any edge of

Γ̄. Then for any fixed values of x, y ≥ 2 and c̄ ≥ 0, there exist only finitely many such designs.

For further reading, the reader may consult with [2] regarding the basic terminology of de-

sign theory and [17] related to the results on quasi-symmetric 2-designs and strongly regular

graph.

Some results have been established on quasi-symmetric 2-design with x = 0 as one in-

tersection number in [1]. In [8, 9], it has been shown that the number of such designs is

finite provided k or λ(≥ 2) is fixed. Again the quasi-symmetric 2-designs with y = λ has been

studied in [7]. In [5], several necessary conditions are obtained for the existence of a quasi-

symmetric 2-design with parameter set D(v,b,r,k,λ; x, y) by imposing the divisibility restric-

tions on y −x. It was also shown in [16] that there are finitely many such designs for y ≥ 2 and

fixed block size k. Most of the recent works on quasi-symmetric 2-designs have been con-

centrated on the difference of the intersection numbers x and y , where y = x +2 in [14] and

y = x +3 in [10] i.e. the difference of the intersection numbers is 2 and 3.

In this article we study proper quasi-symmetric 2-designs with intersection pair (x, y),

where lower intersection number x is not necessarily zero. However, our aim is to develop the

classification of proper quasi-symmetric 2-designs with the difference of intersection num-

bers four. The assumptions under which our work has been done are v ≥ 2k, λ > 1 and

1 ≤ x < y . In particular, we show that the number of such designs is 18, whenever 3 ≤ x ≤ 68.

These are listed in Table 3. Finally in the last section, we prove that there does not exist any

triangle-free quasi-symmetric 2-designs having non-zero intersection numbers with their dif-

ference four. In this paper we use the software Mathematica 8.0.1 and Maple 14 for carrying

out the major mathematical calculations.
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2. Preliminaries

We recall here some of the results which are useful for the development of this paper. In

addition to these readers can see [5, 17]. For the rest of the paper by quasi-symmetric designs

we mean quasi-symmetric 2-designs.

Lemma 1. In a t-(v,k,λ) design, let λi denote the number of blocks containing any given i -

tuple, i = 0,1, . . . , t with λt =λ, λ0 = b and λ1 = r . Then

λi = (v − i )

(k − i )
λi+1, i = 0,1, . . . , t −1.

Lemma 2 ([3]). Let B be a 2-(v,k,λ) design with intersection numbers s1, s2, . . . , sn ; where s1 ≡
s2 ≡ ·· · ≡ sn ≡ s (mod 2). Then either

(1) r ≡λ (mod 4) or

(2) s ≡ 0(mod 2) ,k ≡ 0(mod 4) , v ≡±1(mod 8) or

(3) s ≡ 1(mod 2) ,k ≡ v (mod 4) , v ≡±1(mod 8).

Lemma 3 ([17]). Let D be a quasi-symmetric design with standard parameter set (v,b,r,k,λ; x, y).

Then the following relations hold:

(1) vr = bk and λ(v −1) = r (k −1).

(2) k(r −1)(x + y −1)−x y(b −1) = k(k −1)(λ−1).

(3) y −x divides k −x and r −λ.

(4) r (−r +kr +λ) = bkλ.

(5) λ≤ k(k−1)
2 .

Lemma 4 ([16]). Let D be a quasi-symmetric design with standard parameter set (v,b,r,k,λ; x, y)

and λ> 1. Then,

(1) b > v.

(2) x ≤ k2

v <λ.

(3) If v ≥ 2k then 2x < k.

(4) For z = y −x and if x ≥ 1+ z + z3 then x <λ< x +1+ z + z3.

Lemma 5 ([10]). Let D be a quasi-symmetric design with standard parameter set (v,b,r,k,λ; x, y)

and a is the number of blocks intersecting a given block in y points. Then,

a = − (λ−1)k2 + (r − r x + x −λ)k

(x − y)y
, (2.1)

b = − (λ−1)k2 + (r − r x + x −λ− r y + y)k −x y

x y
. (2.2)
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Lemma 6 ([13]). Let D be a quasi-symmetric design with standard parameter set (v,b,r,k,λ; x, y).

