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ON THE TRICYCLIC GRAPHS WITH THREE DISJOINT
6-CYCLES AND MAXIMUM MATCHING ENERGY

YUN-XIA ZHOU AND HONG-HAI LI

Abstract. The matching energy of a graph was introduced recently by Gutman and Wag-
ner and defined as the sum of the absolute values of zeros of its matching polynomial. In
this paper, we characterize graphs that attain the maximum matching energy among all
connected tricyclic graphs of order n with three vertex-disjoint C6’s.

1. Introduction

A matching in a graph is a set of pairwise nonadjacent edges, and by mk (G) we denote the

number of k-matchings of a graph G . It is both consistent and convenient to define m0(G) = 1.

In 2012, Gutman and Wagner [5] introduced the matching energy of a graph G , denoted by

ME(G), as

ME(G) = 2

π

∫ ∞

0

1

x2 ln

[∑
k≥0

mk (G)x2k

]
d x, (1)

which extends the formula for energy for forests to general graphs (for more on graph energy

see the monograph [12] and [6, 7, 4] and the references therein). The integral on the right hand

side of Eq.(1) is increasing in all of the coefficients mk (G). This means that if two graphs G and

G ′ satisfy mk (G) ≤ mk (G ′) for all k ≥ 1, then ME(G) ≤ ME(G ′). If, in addition, mk (G) < mk (G ′)
for at least one k, then ME(G) < ME(G ′). It then motivates the introduction of a quasi-order

≽, defined by

G ≽ H (or H ≼G) ⇐⇒ mk (G) ≥ mk (H), for all nonnegative integers k.

If G ≽ H and there exists some k such that mk (G) > mk (H), then we write G ≻ H (or H ≺ G).

We have G ≽ H =⇒ ME(G) ≥ ME(H) and G ≻ H =⇒ ME(G) > ME(H). From the definition it
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is clear that if H is a subgraph of G such that the edge set of H is a proper subset of the edge

set of G , then G ≻ H .

Recall that the matching polynomial of a graph G of order n is defined as

α(G , x) = ∑
k≥0

(−1)k mk (G)xn−2k , (2)

where the convention that mk (G) = 0 for k < 0 or k > n/2 is adopted. For any graph G , all the

zeros of α(G , x) are real-valued.

Theorem 1.1 ([5]). Let G be a simple graph, and let µ1,µ2, . . . ,µn be the zeros of its matching

polynomial. Then

ME(G) =
n∑

i=1
|µi |.

Given a graph G and an edge uv of G , we denote by G−uv (resp. G−v) the graph obtained

from G by deleting the edge uv (resp. the vertex v and the edges incident to it).

Lemma 1.2 ([3]). If u, v are adjacent vertices of G, then for all nonnegative integers k, we have

mk (G) = mk (G −uv)+mk−1(G −u − v).

Denote by Ug ,n the set of unicyclic graphs with n vertices and a cycle of length g . The sun

graph, denoted by Cg (Pr1+1, . . . ,Prg+1), is the graph obtained from the cycle Cg = v1v2 · · ·vg v1

by identifying one pendant vertex of the path Pri+1 with vertex vi for i = 1, . . . , g . Note that

Cg (Pn−g+1,P1, . . . ,P1) is also called lollipop graph and is denoted by Eg ,n . For convenience,

we adopt the convention that Eg ,n =Cn when g = n.

The proof for Lemma 3.8 in [9] actually establishes the following slightly stronger result.

Lemma 1.3. Let n, g be any positive integers, n > g ≥ 3. For any G ∈ Ug ,n \ {Eg ,n}, we have

Eg ,n ≻G.

We provide a simple, different proof for the following result which slightly strengthens

Lemma 5 of [3].

Lemma 1.4 ([3]). Let u, v be adjacent vertices of a graph G. If G1(resp., G2) is the graph obtained

from G by inserting t vertices into the edge uv(resp., by joining the vertex u to an end vertex of

a path Pt ) then G1 ≽G2. If in addition dG (u) ≥ 2, then G1 ≻G2.

