ON THE TRICYCLIC GRAPHS WITH THREE DISJOINT 6-CYCLES AND MAXIMUM MATCHING ENERGY

YUN-XIA ZHOU AND HONG-HAI LI

Abstract

The matching energy of a graph was introduced recently by Gutman and Wagner and defined as the sum of the absolute values of zeros of its matching polynomial. In this paper, we characterize graphs that attain the maximum matching energy among all connected tricyclic graphs of order n with three vertex-disjoint C_{6} 's.

1. Introduction

A matching in a graph is a set of pairwise nonadjacent edges, and by $m_{k}(G)$ we denote the number of k-matchings of a graph G. It is both consistent and convenient to define $m_{0}(G)=1$. In 2012, Gutman and Wagner [5] introduced the matching energy of a graph G, denoted by $M E(G)$, as

$$
\begin{equation*}
M E(G)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}} \ln \left[\sum_{k \geq 0} m_{k}(G) x^{2 k}\right] d x, \tag{1}
\end{equation*}
$$

which extends the formula for energy for forests to general graphs (for more on graph energy see the monograph [12] and $[6,7,4]$ and the references therein). The integral on the right hand side of Eq.(1) is increasing in all of the coefficients $m_{k}(G)$. This means that if two graphs G and G^{\prime} satisfy $m_{k}(G) \leq m_{k}\left(G^{\prime}\right)$ for all $k \geq 1$, then $M E(G) \leq M E\left(G^{\prime}\right)$. If, in addition, $m_{k}(G)<m_{k}\left(G^{\prime}\right)$ for at least one k, then $\operatorname{ME}(G)<\operatorname{ME}\left(G^{\prime}\right)$. It then motivates the introduction of a quasi-order \geq, defined by

$$
G \succeq H(\text { or } H \leq G) \Longleftrightarrow m_{k}(G) \geq m_{k}(H), \quad \text { for all nonnegative integers } k .
$$

If $G \succeq H$ and there exists some k such that $m_{k}(G)>m_{k}(H)$, then we write $G>H$ (or $H<G$). We have $G \succeq H \Longrightarrow M E(G) \geq M E(H)$ and $G \succ H \Longrightarrow M E(G)>M E(H)$. From the definition it
is clear that if H is a subgraph of G such that the edge set of H is a proper subset of the edge set of G, then $G>H$.

Recall that the matching polynomial of a graph G of order n is defined as

$$
\begin{equation*}
\alpha(G, x)=\sum_{k \geq 0}(-1)^{k} m_{k}(G) x^{n-2 k}, \tag{2}
\end{equation*}
$$

where the convention that $m_{k}(G)=0$ for $k<0$ or $k>n / 2$ is adopted. For any graph G, all the zeros of $\alpha(G, x)$ are real-valued.

Theorem 1.1 ([5]). Let G be a simple graph, and let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the zeros of its matching polynomial. Then

$$
M E(G)=\sum_{i=1}^{n}\left|\mu_{i}\right| .
$$

Given a graph G and an edge $u \nu$ of G, we denote by $G-u \nu$ (resp. $G-\nu$) the graph obtained from G by deleting the edge $u v$ (resp. the vertex v and the edges incident to it).

Lemma 1.2 ([3]). If u, v are adjacent vertices of G, then for all nonnegative integers k, we have

$$
m_{k}(G)=m_{k}(G-u v)+m_{k-1}(G-u-v)
$$

Denote by $\mathscr{U}_{g, n}$ the set of unicyclic graphs with n vertices and a cycle of length g. The sun graph, denoted by $C_{g}\left(P_{r_{1}+1}, \ldots, P_{r_{g}+1}\right)$, is the graph obtained from the cycle $C_{g}=v_{1} v_{2} \cdots v_{g} v_{1}$ by identifying one pendant vertex of the path $P_{r_{i}+1}$ with vertex v_{i} for $i=1, \ldots, g$. Note that $C_{g}\left(P_{n-g+1}, P_{1}, \ldots, P_{1}\right)$ is also called lollipop graph and is denoted by $E_{g, n}$. For convenience, we adopt the convention that $E_{g, n}=C_{n}$ when $g=n$.