Then the following relation holds:

a1r 2 +b1r +c1 = 0 (2.3)

where

a1 = (−1+k)x y,

b1 = (x y −k2(−1+ x + y))λ,

c1 = k(−(x y)+k(x + y −λ)+k2(−1+λ))λ.

Lemma 7 ([4]). Let D be a quasi-symmetric design with standard parameter set (v,b,r,k,λ; x, y).

Then the following inequalities hold:

0 ≤ k(v −6)(v −3)(v −k)(2k −x − y)2

−2k(v −3)(v −k)(2k(v −k)−3v)(2k − x − y)

+(6− v)(v −3)(v −1)(k − x)(k − y)(2k − x − y)

+k(v −k)(5v +3k(v −k)(k(v −k)−2(v −1))−3)

+(v −3)(k(v −k)(3v +2)−6(v −1)v)(k − x)(k − y).

0 ≤ k(v −k)(k(v −k)−1)+ (v −2)(v −1)(k −x)(k − y)

−k(v −2)(v −k)(2k −x − y).

3. Parametric characterization

In this section, we give some characterization of parameters for the proper quasi-symmetric

designs with difference of intersection numbers four. We will use D to denote a proper quasi-

symmetric designs with intersection numbers x and y = x +4, x > 0.

Theorem 1. Let D be a proper quasi-symmetric design with standard parameters and y = x+4,

x > 0. Then λ≤ x +26, provided x ≥ 69.

Proof. From the quadratic equation (2.3) we get

∆= b2
1 −4a1c1 =λ(λF (k, x)+G(k, x)),

where F (k, x) = 4(−1+k)k2x(4+x)−4(−1+k)k3x(4+x)+(x(4+x)−k2(3+2x))2 and G(k, x) =
4kx(k −1)(x +4)(k −x)(k −x −4).

Next suppose x ≥ 69, we find out the range of λ for which ∆< 0. Let F i (k, x) = ∂i F (k,x)
∂k i . As

a result F 4(k, x) = 216−96x < 0 for x ≥ 69. We see that if we increase the value of k then the

value of F 3(k, x) decreases. For the larger values of x, we consider x = 69+p, p ≥ 0, we get

F 3(2x +1, x) =−24(27039+806p +6p2) < 0.
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So, F 3(k, x) < 0 for k ≥ 2x +1. Also,

F 2(2x +1, x) = −4(7794696+349844p +5227p2 +26p3)

F 1(2x +1, x) = −933045840−56372784p −1274588p2 −12784p3 −48p4

F (2x +1, x) = −19259788176−1480946112p −45372944p2 −692672p3

−5271p4 −16p5

and as above argument, we conclude F (k, x) < 0 for k ≥ 2x +1. We will show that λF (k, x)+
G(k, x) < 0 when λ ≥ x +26. Here we calculate the case for minimum value of λ = x +26 i.e.

E(k, x) = (x +26)F (k, x)+G(k, x). Denoting partial derivatives of E(k, x) with respect to k as

before, we find E 4(k, x) = 24(234−79x) < 0 for all x ≥ 3. Thus,

E 3(2x +1, x) = −24(488424+14741p +111p2).

E 2(2x +1, x) = −4(121207044+5558948p +84707p2 +429p3).

E 1(2x +1, x) = −4(2573504496+164364396p +3899548p2 +40797p3 +159p4).

E(2x +1, x) = −44147192400−5483493360p −224491768p2 −4193944p3

−37137p4 −127p5.

So, for p ≥ 0, E i (2x +1, x) < 0 for all i = 1,2,3 and E(2x +1, x) < 0 also. Therefore by previous

argument E(2x + 1, x) ≤ E(k, x) < 0 for all k ≥ 2x + 1 and x ≥ 69. But, again for x ≥ 69 and

λ≥ x+26, ∆< 0 - which is not considerable. So, λ is restricted to x+26 when x is greater than

or equal to 69. Hence we are done. ���

Theorem 2. If D be a quasi-symmetric design with x ≥ 61 and λ≥ x +8, then

k +1 ≤ r ≤ 8+ λ(k2(2x +3)− x(x +4))

2(k −1)x(x +4)
. (3.1)

Proof. On substitution y = x +4 and λ= x +p, p ≥ 8 in the quadratic equation (2.3), we carry

out the following calculation. Let ∆ denote the discriminant of the quadratic equation (2.3).

