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TRIPLE POSITIVE SOLUTIONS FOR

THE ONE-DIMENSIONAL p-LAPLACIAN

ZHANBING BAI, MINGFU MA AND XIANGQIAN LIANG

Abstract. We consider the boundary value problem:
`

ϕp(x′(t))
´

′ +q(t)f(t, x(t), x′(t)) = 0, p >

1, t ∈ [0, 1], with x(0) = x(1) = 0, or x(0) = x′(1) = 0. Using a fixed point theorem due to Avery

and Peterson, sufficient conditions are obtained that guarantee the existence of at least three

positive solutions. The emphasis here is the nonlinear term f is involved with the first order

derivative. An example is also included to illustrate the importance of the results obtained.

1. Introduction

Recently, the existence and multiplicity of positive solutions for nonlinear ordinary
differential equations as well as difference equations have been studied extensively; to
identify a few, we refer the reader to [1–20]. Among them, an interest in triple solutions
evolved from the Leggett-Williams multiple fixed-point theorem [13]. And lately, two
triple fixed-point theorems due to Avery [2] and Avery and Peterson [6] have been applied
to obtain triple solutions of certain boundary value problems for ordinary differential
equations as well as for their discrete analogues.

In [6], Avery and Peterson generalize the fixed-point theorem of Leggett-Williams by
using theory of fixed-point index and Dugundji extension theorem. An application of
the theorem be given to prove the existence of three positive solutions to the following
second-order discrete boundary value problem

∆2x(k − 1) + f(x(k)) = 0, for all k ∈ [a+ 1, b+ 1],

x(a) = x(b + 2) = 0,

where f : R → [0,∞) is continuous.
In this paper, we shall consider the existence of multiple solutions for the one-

dimensional singular p-Laplace equations:

(ϕp(x
′(t)))

′
+ q(t)f(t, x(t), x′(t)) = 0, 0 < t < 1, (1.1)
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subject to one of the following boundary conditions:

x(0) = x(1) = 0 (1.2)

or

x(0) = x′(1) = 0, (1.3)

where ϕp(s) = |s|p−2s, p > 1. When the nonlinear term f is without dependence on the

first order derivative, the existence and multiplicity results are available in the literature

[9, 11, 15, 17, 19]. In [11], Kong and Wang studied the multiplicity for equation

(ϕp(x
′(t)))

′
+ q(t)f(t, x(t)) = 0, 0 < t < 1, (1.4)

subject to some nonlinear boundary conditions by using the theory of fixed point index.

In [17], Lü et al obtained triple positive solutions of Problem (1.4)-(1.2) and (1.4)-(1.3)

by using the Leggett-Williams fixed point theorem. In [9, 15], He and Ge obtained triple

positive solutions, Liu and Ge obtained twin positive solutions for Equation (1.4) with

some nonlinear boundary conditions by using the Leggett-Williams fixed point theorem

and a fixed point theorem due to Avery and Henderson, respectively. And in [19], by

using the shooting method, Wong obtain the existence of positive solution for Equation

(1.4) with boundary condition x′(0) = x(1) = 0. However, multiplicity are not available

for the case that the nonlinear term is involved in first order derivative explicitly. This

paper fills this gap in the literature. Equations of the above form occur in the study

of the n-dimensional p-Laplace equation, non-Newtonian fluid theory and the turbulent

flow of a gas in a porous medium [18]. We say x(t) is a positive solution of above problem

provided x(t) ≥ 0 on [0, 1].

Throughout this paper, it is assumed that:

(C1) f ∈ C([0, 1] × [0,∞) ×R, [0,∞));

(C2) q(t) is nonnegative continuous function defined in (0, 1), q(t) 6≡ 0 on any subinterval

of (0, 1). In addition, 0 <
∫ 1

0 q(t)dt < +∞.

Our main results will depend on an application of a fixed-point theorem due to Avery

and Peterson which deals with fixed points of a cone-preserving operator defined on an

ordered Banach space. The emphasis here is that the nonlinear term is involved explicitly

with the first-order derivative.