The proof for Lemma 3.8 in [9] actually establishes the following slightly stronger result.
Lemma 1.3. Let n, g be any positive integers, $n>g \geq 3$. For any $G \in \mathscr{U}_{g, n} \backslash\left\{E_{g, n}\right\}$, we have $E_{g, n}>G$.

We provide a simple, different proof for the following result which slightly strengthens Lemma 5 of [3].

Lemma 1.4 ([3]). Let u, v be adjacent vertices of a graph G. If G_{1} (resp., G_{2}) is the graph obtained from G by inserting t vertices into the edge $u v$ (resp., by joining the vertex u to an end vertex of a path $\left.P_{t}\right)$ then $G_{1} \succeq G_{2}$. If in addition $d_{G}(u) \geq 2$, then $G_{1}>G_{2}$.

Proof. Let v_{p} (resp., v_{q}) denote the vertex on the path in G_{1} joining u and v, adjacent to u (resp., v). It is easy to see that the graphs $G_{1}-v_{q} v$ and $G_{2}-u v$ are isomorphic. Moreover, $G_{2}-u-v$ is isomorphic with a graph, say H, obtained from $G_{1}-v_{q}-v$ by deleting all edges in
G_{1} incident with u, except for the edge $u v_{p}$. If $d_{G}(u) \geq 2$, the edge set of H is proper subset of that of $G_{1}-v_{q}-v$. By Lemma 1.2, for any positive integer k, we have $m_{k}\left(G_{2}\right)=m_{k}\left(G_{2}-u v\right)+$ $m_{k-1}\left(G_{2}-u-v\right)=m_{k}\left(G_{1}-v_{q} v\right)+m_{k-1}(H) \leq m_{k}\left(G_{1}-v_{q} v\right)+m_{k-1}\left(G_{1}-v_{q}-v\right)=m_{k}\left(G_{1}\right)$, where the inequality strictly holds for at least one k if $d_{G}(u) \geq 2$, because then the edge set of H is a proper subset of that of $G_{1}-v_{q}-v$. Hence our result follows.

We adopt the convention that P_{0} stands for the null graph. So $P_{0} \cup G=G$ for any graph G.
Lemma 1.5 ([12]). Let n be a given positive integer, and let l, l^{\prime} be nonnegative integers less than or equal to $\lfloor n / 2\rfloor$. We have
(i) If l, l^{\prime} are even and $l<l^{\prime}$ then $P_{l} \cup P_{n-l}>P_{l^{\prime}} \cup P_{n-l^{\prime}}$.
(ii) If l, l^{\prime} are odd and $l<l^{\prime}$ then $P_{l} \cup P_{n-l}<P_{l^{\prime}} \cup P_{n-l^{\prime}}$.
(iii) If l is even and l^{\prime} is odd, then $P_{l} \cup P_{n-l}>P_{l^{\prime}} \cup P_{n-l^{\prime}}$.

In[5], Gutman and Wagner first introduced the notion of matching energy and characterized the extremal (maximal or minimal with respect to matching energy) graphs among some special graph classes. Li and Yan [11] characterized the connected graph with the given connectivity (resp. chromatic number) which has maximum matching energy. Ji, Li and Shi [8] characterized the graphs with the extremal matching energy among all bicyclic graphs. Recently, Chen et.al [1, 2] further investigated unicyclic graphs, bicyclic graphs and tricyclic graphs for extremal matching energy. For more on matching energy see[10, 14] and the references therein.

In [13], Li, Shi and Wei characterized graphs that attain the maximal energy among all connected tricyclic graphs on n vertices with three disjoint cycles. In this paper, we treat a similar problem for the matching energy, i.e, we characterize graphs that attain the maximum matching energy among all connected tricyclic graphs of order n with three vertex-disjoint cycles of length 6 .

