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A NOTE ON “OSCILLATION CRITERIA FOR SECOND-ORDER
NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES"

HASSAN AHMED HASSAN AGWA, AHMED MOHAMED MOHAMED KHODIER

AND MAHMOUD HAMAM OSMAN SALM

Abstract. In this work, we give a counter example for the main result of the paper [Tamkang
J. of Math., 43 (1)(2012), 109–122.] and we give the correct formula for some theorems
given in their work.

1. Introduction

E. Thandapani and V. Piramanantham [1] considered the oscillation of the second order

nonlinear neutral delay dynamic equation.

(r (t )((y(t )+p(t )y(t −τ))∆)γ)∆+q(t )yβ(t −δ) = 0, t ∈T, (1.1)

where T is a time scale.

They considered the following conditions:

(H1) γ≥ 1 and β≥ 1 are quotients of odd positive integers.

(H2) τ,δ are nonnegative constants such that the delay functions τ : T → T and δ : T → T

defined by τ(t ) = t −τ and δ(t ) = t −δ.

(H3) q(t ) and r (t ) are real valued rd-continuous positive functions defined on T. Also, r (t ) is

a non decreasing function.

(H4) p(t ) is a positive and rd-continuous function on T such that 0 ≤ p(t ) < 1.

The authors in [1] obtained the oscillation criteria for Eq. (1.1) when∫ ∞

t0

∆(t )

r
1
γ (t )

=∞, (1.2)
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or, ∫ ∞

t0

∆(t )

r
1
γ (t )

<∞. (1.3)

The main result for the oscillation of Eq. (1.1) in [1] is presented in the following theorem.

Theorem 1.1. Assume that condition (1.2) holds and there exist positive rd-continuous delta

differentiable functions α(t ) and ϕ(t ) such that for every b ≥ 1 and a positive number M, if

lim
t→∞ sup

∫ t

t0

[α(s)ϕ(s)Q(s)− K (s)C 2(s)

4ϕ(s)βM
γ−1
γ α(s)

]∆s =∞, (1.4)

where

Q(s) = q(s)(1−p(s −δ))β, C (s) = ϕ(s)(α∆(s))+
ασ(s)

+ (ϕ∆(s))+,

K (s) = (b · (s −δ))1−β(ασ(s))2r
1
γ (s −δ),

(α∆(t ))+ = max{α∆(t ),0} and (ϕ∆(t ))+ = max{ϕ∆(t ),0},

then every solution of Eq. (1.1) is oscillatory on [t0,∞)T.

We found that the conclusion of this theorem is not true. To illustrate it, we give the

following counter example.

2. Counter example

Consider the second order delay differential equation.

(t 4(x ′(t ))5)′+ (
1

6
)6 1

t
7
6 (t −1)

5
6

x5(t −1) = 0, t>1. (2.1)

Here, We have γ = β = 5, r (t ) = t 4, p(t ) = 0 and δ = 1. If we choose α(t ) = 1 and ϕ(t ) = t ,

then by the Theorem (1.1), Eq.(2.1) is oscillatory. However, x(t ) = t
1
6 is a positive solution of

Eq.(2.1). Therefore Theorem (1.1) is not true. Tracing the error to it’s source, we find that the

main reason of this wrong is the use of the following false inequality in the proof of Theorem

(1.1), they used

if x(t ) ≤ bt , then x1−β(t −δ) ≤ b1−β(t −δ)1−β for β≥ 1, t ∈ [T1,∞)T .

3. The correct formula for some results of [1]

In the following, we give the correct formula for some theorems given in [1]. The correct

formula of Theorem (1.1) in [1].
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Theorem 3.1. Assume that (H1)− (H4) hold, condition (1.2) holds and γ≥β≥ 1. Also, assume

that there exist positive rd-continuous delta differentiable functions α(t ) and ϕ(t ) such that for

every b ≥ 1 and a positive number k ∈ (0,1), if

lim
t→∞ sup

∫ t

t0

[α(s)ϕ(s)Q(s)− C 2(s)

4ϕ(s)F (s)
]∆s =∞, (3.1)

where

Q(s) = q(s)(1−p(s −δ))β, C (s) = ϕ(s)(α∆(s))+
ασ(s)

+ (ϕ∆(s))+,

F (s) = βkβ−1δβ−1(s)α(s)r
1−γ
γ (σ(s))

2γ−1bγ−β(ασ(s))2r
1
γ (δ(s))

,

(α∆(t ))+ = max{α∆(t ),0} and (ϕ∆(t ))+ = max{ϕ∆(t ),0},

then every solution of Eq. (1.1) is oscillatory on [t0,∞)T.

Proof. Suppose that y(t ) is a nonoscillatory solution of Eq. (1.1) and proceeding as in the

proof of Theorem (2.2) [1] to get the inequality (2.8) which has the form

w∆(t ) ≤−α(t )Q(t )+ (α∆(t ))+
ασ(t )

wσ(t )− βα(t )r
1−γ
γ (σ(t ))

r
1
γ (δ(t ))

· (wσ(t ))2

(ασ(t ))2 · xβ−1(δ(t ))

(x∆(σ(t )))γ−1
. (3.2)

Now, we find an estimation for −xβ−1(δ(t ))
(x∆(σ(t )))γ−1 .

Using Lemma (2.2) in [2], then for k ∈ (0,1) there exists t2 ∈ [t0,∞)T such that for t ∈ [t2,∞)T ,

we have

x(δ(t )) ≥ Kδ(t )

σ(t )
x(σ(t )),

−xβ−1(δ(t )) ≤ −K β−1δβ−1(t )xβ−1(σ(t ))

σβ−1(t )
.