2. Background Materials and Definitions

For the convenience of the reader, we present here the necessary definitions from cone

theory in Banach spaces; these definitions can be found in the recent literature.

Definition 2.1. Let E be a real Banach space over R. A nonempty convex closed

set P ⊂ E is said to be a cone provided that
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(i) au ∈ P for all u ∈ P and all a ≥ 0 and

(ii) u,−u ∈ P implies u = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y, if and only if y − x ∈ P.

Definition 2.2. An operator is called completely continuous, if it is continuous and
maps bounded sets into precompact sets.

Definition 2.3. The map α is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E provided that α : P → [0,∞) is continuous and

α(tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say the map γ is a nonnegative continuous
convex functional on a cone P of a real Banach space E provided that γ : P → [0,∞) is
continuous and

γ(tx+ (1 − t)y) ≤ tγ(x) + (1 − t)γ(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let γ and θ be nonnegative continuous convex functionals on P , α be a nonnegative
continuous concave functional on P , and ψ be a nonnegative continuous functional on
P . Then for positive real numbers a, b, c, and d, we define the following convex sets:

P (γ, d) = {x ∈ P | γ(x) < d},
P (γ, α, b, d) = {x ∈ P | b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

and a closed set
R(γ, ψ, a, d) = {x ∈ P | a ≤ ψ(x), γ(x) ≤ d}.

The following fixed-point theorem due to Avery and Peterson is fundamental in the
proofs of our main results.

Theorem 2.1.([6]) Let P be a cone in a real Banach space E. Let γ and θ be

nonnegative continuous convex functionals on P , α be a nonnegative continuous concave

functional on P , and ψ be a nonnegative continuous functional on P satisfying ψ(λx) ≤
λψ(x) for 0 ≤ λ ≤ 1, such that for some positive numbers M and d,

α(x) ≤ ψ(x) and ‖x‖ ≤Mγ(x), (2.1)

for all x ∈ P (γ, d). Suppose

T : P (γ, d) → P (γ, d)

is completely continuous and there exist positive numbers a, b, and c with a < b such that
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(S1) {x ∈ P (γ, θ, α, b, c, d) | α(x) > b} 6= ∅, α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);

(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;

(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d), such that

γ(xi) ≤ d, for i = 1, 2, 3;

b < α(x1);

a < ψ(x2), with α(x2) < b;

and

ψ(x3) < a.

3. Existence of Triple Positive Solutions to Problem (1.1) − (1.2)

In this section, we impose growth conditions on f which allow us to apply Theorem
2.1 to establish the existence of triple positive solutions of Problem (1.1)-(1.2). It follows

from (C2) that there exists a natural number k ≥ 3 such that 0 <
∫ (k−1)/k

1/k q(t)dt < +∞.

Let X = C1[0, 1] be endowed with the ordering x ≤ y if x(t) ≤ y(t) for all t ∈ [0, 1],
and the maximum norm, ‖x‖ = max {max0≤t≤1 |x(t)|,max0≤t≤1 |x′(t)|}. From the fact
(ϕp(x

′(t)))
′
= −q(t)f(t, x(t), x′(t)) ≤ 0, we know that x is concave on [0, 1]. So, define

the cone P1 ⊂ X by

P1 = {x ∈ X | x(t) ≥ 0, x(0) = x(1) = 0, x is concave on [0, 1]} ⊂ X.

Let the nonnegative continuous concave functional α1, the nonnegative continuous convex
functional θ1, γ1, and the nonnegative continuous functional ψ1 be defined on the cone
P1 by

γ1(x) = max
0≤t≤1

|x′(t)|, ψ1(x) = θ1(x) = max
0≤t≤1

|x(t)|, α1(x) = min
1

k
≤t≤k−1

k

|x(t)|, for x ∈ P1.