2. Main results

We borrow part of the definitions and notations from [13]. We say H is the central structure of G if G can be obtained from H by planting some trees on it. Let $G_{6, n}$ denote the set of all connected tricyclic graphs on n vertices with three disjoint C_{6} 's. Given positive integers l_{1}, l_{2}, l_{3} such that $l_{1}, l_{2} \geq 2$ and $1 \leq l_{3} \leq 4$, let $\Phi_{6}^{I}\left(l_{1}, l_{2} ; l_{3}\right)$ denote the graph in $G_{6, n}$, as shown in Figure 1, where the first C_{6} and the second C_{6} are joined by a path $P_{1}=v \cdots u$ on l_{1} vertices, the second C_{6} and the third C_{6} are joined by a path $P_{2}=u^{\prime} \cdots w$ on l_{2} vertices, the smaller part $u \cdots u^{\prime}$ of the second C_{6} has l_{3} vertices. Note that when $u=u^{\prime}$, we have $l_{3}=1$. Similarly, given positive integers $l_{1}, l_{2}, l_{3} \geq 2$ and $n=l_{1}+l_{2}+l_{3}+13$, let $\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)$ denote the
graph as shown in Figure 1: it has a center vertex v such that the three cycles C_{6} are joined to v by paths $P_{1}=u_{1} \cdots v, P_{2}=u_{2} \cdots v, P_{3}=u_{3} \cdots v$ with l_{1}, l_{2} and l_{3} vertices, respectively. Note that $\Phi_{6}^{I}\left(l_{1}, l_{2} ; l_{3}\right)=\Phi_{6}^{I}\left(l_{2}, l_{1} ; l_{3}\right)$ and $\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)=\Phi_{6}^{\Pi}\left(l_{\sigma(1)}, l_{\sigma(2)}, l_{\sigma(3)}\right)$ for any permutation $\sigma \in S_{3}$. Denote by $\Phi_{6, n}^{I}$ (resp., $\Phi_{6, n}^{\Pi}$) the set of all graphs of the form $\Phi_{6}^{I}\left(l_{1}, l_{2} ; l_{3}\right)$ (resp., $\left.\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)\right)$ for some l_{1}, l_{2}, l_{3}. Denote by $G_{6, n}^{I}\left(\right.$ resp., $\left.G_{6, n}^{\Pi}\right)$ the set of all graphs in $G_{6, n}$ that

Figure 1: $\Phi_{6}^{I}\left(l_{1}, l_{2} ; l_{3}\right)$ and $\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)$.
have $\Phi_{6}^{I}\left(l_{1}, l_{2} ; l_{3}\right)$ (resp., $\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)$) for some appropriate l_{1}, l_{2}, l_{3} as their central structures. Now note that $G_{6, n}=G_{6, n}^{I} \cup G_{6, n}^{\Pi}$.

Lemma 2.1. Let uv be a bridge of a connected graph G such that G_{1}, H are the connected components of $G-u v$ with $u \in V\left(G_{1}\right)$ and $v \in V(H)$. Let G_{2} be a graph, vertex-disjoint from H, that satisfies $G_{2} \succeq G_{1}$. Let G^{\prime} be the graph obtained from G_{2}, H by adding an edge joining v to some vertex u^{\prime} of G_{2}. Suppose that $G_{2}-u^{\prime} \geq G_{1}-u$. Then $G^{\prime} \succeq G$. If, in addition, one of the quasi-inequalities $G_{2} \geq G_{1}$ and $G_{2}-u^{\prime} \geq G_{1}-u$ is strict, then $G^{\prime} \succ G$.