To calculate the larger root, we concentrate on ∆− (16a1)2 < 0 for certain range of x and λ.

Now we calculate

f1(k, x, p) = ∂ f (k, x, p)

∂k
, f2(k, x, p) = ∂ f1(k, x, p)

∂k
,

f3(k, x, p) = ∂ f2(k, x, p)

∂k
, f4(k, x, p) = ∂ f3(k, x, p)

∂k
=−24λ{(λ−x −8)(4x −9)+7x −72}

which is negative for x ≥ 11 and λ≥ x +8 and hence by earlier argument f3(k, x, p) decreases

as k increases. Further computation on fi (k, x, p), i = 0, . . . ,3, we observe that all these ex-

pressions are negative when k ≥ 2x +1, x ≥ 61 and λ≥ x +8. Substituting x by 61+q and λ by

69+p +q and k = 2x +1 in fi (k, x, p) for i = 0, . . . ,3, we get,

f3(q, p) = −24(69+p +q)(6pq2 +3q2 +710pq +185q +20975p +50).
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f2(q, p) = −4248244880−292088512q −7475732q2 −84488q3 −356q4

−1412448880p −93738272qp −2321472q2p −25432q3p −104q4p

−21268640p2 −1084816qp2 −18412q2p2 −104q3p2.

f1(q, p) = −700525319200−57035211440q −1856075592q2 −30178172q3

−245152q4 −796q5 −34373402800p −2950320080qp

−100557908q2p −1702688q3p −14332q4p −48q5p −557288400p2

−38335600qp2 −986204q2p2 −11248q3p2 −48q4p2.

f0(q, p) = f (q, p) = −48377043441520−4695317242208q −189826216296q2

−4091868976q3 −49600255q4 −320566q5 −863q6

−521755144320p −57358651968qp −2580191144q2p

−61024040q3p −802478q4p −5574q5p −16q6p

−9982505360p2 −877504704qp2 −30690960q2p2

−534240q3p2 −4631q4p2 −16q5p2.

Thus the right hand side of the required relation of r can be established, as
p
∆

2a1
< 8, when

x ≥ 61 and λ≥ x +8. Hence r ≤ −b1
2a1

+8. Now from Lemma 6, we have a1 = (k −1)x(x +4) and

b1 =λ(x(x +4)−k2(2x +3)). Therefore

r < 8+ {(2x +3)k2 − x2 −4x}λ

2(k −1)x(x +4)
.

But we already know that k < r for quasi-symmetric designs. These two conclude the equa-

tion (3.1). ���

Theorem 3. Let D be a quasi-symmetric design with standard parameters and y = x +4, then

either x ≤ 68 or λ< x+8 or parameters of D will be assigned by any one of the six cases listed in

Table 1.

Proof. Assume that x ≥ 69 and λ≥ x +9. Again from Theorem 1, we have λ≤ x +26.

Rewriting ∆=λL(k, x,λ), where L(k, x,λ) = λF (k, x)+G(k, x) and F (k, x) and G(k, x) are as in

Theorem 1. Then L(k, x,λ) =−4kx2(4+x)2 +2k2x(4+x)(8+2x2 −2x(−6+λ)−5λ)−4k3x(4+
x)(5+2x−2λ)+x2(4+x)2λ+k4(4x2−4x(−4+λ)+9λ). Hence L4(k, x,λ) = 24(4x(x−λ)+(16x+
9λ)) < 0, for λ≥ x +9 and x ≥ 69.

Now, for x = 69+ p and λ = 78+ p + q, with p ≥ 0 and 0 ≤ q ≤ 17. We get the following

derivations:

L3(6x −11, x,λ) = −4986072−159720p −1272p2 −2340648q −70320pq −528p2q.