Proof. Let vp (resp., vq ) denote the vertex on the path in G1 joining u and v , adjacent to u

(resp., v). It is easy to see that the graphs G1 − vq v and G2 −uv are isomorphic. Moreover,

G2−u−v is isomorphic with a graph, say H , obtained from G1−vq −v by deleting all edges in
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G1 incident with u, except for the edge uvp . If dG (u) ≥ 2, the edge set of H is proper subset of

that of G1−vq −v . By Lemma 1.2, for any positive integer k, we have mk (G2) = mk (G2−uv)+
mk−1(G2 −u − v) = mk (G1 − vq v)+mk−1(H) ≤ mk (G1 − vq v)+mk−1(G1 − vq − v) = mk (G1),

where the inequality strictly holds for at least one k if dG (u) ≥ 2, because then the edge set of

H is a proper subset of that of G1 − vq − v . Hence our result follows. ���

We adopt the convention that P0 stands for the null graph. So P0∪G =G for any graph G .

Lemma 1.5 ([12]). Let n be a given positive integer, and let l , l ′ be nonnegative integers less than

or equal to ⌊n/2⌋. We have

(i) If l , l ′ are even and l < l ′ then Pl ∪Pn−l ≻ Pl ′ ∪Pn−l ′ .

(ii) If l , l ′ are odd and l < l ′ then Pl ∪Pn−l ≺ Pl ′ ∪Pn−l ′ .

(iii) If l is even and l ′ is odd, then Pl ∪Pn−l ≻ Pl ′ ∪Pn−l ′ .

In[5], Gutman and Wagner first introduced the notion of matching energy and charac-

terized the extremal (maximal or minimal with respect to matching energy) graphs among

some special graph classes. Li and Yan [11] characterized the connected graph with the given

connectivity (resp. chromatic number) which has maximum matching energy. Ji, Li and Shi

[8] characterized the graphs with the extremal matching energy among all bicyclic graphs.

Recently, Chen et.al [1, 2] further investigated unicyclic graphs, bicyclic graphs and tricyclic

graphs for extremal matching energy. For more on matching energy see[10, 14] and the refer-

ences therein.

In [13], Li, Shi and Wei characterized graphs that attain the maximal energy among all

connected tricyclic graphs on n vertices with three disjoint cycles. In this paper, we treat a

similar problem for the matching energy, i.e, we characterize graphs that attain the maximum

matching energy among all connected tricyclic graphs of order n with three vertex-disjoint

cycles of length 6.

2. Main results

We borrow part of the definitions and notations from [13]. We say H is the central struc-

ture of G if G can be obtained from H by planting some trees on it. Let G6,n denote the set

of all connected tricyclic graphs on n vertices with three disjoint C6’s. Given positive integers

l1, l2, l3 such that l1, l2 ≥ 2 and 1 ≤ l3 ≤ 4, let ΦI
6(l1, l2; l3) denote the graph in G6,n , as shown in

Figure 1, where the first C6 and the second C6 are joined by a path P1 = v · · ·u on l1 vertices,

the second C6 and the third C6 are joined by a path P2 = u′ · · ·w on l2 vertices, the smaller

part u · · ·u′ of the second C6 has l3 vertices. Note that when u = u′, we have l3 = 1. Simi-

larly, given positive integers l1, l2, l3 ≥ 2 and n = l1 + l2 + l3 + 13, let ΦΠ
6 (l1, l2, l3) denote the
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graph as shown in Figure 1: it has a center vertex v such that the three cycles C6 are joined

to v by paths P1 = u1 · · ·v , P2 = u2 · · ·v , P3 = u3 · · ·v with l1, l2 and l3 vertices, respectively.

Note that ΦI
6(l1, l2; l3) = ΦI

6(l2, l1; l3) and ΦΠ
6 (l1, l2, l3) = ΦΠ

6 (lσ(1), lσ(2), lσ(3)) for any permuta-

tion σ ∈ S3. Denote by ΦI
6,n (resp., ΦΠ

6,n) the set of all graphs of the form ΦI
6(l1, l2; l3) (resp.,

ΦΠ
6 (l1, l2, l3)) for some l1, l2, l3. Denote by G I

6,n(resp., GΠ
6,n) the set of all graphs in G6,n that

Figure 1: ΦI
6(l1, l2; l3) and ΦΠ

6 (l1, l2, l3).

have ΦI
6(l1, l2; l3)(resp., ΦΠ

6 (l1, l2, l3)) for some appropriate l1, l2, l3 as their central structures.

Now note that G6,n =G I
6,n ∪GΠ

6,n .