Proof. By Lemma 1.2, for every positive integer k, we have $m_{k}(G)=m_{k}(G-u \nu)+m_{k-1}(G-$ $u-v)=m_{k}\left(G_{1} \cup H\right)+m_{k-1}\left(\left(G_{1}-u\right) \cup(H-v)\right)$ and $\left.m_{k}\left(G^{\prime}\right)=m_{k}\left(G_{2} \cup H\right)+m_{(} k-1\right)\left(\left(G_{2}-\right.\right.$ $\left.u^{\prime}\right) \cup(H-v)$. Since $G_{2} \succeq G_{1}$ and $G_{2}-u^{\prime} \geq G_{1}-u$, we have $m_{k}\left(G_{2} \cup H\right) \geq m_{k}\left(G_{1} \cup H\right)$ and $m_{k-1}\left(\left(G_{2}-u^{\prime}\right) \cup(H-v)\right) \geq m_{k-1}\left(\left(G_{1}-u\right) \cup(H-v)\right)$; hence $m_{k}\left(G^{\prime}\right) \geq m_{k}(G)$. This establishes the quasi-inequality $G^{\prime} \succeq G$. It is clear that the latter quasi-inequality is strict if one of the quasi-inequalities $G_{2} \succeq G_{1}$ and $G_{2}-u^{\prime} \succeq G_{1}-u$ is strict.

Lemma 2.2. For any $G \in G_{6, n}^{I} \backslash \Phi_{6, n}^{I}, G<\Phi_{6}^{I}\left(l_{1}, l_{2} ; 2\right)$ for some positive integers $l_{1}, l_{2} \geq 2$ that satisfy $l_{1}+l_{2}=n-14$.

Proof. By Lemma 1.4 we may assume that G has no nontrivial rooted tree, where the root is an internal vertex of one of the two paths joining the C_{6} 's. So we may assume that G is of the form as shown in Figure 2, which can be obtained by connecting sun graphs $C_{6}\left(P_{r_{1}+1}, \ldots, P_{r_{5}+1}, P_{1}\right)$ and \mathscr{S} by a path $P_{l_{1}}, \mathscr{S}$ and $C_{6}\left(P_{1}, P_{t_{1}+1}, P_{t_{2}+1}, \ldots, P_{t_{5}+1}\right)$ by a path $P_{l_{2}}$, where the middle sun

Figure 2: G when $l_{3}=3$.

Figure 3: G^{\prime}.
graph \mathscr{S} has either five pendent paths of length $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$ or four pendent paths of length $s_{1}, s_{2}, s_{3}, s_{4}$ according to $l_{3}=1$ or not.

If $\sum_{i=1}^{5} r_{i} \geq 1$, then by applying Lemma 2.1 with G_{1} equal to $C_{6}\left(P_{r_{1}+1}, \ldots, P_{r_{5}+1}, P_{1}\right), H$ equal to the graph obtained from G by deleting $V\left(G_{1}\right)$ and all incident edges, G^{\prime} equal to the graph as shown in Figure 3, G_{2} equal to $E_{6, r_{1}+r_{2}+\cdots+r_{5}+6}$ and $u=u^{\prime}=u_{1}, v=u_{2}$, and noting that $C_{6}\left(P_{r_{1}+1}, \ldots, P_{r_{5}+1}, P_{1}\right)<E_{6, r_{1}+r_{2}+\cdots+r_{5}+6}$ by Lemma 1.3 and $C_{6}\left(P_{r_{1}+1}, \ldots, P_{r_{5}+1}, P_{1}\right)-u_{1} \prec$ $P_{r_{1}+r_{2}+\cdots+r_{5}+5}<E_{6, r_{1}+r_{2}+\cdots+r_{5}+5}$, we obtain $G<G^{\prime}$.

Similarly, if $\sum_{i=1}^{5} t_{i} \geq 1$, then by applying Lemma 2.1, we can also show that $G<G^{\prime}$ for some $G^{\prime} \in \Phi_{6, n}^{I}$. So we can assume that G is obtained from some $\Phi_{6}^{I}\left(l_{1}^{\prime}, l_{2}^{\prime} ; l_{3}\right)$ by attaching a pendant path at each vertex of degree two in the middle cycle; say, the lengths of the pendant paths are $s_{1}, s_{2}, s_{3}, s_{4}$ or $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$ in case $l_{3}=1$. Figure 4 shows one possibility for G, namely, when the middle cycle is $C_{6}\left(P_{1}, P_{s_{1}+1}, P_{s_{2}+1}, P_{1}, P_{s_{3}+1}, P_{s_{4}+1}\right)$, i.e., $l_{3}=4$.