L2(6x −11, x,λ) = −704065200−34173664p −549120p2 −2924p3



ON SOME ... 2-DESIGNS 275

Table 1:

x v b r k λ q t m
91 435 465 217 203 101 1 14 6
93 497 568 248 217 108 6 31 11
96 1616 1717 425 400 105 0 25 5

124 657 730 320 288 140 7 32 12
136 568 639 315 280 155 10 35 15
441 1891 1953 945 915 457 7 30 14

−425803872q −19214192pq −288940p2q −1448p3q.

L1(6x −11, x,λ) = −56450920176−3783789120p −93878932p2

−1024420p3 −4156p4 −51429293136q −3097519152pq

−69943996p2q −701792p3q −2640p4q.

L(6x −11, x,λ) = −2081510713152−202441177584p −7436993544p2

−131624648p3 −1134842p4 −3839p5 −4639106021904q

−349596892800pq −10535705648p2q −158721200p3q

−1195319p4q −3600p5q.

Thus L(k, x,λ) < 0 for all k ≥ 6x −11. So, there are no such designs for x ≥ 69, λ ≥ x +9 and

k ≥ 6x −11.

Now we calculate for 2x+1 ≤ k ≤ 6x−12. Let R(k, x, q) = (x+9+q)(k2(2x+3)−x(x+4))−
2(k−1)x(x+4)(k+41+13q). Hence R2(k, x, q) = 2(27+3q+13x+2qx) > 0, where R2(k, x, q) =
∂2R(k,x,q)

∂k2 . Then for x = 69+p, we get R(2x +1, x, q) = −38138688−15353532q −1624512p −
654524pq−23054p2−9297p2q−109p3−44p3q and R(6x−12, x, q) =−(12647676+29734635q)−
(430721+1263014q)p−(4482+17855q)p2−(13+84q)p3. Hence R(k, x, q) < 0 for 2x+1 ≤ k ≤
6x − 12. Thus (x+9+q)(k2(2x+3)−x(x+4))

2(k−1)x(x+4) < k + 41+ 13q. So, from Theorem 2, we get k + 1 ≤ r ≤
k +41+13q.

Consider r = k + t , then 1 ≤ t ≤ 41+13q. From Lemma 4, k is a factor of r (λ− r ) i.e. k is a

factor of t (x +9+q − t ). Let m be the resultant number when k divides t (x +9+q − t ). Then

clearly 0 < m < t .

If we substitute the values of k = t (x+9+q−t )
m ,r = k+t ,λ= x+9+q and y = x+4 in equation

(2.3), we get a quadratic polynomial in x and examine for the each values of q = 0,1, . . . ,17; t =
1,2, . . . ,41+13q and m = 1,2, . . . , t−1. These set of values provide a large number of parameters

of D . But we are interested only those values which satisfy the Calderbank criteria. Accord-

ingly a list of feasible values for the parameters is given in Table 1. ���
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Theorem 4. Let D be a quasi-symmetric design with standard parameter set having y = x +4.

If 3 ≤ x ≤ 68, then D will be one of among 18 set of values given in Table 3.

Proof. We have the expression for∆ as∆=λ2F (k, x)+λG(k, x), where the expression of F (k, x)

and G(k, x) are given in Theorem 1. It is clear that G(k, x) > 0, when k > x+4. Since the highest

power of k in F (k, x) is negative, so, there is some integral values of k depending on x, say

k(x) such that F (k, x) < 0 when k ≥ k(x). Again from Theorem 1, λF (k, x)+G(k, x) < 0 for

some integral values of λ. Hence there exist k(x) and λ(x) for which ∆< 0 when k ≥ k(x) and

λ≥λ(x). Let x = 3+p and k = 6x +37+q , we get

F (q, p) = −897984−27348000p −11651960p2 −1873016p3 −134039p4 −3600p5

−522720q −2295744pq −703804p2q −74336p3q −2640p4q −27192q2 −68560pq2

−13790p2q2 −724p3q2 −492q3 −872pq3 −88p2q3 −3q4 −4pq4

and

G(q, p) = 4(3+p)(7+p)(48+5p +q)(52+5p +q)(54+6p +q)(55+6p +q).