Lemma 3.1. If x ∈ P1, then

max
0≤t≤1

|x(t)| ≤ 1

2
max
0≤t≤1

|x′(t)|.

Proof. Suppose by contrary that there exist t0 ∈ (0, 1) such that |x(t0)|> 1
2 max0≤t≤1

|x′(t)| =: A, then by the Roll Mid-Value Theorem there exist t1 ∈ (0, t0), t2 ∈ (t0, 1)
such that

x′(t1) =
x(t0) − x(0)

t0
=
x(t0)

t0
, x′(t2) =

x(1) − x(t0)

1 − t0
=

−x(t0)
1 − t0

.
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Thus, max0≤t≤1 |x′(t)| ≥ max {|x′(t1)|, |x′(t2)|} > 2A, a contradiction. The proof is
complete.

With Lemma 3.1, the definitions of functionals, and the concavity of x, the functionals
defined above hold relations

1

k
θ1(x) ≤ α1(x) ≤ θ1(x) = ψ1(x), ‖x‖ = max{θ1(x), γ1(x)} = γ1(x), (3.1)

for all x ∈ P1(γ1, d) ⊂ P1, and the condition (2.1) is satisfied.
Define an operator T : P1 → P1 by

(Tx)(t) :=







∫ t

0
ϕ−1

p

(∫ σ

s
q(r)f(r, x(r), x′(r))dr

)

ds, for 0 ≤ t ≤ σ;
∫ 1

t ϕ
−1
p

(∫ s

σ q(r)f(r, x(r), x′(r))dr
)

ds, for σ ≤ t ≤ 1,
(3.2)

where σ(= σx) is described as follows. Let

y(t) :=

∫ t

0

ϕ−1
p

(
∫ t

s

q(r)f(r, x(r), x′(r))dr

)

ds

−
∫ 1

t

ϕ−1
p

(
∫ s

t

q(r)f(r, x(r), x′(r))dr

)

ds, 0 < t < 1. (3.3)

Clearly, y(t) is continuous and strictly increasing in (0, 1) and y(0+) < 0 < y(1−). Thus
y(t) has zeros in (0, 1), and let σ be a zero of y(t) in (0, 1).

From the definition of T , we deduce that for each x ∈ P1, Tx ∈ C1[0, 1], and satisfies
(1.2). Moreover, (Tx)(σ) is the maximum value of Tx on [0, 1], since

(Tx)′(t) :=







ϕ−1
p

(∫ σ

t q(r)f(r, x(r), x′(r))dr
)

, for 0 ≤ t ≤ σ;

−ϕ−1
p

(

∫ t

σ
q(r)f(r, x(r), x′(r))dr

)

, for σ ≤ t ≤ 1,
(3.4)

is continuous and nonincreasing in [0, 1] and (Tx)′(σ) = 0. Since (Tx)′ is nonincreasing
on [0, 1], we have Tx ∈ P1. Moreover,

(ϕp((Tx)
′(t)))′ + q(t)f(t, (Tx)(t), (Tx)′(t)) = 0, 0 < t < 1.

This show that T (P1) ⊂ P1, and that each fixed point of T is a solution of Problem
(1.1)-(1.2). By [17, 19], T : P1 → P1 is completely continuous.

Letting

C1 =ϕ−1
p

(
∫ 1

0

q(r)dr

)

,

M1 = max

{

∫ 1

2

0

ϕ−1
p

(

∫ 1

2

s

q(r)dr

)

ds,

∫ 1

1

2

ϕ−1
p

(

∫ s

1

2

q(r)dr

)

ds

}

,

N1 = min

{

∫ 1

2

1

k

ϕ−1
p

(

∫ 1

2

s

q(r)dr

)

ds,

∫
k−1

k

1

2

ϕ−1
p

(

∫ s

1

2

q(r)dr

)

ds

}

.
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Theorem 3.1. Suppose (C1), (C2) hold and there exist constants 0 < a < b ≤ d/2k

such that the following assumptions hold

(A1) f(t, u, v) ≤ ϕp

(

d
C1

)

, for (t, u, v) ∈ [0, 1]× [0, d/2] × [−d, d];

(A2) f(t, u, v) > ϕp

(

kb
N1

)

, for (t, u, v) ∈ [1/k, (k − 1)/k] × [b, kb] × [−d, d];

(A3) f(t, u, v) < ϕp

(

a
M1

)

, for (t, u, v) ∈ [0, 1]× [0, a] × [−d, d].