Lemma 2.1. Let uv be a bridge of a connected graph G such that G1, H are the connected

components of G −uv with u ∈ V (G1) and v ∈ V (H). Let G2 be a graph, vertex-disjoint from

H, that satisfies G2 ≽G1. Let G ′ be the graph obtained from G2, H by adding an edge joining v

to some vertex u′ of G2. Suppose that G2 −u′ ≽G1 −u. Then G ′ ≽G. If, in addition, one of the

quasi-inequalities G2 ≽G1 and G2 −u′ ≽G1 −u is strict, then G ′ ≻G.

Proof. By Lemma 1.2, for every positive integer k, we have mk (G) = mk (G −uv)+mk−1(G −
u − v) = mk (G1 ∪ H) + mk−1((G1 − u) ∪ (H − v)) and mk (G ′) = mk (G2 ∪ H) + m(k − 1)((G2 −
u′)∪ (H − v)). Since G2 ≽ G1 and G2 −u′ ≽ G1 −u, we have mk (G2 ∪ H) ≥ mk (G1 ∪ H) and

mk−1((G2 −u′)∪ (H − v)) ≥ mk−1((G1 −u)∪ (H − v)); hence mk (G ′) ≥ mk (G). This establishes

the quasi-inequality G ′ ≽ G . It is clear that the latter quasi-inequality is strict if one of the

quasi-inequalities G2 ≽G1 and G2 −u′ ≽G1 −u is strict. ���

Lemma 2.2. For any G ∈ G I
6,n \ΦI

6,n , G ≺ ΦI
6(l1, l2;2) for some positive integers l1, l2 ≥ 2 that

satisfy l1 + l2 = n −14.

Proof. By Lemma 1.4 we may assume that G has no nontrivial rooted tree, where the root is an

internal vertex of one of the two paths joining the C6’s. So we may assume that G is of the form

as shown in Figure 2, which can be obtained by connecting sun graphs C6(Pr1+1, . . . ,Pr5+1,P1)

and S by a path Pl1 , S and C6(P1,Pt1+1,Pt2+1, . . . ,Pt5+1) by a path Pl2 , where the middle sun
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Figure 2: G when l3 = 3.

Figure 3: G ′.

graph S has either five pendent paths of length s1, s2, s3, s4, s5 or four pendent paths of length

s1, s2, s3, s4 according to l3 = 1 or not.

If
∑5

i=1 ri ≥ 1, then by applying Lemma 2.1 with G1 equal to C6(Pr1+1, . . . ,Pr5+1,P1), H

equal to the graph obtained from G by deleting V (G1) and all incident edges, G ′ equal to the

graph as shown in Figure 3, G2 equal to E6,r1+r2+···+r5+6 and u = u′ = u1, v = u2, and noting

that C6(Pr1+1, . . . ,Pr5+1,P1) ≺ E6,r1+r2+···+r5+6 by Lemma 1.3 and C6(Pr1+1, . . . ,Pr5+1,P1)−u1 ≺
Pr1+r2+···+r5+5 ≺ E6,r1+r2+···+r5+5, we obtain G ≺G ′.

Similarly, if
∑5

i=1 ti ≥ 1, then by applying Lemma 2.1, we can also show that G ≺ G ′ for

some G ′ ∈ ΦI
6,n . So we can assume that G is obtained from some ΦI

6(l ′1, l ′2; l3) by attaching a

pendant path at each vertex of degree two in the middle cycle; say, the lengths of the pen-

dant paths are s1, s2, s3, s4 or s1, s2, s3, s4, s5 in case l3 = 1. Figure 4 shows one possibility for G ,

namely, when the middle cycle is C6(P1,Ps1+1,Ps2+1,P1,Ps3+1,Ps4+1), i.e., l3 = 4.

Let G ′′ = ΦI
6(l ′1, l ′2 + s1 + s2 + s3 + s4;2) or ΦI

6(l ′1, l ′2 + s1 + s2 + s3 + s4 + s5;2) when l3 = 1. It

suffices to show that if l3 ̸= 2 or l3 = 2 and s1 + s2 + s3 + s4 ≥ 1, then G ≺G ′′.

Figure 4: G (l3 = 4).
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Figure 5: G ′′.

Figure 6: G (l3 = 1).