Hence,
−xβ−1(δ(t ))

(x∆(σ(t )))γ−1
≤ −K β−1δβ−1(t )xβ−1(σ(t ))

σβ−1(t )(x∆(σ(t )))γ−1
. (3.3)

Using Remark (2.1) in [2], then there exists t3 ∈ [t0,∞)T such that for t ∈ [t3,∞)T , we have

x∆(t )

x(t )
< 2

t
,

x∆(σ(t ))

x(σ(t ))
< 2

σ(t )
,

hence, we have (
x∆(σ(t ))

)γ−1 < 2γ−1(xγ−1(σ(t )))

σγ−1(t )
,

−1

(x∆(σ(t )))γ−1
< −σγ−1(t )

2γ−1(xγ−1(σ(t )))
.

(3.4)
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Taking t4 = max{t1, t2, t3} and substituting from (3.4) in (3.3), we get

−xβ−1(δ(t ))

(x∆(σ(t )))γ−1
< −K β−1δβ−1(t )

σβ−1(t )
· (
σ(t )

2
)γ−1 · 1

xγ−β(σ(t ))
fort ∈ [t4,∞)T . (3.5)

Since x∆∆ < 0, then we have

x(t )−x(t0) = ∫ t
t0

x∆(s)∆s ≤ x∆(t0)(t − t0) .

Therefore, there exist a T1 ∈ [t0,∞)T and a suitable constant b ≥ 1 such that for t ∈ [T1,∞)T
we have

x(t ) ≤ bt ,

x(σ(t )) ≤ bσ(t ),

xγ−β(σ(t )) ≤ bγ−βσγ−β(t ).

Hence, −1

xγ−β(σ(t ))
≤ −1

bγ−βσγ−β(t )
. (3.6)

Taking t5 = max{T1, t4} and substituting from (3.6) in (3.5), we get

−xβ−1(δ(t ))

(x∆(σ(t )))γ−1
< −K β−1δβ−1(t )

σβ−1(t )
· (
σ(t )

2
)γ−1 · 1

bγ−βσγ−β(t )
for t ∈ [t5,∞)T,

−xβ−1(δ(t ))

(x∆(σ(t )))γ−1
< −K β−1δβ−1(t )

2γ−1bγ−β . (3.7)

Substituting from (3.7) in (3.2), we get

w∆(t ) ≤−α(t )Q(t )+ (α∆(t ))+
ασ(t )

wσ(t )− βα(t )r
1−γ
γ (σ(t ))

r
1
γ (δ(t ))

· (wσ(t ))2

(ασ(t ))2
· K β−1δβ−1(t )

2γ−1bγ−β . (3.8)

Multiply both sides of (3.8) by ϕ(t ) and integrating from t5 to t , we get∫ t

t5

α(s)ϕ(s)Q(s)∆s ≤ −
∫ t

t5

ϕ(s)w∆(s)∆s +
∫ t

t5

ϕ(s) · (α∆(s))+
ασ(s)

wσ(s)∆s

−
∫ t

t5

ϕ(s) · βK β−1δβ−1(s)α(s)r
1−γ
γ (σ(s))

2γ−1bγ−β(ασ(s))2r
1
γ (δ(s))

(wσ(s))2∆s. (3.9)

Using integration by parts, we get

−
∫ t

t5

ϕ(s)w∆(s)∆s =−ϕ(t )w(t )+ϕ(t5)w(t5)+
∫ t

t5

ϕ∆(s)wσ(s)∆s, (3.10)

−
∫ t

t5

ϕ(s)w∆(s)∆s <ϕ(t5)w(t5)+
∫ t

t5

ϕ∆(s)wσ(s)∆s. (3.11)
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Substituting from (3.11) in (3.9), we get∫ t

t5

α(s)ϕ(s)Q(s)∆s <ϕ(t5)w(t5)+
∫ t

t5

C (s)wσ(s)∆s −
∫ t

t5

ϕ(s)F (s)(wσ(s))2∆s. (3.12)

The above inequality can be written as:∫ t

t5

α(s)ϕ(s)Q(s)∆s <ϕ(t5)w(t5)−
∫ t

t5

ϕ(s)F (s)(wσ(s)− C (s)

2ϕ(s)F (s)
)2∆s +

∫ t

t5

C 2(s)

4ϕ(s)F (s)
∆s.

(3.13)

Therefore, ∫ t

t5

α(s)ϕ(s)Q(s)∆s <ϕ(t5)w(t5)+
∫ t

t5

C 2(s)

4ϕ(s)F (s)
∆s, (3.14)

∫ t

t5

[α(s)ϕ(s)Q(s)∆− C 2(s)

4ϕ(s)F (s)
]∆s <ϕ(t5)w(t5). (3.15)

Taking the limit supremum of (3.15) as t →∞, we get a contradiction to condition (3.1).

This completes the proof.

The correct formula of Theorem (2.9) in [1]:

Theorem 3.2. Assume that (H1)− (H4) hold, condition (1.2) holds and γ≥β≥ 1. Also, assume

that there exist positive rd-continuous delta differentiable functions α(t ) and ϕ(t ) such that for

every b ≥ 1 and a positive number k ∈ (0,1), if

lim
t→∞sup

1

H(t , t0)

∫ t

t0

[
α(s)H(t , s)Q(s)− C 2(t , s)

4H(t , s)F (s)

]
∆s =∞, (3.16)

Q(s) = q(s)(1−p(s −δ))β,

F (s) = βkβ−1δβ−1(s)α(s)r
1−γ
γ (σ(s))

2γ−1bγ−β(ασ(s))2r
1
γ (δ(s))

,

C (t , s) = H(t , s)(α∆(s))+
ασ(s)

+H∆s (t , s),

then every solution of Eq. (1.1) is oscillatory on [t0,∞)T.

Proof. Similar to that of Theorem (3.1).
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