So, the integer k depending on x can take its value as k(x) = 6x +37.

Again for λ= x +691+ s, we have

∆ = (694+p + s)(498816+18422024928p +7918207496p2 +1276525888p3 +91482058p4

+2459039p5 +314966304q +1555924128pq +479692724p2q +50764740p3q

+1804636p4q +17496504q2 +46663896pq2 +9420392p2q2 +495230p3q2 +323892q3

+595452pq3 +60228p2q3 +1998q4 +2739pq4 +897984s +27348000ps +61651960p2s

+1873016p3s +134039p4s +3600p5s +522720qs +2295744pqs +703804p2qs

+74336p3qs +2640p4qs +27192q2s +68560pq2s +13790p2q2s +724p3q2s +492q3s

+872pq3s +88p2q3s +3q4s +4pq4s).

Similarly the values of λ depending on x can be taken as λ(x) = x + 691. Using these

values as upper bounds for k and λ depending upon x, we consider some smaller values than

obtained by the formula for k(x) and λ(x), which satisfy the required criteria. Those values

are listed in Table 2.

Now depending upon the previous restrictions given in Lemmas 3(5) and 4(3) for k and

λ along with k ≤ k(x) and λ≤−G(k, x)/F (k, x) provided F (k, x) < 0, we calculate for each case

of x, the specific values for k and λ. Then depending on each of these values for x, k and λ, we

search the integral values for r as a root of the quadratic equation (2.3) and hence remaining

all the parameters related to a quasi-symmetric design are evaluated. Through these calcu-

lations we obtain 18 new set of values for the parameters of quasi-symmetric designs, which

are tabulated in Table 3. ���
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Table 2:

x λ(x) k(x) x λ(x) k(x) x λ(x) k(x) x λ(x) k(x) x λ(x) k(x)
3 694 54 17 51 45 31 47 91 45 54 254 59 68 311
4 233 35 18 50 47 32 47 98 46 55 258 60 69 315
5 99 32 19 50 49 33 47 106 47 56 262 61 70 319
6 98 30 20 50 51 34 48 108 48 57 266 62 71 322
7 113 29 21 50 53 35 48 118 49 58 270 63 72 326
8 122 29 22 49 56 36 48 132 50 59 274 64 73 331
9 64 32 23 48 59 37 47 176 51 60 277 65 74 336

10 62 33 24 48 62 38 47 127 52 61 282 66 75 340
11 61 34 25 48 65 39 52 128 53 62 286 67 76 343
12 55 36 26 48 68 40 52 142 54 63 291 68 77 348
13 55 37 27 48 71 41 51 189 55 64 295
14 55 39 28 48 74 42 52 192 56 65 299
15 53 41 29 48 78 43 52 247 57 66 303
16 51 43 30 47 84 44 53 251 58 67 307

Table 3:

x y v b r k λ

3 7 63 651 155 15 35
4 8 55 495 144 16 40
4 8 56 231 66 16 18
6 10 91 715 220 28 66
6 10 126 525 125 30 29
6 10 100 330 99 30 29
6 10 120 952 238 30 58
6 10 106 742 210 30 58
8 12 63 651 248 24 92
8 12 64 336 126 24 46

11 15 89 267 99 33 36
11 15 106 265 90 36 30
12 16 78 273 119 34 51
12 16 70 161 69 30 29
15 19 91 273 120 40 52
16 20 76 190 90 36 42
18 22 100 225 99 44 43
22 26 118 177 78 52 34

4. Triangle free designs

In this section we confine ourselves on the triangle-free quasi-symmetric 2-designs. In
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particular, we concentrate only those quasi-symmetric 2-designs D , having no three mutually

disjoint blocks. This is equivalent to say that for a triangle-free quasi-symmetric 2-design the

corresponding block graph Γ whose complement does not contain any triangle. These type of

quasi-symmetric 2-designs are of special interests. Some works have been done on triangle-

free quasi-symmetric 2-designs for the intersection numbers 0 and y in [8]. Later, many works

have been developed in [10], [12] and [13]. We present here some of the relevant results.