Then, the boundary value problem (1.1)-(1.2) has at least three positive solutions x1, x2,

and x3 satisfying

max
0≤t≤1

|x′i(t)| ≤ d, for i = 1, 2, 3;

b < min
1

k
≤t≤k−1

k

|x1(t)|;

a < max
0≤t≤1

|x2(t)| < kb, with min
1

k
≤t≤k−1

k

|x2(t)| < b;

and

max
0≤t≤1

|x3(t)| < a.

Proof. Problem (1.1)-(1.2) has a solution x = x(t) if and only if x solves the operator

equation x(t) = Tx(t). It is well know that T : P1 → P1 is completely continuous.

We now show that all the conditions of Theorem 2.1 are satisfied.

If x ∈ P1(γ1, d), then there is γ1(x) = max0≤t≤1 |x′(t)| ≤ d. With Lemma 3.1,

max0≤t≤1 |x(t)| ≤ d
2 , then assumption (A1) implies f(t, x(t), x′(t)) ≤ ϕp

(

d
C1

)

. On

the other hand, for x ∈ P1, there is Tx ∈ P1, then Tx is concave on [0, 1], and
maxt∈[0,1] |(Tx)′(t)| = max{|(Tx)′(0)|, |(Tx)′(1)|}, so

γ1(Tx) = max
t∈[0,1]

|(Tx)′(t)|

= max

{

ϕ−1
p

(
∫ σ

0

q(r)f(r, x(r), x′(r))dr

)

, ϕ−1
p

(
∫ 1

σ

q(r)f(r, x(r), x′(r))dr

)}

≤ d

C1
· ϕ−1

p

(
∫ 1

0

q(r)dr

)

=
d

C1
· C1 = d.

Hence, T : P1(γ1, d) → P1(γ1, d).

To check condition (S1) of Theorem 2.1, we choose x(t) = kb/2, 0 ≤ t ≤ 1. It is

easy to see that x(t) = kb/2 ∈ P1(γ1, θ1, α1, b, kb, d) and α1(x) = α1(kb/2) > b, and so

{x ∈ P1(γ1, θ1, α1, b, kb, d) | α1(x) > b} 6= ∅. Hence, if x ∈ P1(γ1, θ1, α1, b, kb, d), then

b ≤ x(t) ≤ kb, |x′(t)| ≤ d for 1/k ≤ t ≤ (k − 1)/k. From assumption (A2), we have
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f(t, x(t), x′(t)) ≥ ϕp

(

kb
N1

)

for 1/k ≤ t ≤ (k − 1)/k, and by the conditions of α1 and the

cone P1, we have

α1(Tx) = min
1

k
≤t≤ k−1

k

(Tx)(t)

≥ 1

k
max
0≤t≤1

|(Tx)(t)|

=
1

k

∫ σ

0

ϕ−1
p

(
∫ σ

s

q(r)f(r, x(r), x′(r))dr

)

ds

=
1

k

∫ 1

σ

ϕ−1
p

(
∫ s

σ

q(r)f(r, x(r), x′(r))dr

)

ds

≥ 1

k
· min

{

∫ 1

2

0

ϕ−1
p

(

∫ 1

2

s

q(r)f(r, x(r), x′(r))dr

)

ds,

∫ 1

1

2

ϕ−1
p

(

∫ s

1

2

q(r)f(r, x(r), x′(r))dr

)

ds

}

≥ 1

k
· min

{

∫ 1

2

1

k

ϕ−1
p

(

∫ 1

2

s

q(r)f(r, x(r), x′(r))dr

)

ds,

∫
k−1

k

1

2

ϕ−1
p

(

∫ s

1

2

q(r)f(r, x(r), x′(r))dr

)

ds

}

≥ 1

k
· kb
N1

·N1 = b.

i.e.,

α1(Tx) > b, for all x ∈ P1(γ1, θ1, α1, b, kb, d).