Let $G^{\prime \prime}=\Phi_{6}^{I}\left(l_{1}^{\prime}, l_{2}^{\prime}+s_{1}+s_{2}+s_{3}+s_{4} ; 2\right)$ or $\Phi_{6}^{I}\left(l_{1}^{\prime}, l_{2}^{\prime}+s_{1}+s_{2}+s_{3}+s_{4}+s_{5} ; 2\right)$ when $l_{3}=1$. It suffices to show that if $l_{3} \neq 2$ or $l_{3}=2$ and $s_{1}+s_{2}+s_{3}+s_{4} \geq 1$, then $G<G^{\prime \prime}$.

Figure 4: $G\left(l_{3}=4\right)$.

Figure 5: $G^{\prime \prime}$.

Figure 6: $G\left(l_{3}=1\right)$.

Now take G_{1} to the graph obtained by connecting a C_{6} and the middle sun graph of G by a path $P_{l_{2}^{\prime}}$ and take G_{2} to the graph obtained by connecting two $C_{6}^{\prime} s$ by a path $P_{l_{2}^{\prime}+s_{1}+\cdots+s_{4}}$ (or $P_{l_{2}^{\prime}+s_{1}+\cdots+s_{5}}$ in case $l_{3}=1$). By Lemma 2.1 one readily shows that $G_{1} \leq G_{2}$, and with strict inequality if $\sum s_{i} \geq 1$. Refer to Figure 4 or Figure 6 for graph G and to Figure 5 for graph $G^{\prime \prime}$. Now take H to be $E_{6, l_{1}^{\prime}+4}$ and apply Lemma 2.1 with $G, G^{\prime \prime}, u_{1}, s^{\prime}, u_{2}$ (and s) playing the role of $G, G^{\prime}, u, u^{\prime}, v$ respectively. when $l_{3} \neq 1, G_{1}-u_{1}$ is a unicyclic graph and $G_{2}-s^{\prime}$ is a lollipop graph of the same order. So $G_{1}-u_{1} \leq G_{2}-s^{\prime}$ and with strict inequality, if $G_{1}-u_{1}$ is not a lollipop, i.e., provided that $l_{3} \neq 2$ or $l_{3}=2$ and $s_{1}+\cdots+s_{4} \geq 1$. As we have noted, $G_{1} \leq G_{2}$, and with strict inequality when $\sum s_{i} \geq 1$. So by Lemma 2.1 we obtain $G<G^{\prime \prime}$. When $l_{3}=1, G_{2}-s^{\prime}$ equals the lollipop graph $E_{6, l_{2}^{\prime}+s_{1}+\cdots+s_{5}+9}$ and $G_{1}-u_{1}$ equals the union of $E_{6, l_{2}^{\prime}+4}$ and a tree, say T, of order $s_{1}+\cdots+s_{5}+5$. By adding a suitable edge joining a vertex of $E_{6, l_{2}^{\prime}+4}$ to a vertex of T one obtains a unicyclic graph F with the same order as $G_{2}-s^{\prime}$. Hence $G_{2}-s^{\prime}>G_{1}-u_{1}$. Then by applying Lemma 2.1 we also obtain $G<G^{\prime \prime}$ for this case.

Lemma 2.3. For any positive integers $a, b \geq 6$, if $\min \{a, b\}>6$ then $E_{6, a} \cup E_{6, b}<C_{6} \cup E_{6, a+b-6}$.
Proof. Without loss of generality, assume that $\min \{a, b\}>6$. By Lemma 1.2 we have

$$
m_{k}\left(E_{6, a} \cup E_{6, b}\right)=m_{k}\left(E_{6, b} \cup C_{6} \cup P_{a-6}\right)+m_{k-1}\left(E_{6, b} \cup P_{a-7} \cup P_{5}\right)
$$

$$
m_{k}\left(C_{6} \cup E_{6, a+b-6}\right)=m_{k}\left(E_{6, b} \cup C_{6} \cup P_{a-6}\right)+m_{k-1}\left(E_{6, b-1} \cup P_{a-7} \cup C_{6}\right)
$$