Now take G1 to the graph obtained by connecting a C6 and the middle sun graph of G by

a path Pl ′2 and take G2 to the graph obtained by connecting two C ′
6s by a path Pl ′2+s1+···+s4

(or

Pl ′2+s1+···+s5
in case l3 = 1). By Lemma 2.1 one readily shows that G1 ≼ G2, and with strict

inequality if
∑

si ≥ 1. Refer to Figure 4 or Figure 6 for graph G and to Figure 5 for graph G ′′.
Now take H to be E6,l ′1+4 and apply Lemma 2.1 with G , G ′′,u1, s′,u2 (and s) playing the role

of G ,G ′,u,u′, v respectively. when l3 ̸= 1, G1 −u1 is a unicyclic graph and G2 − s′ is a lollipop

graph of the same order. So G1 −u1 ≼ G2 − s′ and with strict inequality, if G1 −u1 is not a

lollipop, i.e., provided that l3 ̸= 2 or l3 = 2 and s1 +·· ·+ s4 ≥ 1. As we have noted, G1 ≼G2, and

with strict inequality when
∑

si ≥ 1. So by Lemma 2.1 we obtain G ≺G ′′. When l3 = 1, G2 − s′

equals the lollipop graph E6,l ′2+s1+···+s5+9 and G1−u1 equals the union of E6,l ′2+4 and a tree, say

T , of order s1 +·· ·+ s5 +5. By adding a suitable edge joining a vertex of E6,l ′2+4 to a vertex of T

one obtains a unicyclic graph F with the same order as G2 − s′. Hence G2 − s′ ≻G1 −u1. Then

by applying Lemma 2.1 we also obtain G ≺G ′′ for this case. ���

Lemma 2.3. For any positive integers a,b ≥ 6, if min{a,b} > 6 then E6,a ∪E6,b ≺C6 ∪E6,a+b−6.

Proof. Without loss of generality, assume that min{a,b} > 6. By Lemma 1.2 we have

mk (E6,a ∪E6,b) =mk (E6,b ∪C6 ∪Pa−6)+mk−1(E6,b ∪Pa−7 ∪P5)
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mk (C6 ∪E6,a+b−6) =mk (E6,b ∪C6 ∪Pa−6)+mk−1(E6,b−1 ∪Pa−7 ∪C6).

Now we only need to show that E6,b ∪P5 ≺ E6,b−1 ∪C6. We proceed by induction on b.

When b = 7, by Lemma 1.2, we have

mk (E6,7 ∪P5) = mk (C6 ∪P1 ∪P5)+mk−1(P5 ∪P5)

= mk (C6 ∪P1 ∪P5)+mk−1(P5 ∪P1 ∪P4)+mk−2(P5 ∪P3)

and

mk (C6 ∪C6) = mk (C6 ∪P6)+mk−1(C6 ∪P4)

= mk (C6 ∪P6)+mk−1(P6 ∪P4)+mk−2(P4 ∪P4).

By Lemma 1.5 we have P1∪P5 ≺ P6, P5∪P3 ≺ P4∪P4. So E6,7∪P5 ≺C6∪C6. For the case when

b = 8, by calculation, we have Table 1. So we have E6,8 ∪P5 ≺ E6,7 ∪C6.

Table 1: The k-matching numbers of E6,8 ∪P5 and E6,7 ∪C6 for k = 1, . . . ,6.

k = 1 2 3 4 5 6
mk (E6,8 ∪P5) 12 54 114 115 50 6
mk (E6,7 ∪C6) 13 64 148 161 71 10

For b ≥ 9, we have

mk (E6,b ∪P5) =mk (E6,b−1 ∪P5)+mk−1(E6,b−2 ∪P5)

mk (E6,b−1 ∪C6) =mk (E6,b−2 ∪C6)+mk−1(E6,b−3 ∪C6).

By induction, we have E6,b−1∪P5 ≺ E6,b−2∪C6 and E6,b−2∪P5 ≺ E6,b−3∪C6; hence E6,b ∪P5 ≺
E6,b−1 ∪C6. ���

Lemma 2.4. For any positive integers l1, l2 ≥ 2 with l1 + l2 = n − 14, if min{l1, l2} > 2 then

ΦI
6(l1, l2;2) ≺ΦI

6(n −16,2;2).

Proof. For brevity, we denoteΦI
6(l1, l2;2) andΦI

6(n−16,2;2) respectively by G and H . Referring

to Figure 7, by Lemma 1.2 we have

mk (G) =mk (G −u1v1)+mk−1(E6,l1+4 ∪E6,l2+4 ∪P4),

mk (H) =mk (H −u0v0)+mk−1(E6,n−12 ∪C6 ∪P4).