This show that condition (S1) of Theorem 2.1 is satisfied.

Secondly, with (3.1) and b ≤ d
2k , we have

α1(Tx) ≥
1

k
θ1(Tx) >

1

k
· kb = b, for all x ∈ P1(γ1, α1, b, d) with θ1(Tx) > kb.

Thus, condition (S2) of Theorem 2.1 is satisfied.

We finally show that (S3) of Theorem 2.1 also holds. Clearly, as ψ1(0) = 0 < a, there

holds that 0 6∈ R(γ1, ψ1, a, d). Suppose that x ∈ R(γ1, ψ1, a, d) with ψ1(x) = a. Then,
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by the assumption (A3),

ψ1(Tx) = max
0≤t≤1

|(Tx)(t)|

=

∫ σ

0

ϕ−1
p

(
∫ σ

s

q(r)f(r, x(r), x′(r))dr

)

ds

=

∫ 1

σ

ϕ−1
p

(
∫ s

σ

q(r)f(r, x(r), x′(r))dr

)

ds

≤ max

{

∫ 1

2

0

ϕ−1
p

(

∫ 1

2

s

q(r)f(r, x(r), x′(r))dr

)

ds,

∫ 1

1

2

ϕ−1
p

(

∫ s

1

2

q(r)f(r, x(r), x′(r))dr

)

ds

}

<
a

M1
· max

{

∫ 1

2

0

ϕ−1
p

(

∫ 1

2

s

q(r)dr

)

ds,

∫ 1

1

2

ϕ−1
p

(

∫ s

1

2

q(r)dr

)

ds

}

= a.

So, the condition (S3) of Theorem 2.1 is satisfied. On the other hand, for x ∈ P1 there is

(3.1) holds. Therefore, an application of Theorem 2.1 imply the boundary value problem

(1.1)-(1.2) has at least three positive solutions x1, x2, and x3 satisfying

max
0≤t≤1

|x′i(t)| ≤ d, for i = 1, 2, 3;

b < min
1

k
≤t≤k−1

k

|x1(t)|;

a < max
0≤t≤1

|x2(t)| < kb, with min
1

k
≤t≤k−1

k

|x2(t)| < b;

and

max
0≤t≤1

|x3(t)| < a.

The proof is complete.

Example 3.1. Consider the boundary value problem

(|x′|x′)′ + f(t, x(t), x′(t)) = 0, 0 < t < 1, (3.5)

x(0) = x(1) = 0, (3.6)

where

f(t, u, v) =







sin t+ 2306 × u10 + 1
6

(

v
31000

)3
for u ≤ 4,

sin t+ 2306 × 410 + 1
6

(

v
31000

)3
for u > 4.
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Choose a = 1
2 , b = 1, k = 4, d = 50000, we note C1 = 1,M1 =

√
2/6, N1 = 1/12.

Consequently, f(t, u, v) satisfy

f(t, u, v) < ϕp

(

a

M1

)

= 4.5, for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1

2
,−50000 ≤ v ≤ 50000;

f(t, u, v) > ϕp

(

4b

N1

)

= 2304, for 1/4 ≤ t ≤ 3/4, 1 ≤ u ≤ 4,−50000 ≤ v ≤ 50000;

f(t, u, v) < ϕp

(

d

C1

)

= 2.5 × 109, for 0 ≤ t ≤ 1, 0 ≤ u ≤ 25000,−50000 ≤ v ≤ 50000.