Lemma 8 ([12]). Let D be a triangle free quasi-symmetric 2-design with the standard parameter

set (v,b,r,k,λ; x, y). Then

f (λ) ≡ Aλ2 +Bλ+C = 0;

where A, B and C are polynomials in k, x and y given by

A = k[k3 y − x2(x2 −x y + y2)+k(x3 +2x2 y −x y2 + y3)+
k2(x3 − y2(1+ y)+x y(−1+3y)− x2(1+3y))];

B = −2k4 y2 +x3 y(−2x + y)−k2(2x4 −5x y3 −x3(1+ y)+ y3(1+ y)

+3x2 y(1+3y))+kx(−4x2 y2 +3x y2(1+ y)− y3(1+ y)+x3(1+4y))

+k3 y(−2x3 +x2(3+6y)+ x(−1+3y −6y2)+ (y + y3)); and

C = (−1+k)(k − y)y(−2x2 +k y + x y)2.

Lemma 9 ([12]). Let D be a triangle free quasi-symmetric 2-design with the standard parameter

set (v,b,r,k,λ; x, y). Then the following relation holds:

b(y −x)2 = (k(r −1)+x(1−b))(y −x)− (r −λ−k +x)(x −k)+2(y −x)2.

Lemma 10 ([13]). Let D be a triangle free quasi-symmetric 2-design with the standard param-

eter set (v,b,r,k,λ; x, y) and v ≥ 2k. Let z = y −x. Then x ≤ z + z2.

Theorem 5. There does not exist any triangle-free quasi-symmetric 2-designs having non-zero

intersection numbers with the difference of two intersection numbers four.

Proof. Let D be a quasi-symmetric 2-design with standard parameter set

(v,b,r,k,λ; x, y = x+4). We may assume v ≥ 2k. Then by Lemmas 3 and 10, we have k > 2x and

x ≤ 20. Let ∆0 = B 2−4AC = (x2+3kx+12k)2(−16k5(4+x)+k4(1344+208x+49x2)−4k3(320+
40x +60x2 +13x3)+2k2(128−512x −80x2+56x3 +11x4)−4kx(−128−64x −8x2+4x3 +x4)+
x2(x2 −16)2). Above expression contains one perfect square term. So, we verify for remaining

terms under following parametrical conditions. Let the verified term is denoted by M , where

M =−16k5(4+x)+k4(1344+208x+49x2)−4k3(320+40x+60x2+13x3)+2k2(128−512x−80x2+
56x3+11x4)−4kx(−128−64x−8x2+4x3+x4)+x2(x2−16)2. For k = x+19+p, M = 7993984−
6205248p−1551360p2−130176p3−4736p4−64p5−20173440x−8033392px−1047584p2x−
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61056p3x − 1632p4x − 16p5x − 1795103x2 − 626020px2 − 62458p2x2 − 2404p3x2 − 31p4x2 −
24240x3−12720px3−912p2x3−16p3x3+1024x4 - which is clearly negative, for 1 ≤ x ≤ 19 and

p ≥ 0. Therefore, under these parametrical considerations we are unable to find any triangle

free quasi-symmetric 2-designs.

Again, we have k > y = x +4. Then, for 1 ≤ x ≤ 19 and max{2x +1, x +5} ≤ k ≤ x +18 we

examine M . In all the cases, M is found to be a non-perfect square, except for a few, such

as (x,k) = (1,6), then
p

M = 45
p

521, for (x,k) = (7,23), then
p

M = 64i
p

6819 etc. But the ex-

ceptional cases where D has its value perfect square are (x,k, M) = (1,5,720), (1,9,2112), (1,15,

3780), (2,10,2624), (2,18,2496), (3,7,1456), (3,11,3200), (4,12,3840), (4,19,2964), (5,13,4544),

(6,14,5312), (7,15,6144), (9,24,2841). But for these values of x,k and M , we are not getting any

positive integral solutions of λ from the quadratic equation Aλ2 +Bλ+C = 0 and hence no

triangle free quasi-symmetric 2-designs can exist under these parametrical restrictions. ���
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