Because G −u1v1 = H −u0v0 and E6,l1+4 ∪E6,l2+4 ≺ E6,n−12 ∪C6 by Lemma 2.3, we obtain

G ≺ H . ���

Lemma 2.5. For any graph G ∈GΠ
6,n \ΦΠ

6 (n −17,2,2) with n ≥ 19, G ≺ΦΠ
6 (n −17,2,2).
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Figure 7: The graphs G and H .

Proof. First, using Lemma 2.1, we can show that for any graph G ∈GΠ
6,n \ΦΠ

6,n , G ≺ΦΠ
6 (l1, l2, l3)

for some positive integers l1, l2, l3 with min{l1, l2, l3} ≥ 2. Thus hereafter we assume that G =
ΦΠ

6 (l1, l2, l3). If min{l1, l2, l3} > 2, then we show that ΦΠ
6 (l1, l2, l3) ≺ΦΠ

6 (l ′1, l ′2,2) for some posi-

tive integers l ′1, l ′2 ≥ 2 with l ′1 + l ′2 = n −15 as follows: Let G and H =ΦΠ
6 (l1, l ′2,2) with l1 + l ′2 =

n−15 be as given in Figure 8. Without loss of generality, assume that l3 = min{l1, l2, l3} > 2. By

Figure 8: The graphs G and H .

Lemma 1.2 we have

mk (G) =mk (G −uv)+mk−1(E6,l1+3 ∪E6,l2+4 ∪E6,l3+4).

mk (H) =mk (H −u′v ′)+mk−1(E6,l1+3 ∪E6,l ′2+4 ∪C6).

Note that G−uv = H−u′v ′ and by Lemma 2.3, E6,l2+4∪E6,l3+4 ≺ E6,l ′2+4∪C6. HenceΦΠ
6 (l1, l2, l3)

≺ΦΠ
6 (l1, l ′2,2) and we may assume that G =ΦΠ

6 (l1, l2,2) for some positive integers l1, l2 ≥ 2 with

l1 + l2 = n −15.

If min{l1, l2} > 2, then we prove that ΦΠ
6 (l1, l2,2) ≺ΦΠ

6 (n −17,2,2). Let G and H =ΦΠ
6 (n −

17,2,2) be as shown in Figure 9.

By Lemma 1.2 we have

mk (G) =mk (G −uv)+mk−1(E6,l1+4 ∪E6,l2+4 ∪P5),

mk (H) =mk (H −u′v ′)+mk−1(E6,l1+l2+2 ∪C6 ∪P5).

Since we have G −uv = H −u′v ′ and E6,l1+4 ∪E6,l2+4 ≺ E6,l1+l2+2 ∪C6 by Lemma 2.3, we are

done. ���
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Figure 9: The graphs G and H .

Lemma 2.6. For n ≥ 19, we have ME (ΦI
6(n − 16,2;2)) < ME(ΦI I

6 (n − 17,2,2))and, moreover,

ΦI
6(n −16,2;2) ≺ΦI I

6 (n −17,2,2) except when n = 20,22.

Proof.For convenience, let G =ΦI
6(n−16,2;2) and H =ΦI I

6 (n−17,2,2), as shown in Figure 10.

Figure 10: The graphs G and H .

First, assume that n ≥ 20. By Lemma 1.2 we have

mk (G) =mk (G −uv)+mk−1(G −u − v)

=mk (G −uv)+mk−1(E6,n−7 ∪P5)

=mk (G −uv)+mk−1(E6,n−13 ∪P6 ∪P5)+mk−2(E6,n−14 ∪P5 ∪P5),

mk (H) =mk (H −u′v ′)+mk−1(H −u′− v ′)

=mk (H −u′v ′)+mk−1(E6,n−13 ∪C6 ∪P5)

=mk (H −u′v ′)+mk−1(E6,n−13 ∪P6 ∪P5)+mk−2(E6,n−13 ∪P4 ∪P5).

Since G −uv = H −u′v ′, we only need to consider E6,n−14 ∪P5 ≺ E6,n−13 ∪P4. By Lemma

1.2 we have

mk (E6,n−14 ∪P5) =mk (Pn−14 ∪P5)+mk−1(Pn−20 ∪P4 ∪P5)

mk (E6,n−13 ∪P4) =mk (Pn−13 ∪P4)+mk−1(Pn−19 ∪P4 ∪P4).