Then all assumptions of Theorem 3.1 hold. Thus, with Theorem 3.1, Problem (3.3)-(3.4)

has at least three positive solutions x1, x2, x3 such that

max
0≤t≤1

|x′i(t)| ≤ 50000, for i = 1, 2, 3;

1 < min
1

4
≤t≤ 3

4

|x1(t)|;

1

2
< max

0≤t≤1
|x2(t)| < 4, with min

1

4
≤t≤ 3

4

|x2(t)| < 1;

and

max
0≤t≤1

|x3(t)| <
1

2
.

Remark 3.1. The early results, see [1, 2, 3, 5, 6, 9, 13], for example, are not

applicable to the above problem. In conclusion, we see that the nonlinear term is involved

in first derivative explicitly.

4. Existence of Triple Positive Solutions to Problem (1.1) − (1.3)

Now we deal with Problem (1.1)-(1.3). The method is just similar to what we have

done above. Moreover, the solutions of Problem (1.1)-(1.3) are monotone increasing,

which leads to the situation more simple, and so we leave the details to reader. Define

the cone P2 ⊂ X by

P2 = {x ∈ X | x(t) ≥ 0, x(0) = x′(1) = 0, x is concave on [0, 1]}.

Let the nonnegative continuous concave functional α2, the nonnegative continuous convex

functional θ2, γ2, and the nonnegative continuous functional ψ2 be defined on the cone

P2 by

γ2(x) = max
t∈[0,1]

|x′(t)| = x′(0), ψ2(x) = θ2(x) = max
t∈[0,1]

|x(t)| = x(1),

α2(x) = min
t∈[ 1

k
,1]

|x(t)| = x

(

1

k

)

, for x ∈ P2.
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Lemma 4.1. If x ∈ P2, then

x(1) ≤ x′(0).

With Lemma 4.1, the definition of functionals, and the concavity of x, the functionals
defined above hold relations

1

k
θ2(x) ≤ α2(x) ≤ θ2(x) = ψ2(x), ‖x‖ = max{θ2(x), γ2(x)} ≤ γ2(x), (4.1)

for all x ∈ P2(γ2, d) ⊂ P2.
Define operator T : P2 → P2 by

(Tx)(t) :=

∫ t

0

ϕ−1
p

(
∫ 1

s

q(r)f(r, x(r), x′(r))dr

)

ds, 0 ≤ t ≤ 1.

From the definition of T , there is for each x ∈ P2, Tx ∈ P2 and (Tx)(1) is the maximum
value of Tx on [0, 1]. By [17, 19], T : P2 → P2 is completely continuous.

Letting

C2 =ϕ−1
p

(
∫ 1

0

q(r)dr

)

,

M2 =

∫ 1

0

ϕ−1
p

(
∫ 1

s

q(r)dr

)

ds,

N2 =

∫ 1

1

k

ϕ−1
p

(
∫ 1

s

q(r)dr

)

ds.

Theorem 4.1. Suppose (C1), (C2) hold and there exist constants 0 < a < b ≤ d/k
such that the following assumptions hold

(B1) f(t, u, v) ≤ ϕp

(

d
C2

)

, for (t, u, v) ∈ [0, 1]× [0, d] × [−d, d];

(B2) f(t, u, v) > ϕp

(

kb
N2

)

, for (t, u, v) ∈ [ 1
k , 1]× [b, kb]× [−d, d];

(B3) f(t, u, v) < ϕp

(

a
M2

)

, for (t, u, v) ∈ [0, 1]× [0, a] × [−d, d].

Then, the boundary value problem (1.1)-(1.3) has at least three positive solutions x1, x2,

and x3 satisfying

max
0≤t≤1

|x′i(t)| ≤ d, for i = 1, 2, 3;

b < min
1

k
≤t≤1

|x1(t)|;

a < max
0≤t≤1

|x2(t)| < kb, with min
1

k
≤t≤1

|x2(t)| < b;

and

max
0≤t≤1

|x3(t)| < a.
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