Note that the assumption n ≥ 20 guarantees that E6,n−14 is defined. By Lemma 1.5 (iii) we

have Pn−14 ∪P5 ≺ Pn−13 ∪P4, provided that 5 ≤ n −14 and 4 ≤ n −13, i.e., n ≥ 19. Since we are

assuming n ≥ 20, the said quasi-inequality holds. Similarly, we have Pn−20 ∪P5 ≺ Pn−19 ∪P4,
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provided that n ≥ 25. If n = 24, Pn−20 ∪P5 and Pn−19 ∪P4 are both equal to P4 ∪P5. If n =
23, we have Pn−20 ∪P5 = P3 ∪P5 ≺ Pn−19 ∪P4 = P4 ∪P4 by Lemma 1.5 (iii). If n = 22, then

Pn−20 ∪P5 ≻ P3 ∪P4 = Pn−19 ∪P4. Similarly, we have Pn−20 ∪P5 ≺ Pn−19 ∪P4 for n = 21 and

Pn−20 ∪P5 ≺ Pn−19 ∪P4 for n = 20. So for n ≥ 20, we have Pn−20 ∪P5 ≼ Pn−19 ∪P4 and hence

E6,n−14 ∪P5 ≺ E6,n−13 ∪P4 except for n = 20,22. Thus for n ≥ 20, we always have G ≺ H except

possibly when n = 20,22.

Now we treat the case n = 19. We have

mk (G) =mk (G −uv)+mk−1(G −u − v)

=mk (G −uv)+mk−1(E6,12 ∪P5),

mk (H) =mk (H −u′v ′)+mk−1(H −u′− v ′)

=mk (H −u′v ′)+mk−1(C6 ∪C6 ∪P5).

Note that G −uv = H −u′v ′, so we only need to establish E6,12 ≺C6 ∪C6. Now for all positive

integers k, since

mk (E6,12) =mk (P12)+mk−1(P4 ∪P6)

=mk (P6 ∪P6)+mk−1(P5 ∪P5)+mk−1(P4 ∪P6)

=mk (P6 ∪P6)+mk−1(P4 ∪P5)+mk−2(P3 ∪P5)+mk−1(P4 ∪P6)

≤mk (P6 ∪P6)+mk−1(P4 ∪P6)+mk−2(P4 ∪P4)+mk−1(P4 ∪P6)

=mk (C6 ∪C6),

where at least one inequality holds strictly, we are done. So we also obtain G ≺ H in this case.

For n = 20, and n = 22, by calculation we obtain Tables 2 and 3. So, for these cases, we

have neither G ≼ H nor G ≽ H . Making use of Theorem 1.1, we also obtain ME(G) = 30.0168

and ME(H) = 30.0334 when n = 20, and ME(G) = 31.877 and ME(H) = 31.9742 when n = 22.

In either case, we have ME(G) < ME(H).

Table 2: The k-matching numbers of G and H for k = 1, . . . ,10.

k = 1 2 3 4 5 6 7 8 9 10
mk (G) 22 203 1014 4239 5683 6311 4008 1321 191 8
mk (H) 22 203 1024 4238 5674 6281 3964 1296 188 8

The proof is completed. ���

In conclusion, we obtain the following result:

Theorem 2.7. For any graph G ∈ G6,n \ {ΦI I
6 (n −17,2,2)} with n ≥ 19, we have ME(G) < ME

(ΦI I
6 (n − 17,2,2)) and, moreover, G ≺ ΦI I

6 (n − 17,2,2) except when n = 20,22 and G = ΦI
6(n −

16,2;2).
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Table 3: The k-matching numbers of G and H for k = 1, . . . ,11.

k = 1 2 3 4 5 6 7 8 9 10 11
mk (G) 24 246 1410 4760 9888 14011 13600 7217 1956 237 8
mk (H) 24 246 1410 4760 9888 13594 13600 7207 1964 240 8

We would like to add that when n = 18, GΠ
6,n is empty, G I

6,n =ΦI
6,n and ΦI

6,n(2,2;2) ≻G for

every G ∈G6,n \ΦI
6,n(2,2;2). When n < 18, G6,n is empty.
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