Now we only need to show that $E_{6, b} \cup P_{5}<E_{6, b-1} \cup C_{6}$. We proceed by induction on b. When $b=7$, by Lemma 1.2, we have

$$
\begin{aligned}
m_{k}\left(E_{6,7} \cup P_{5}\right) & =m_{k}\left(C_{6} \cup P_{1} \cup P_{5}\right)+m_{k-1}\left(P_{5} \cup P_{5}\right) \\
& =m_{k}\left(C_{6} \cup P_{1} \cup P_{5}\right)+m_{k-1}\left(P_{5} \cup P_{1} \cup P_{4}\right)+m_{k-2}\left(P_{5} \cup P_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
m_{k}\left(C_{6} \cup C_{6}\right) & =m_{k}\left(C_{6} \cup P_{6}\right)+m_{k-1}\left(C_{6} \cup P_{4}\right) \\
& =m_{k}\left(C_{6} \cup P_{6}\right)+m_{k-1}\left(P_{6} \cup P_{4}\right)+m_{k-2}\left(P_{4} \cup P_{4}\right) .
\end{aligned}
$$

By Lemma 1.5 we have $P_{1} \cup P_{5}<P_{6}, P_{5} \cup P_{3}<P_{4} \cup P_{4}$. So $E_{6,7} \cup P_{5}<C_{6} \cup C_{6}$. For the case when $b=8$, by calculation, we have Table 1 . So we have $E_{6,8} \cup P_{5}<E_{6,7} \cup C_{6}$.

Table 1: The k-matching numbers of $E_{6,8} \cup P_{5}$ and $E_{6,7} \cup C_{6}$ for $k=1, \ldots, 6$.

$k=$	1	2	3	4	5	6
$m_{k}\left(E_{6,8} \cup P_{5}\right)$	12	54	114	115	50	6
$m_{k}\left(E_{6,7} \cup C_{6}\right)$	13	64	148	161	71	10

For $b \geq 9$, we have

$$
\begin{aligned}
m_{k}\left(E_{6, b} \cup P_{5}\right) & =m_{k}\left(E_{6, b-1} \cup P_{5}\right)+m_{k-1}\left(E_{6, b-2} \cup P_{5}\right) \\
m_{k}\left(E_{6, b-1} \cup C_{6}\right) & =m_{k}\left(E_{6, b-2} \cup C_{6}\right)+m_{k-1}\left(E_{6, b-3} \cup C_{6}\right) .
\end{aligned}
$$

By induction, we have $E_{6, b-1} \cup P_{5}<E_{6, b-2} \cup C_{6}$ and $E_{6, b-2} \cup P_{5}<E_{6, b-3} \cup C_{6}$; hence $E_{6, b} \cup P_{5}<$ $E_{6, b-1} \cup C_{6}$.

Lemma 2.4. For any positive integers $l_{1}, l_{2} \geq 2$ with $l_{1}+l_{2}=n-14$, if $\min \left\{l_{1}, l_{2}\right\}>2$ then $\Phi_{6}^{I}\left(l_{1}, l_{2} ; 2\right)<\Phi_{6}^{I}(n-16,2 ; 2)$.

Proof. For brevity, we denote $\Phi_{6}^{I}\left(l_{1}, l_{2} ; 2\right)$ and $\Phi_{6}^{I}(n-16,2 ; 2)$ respectively by G and H. Referring to Figure 7, by Lemma 1.2 we have

$$
\begin{aligned}
& m_{k}(G)=m_{k}\left(G-u_{1} v_{1}\right)+m_{k-1}\left(E_{6, l_{1}+4} \cup E_{6, l_{2}+4} \cup P_{4}\right), \\
& m_{k}(H)=m_{k}\left(H-u_{0} v_{0}\right)+m_{k-1}\left(E_{6, n-12} \cup C_{6} \cup P_{4}\right) .
\end{aligned}
$$

Because $G-u_{1} \nu_{1}=H-u_{0} v_{0}$ and $E_{6, l_{1}+4} \cup E_{6, l_{2}+4}<E_{6, n-12} \cup C_{6}$ by Lemma 2.3, we obtain $G<H$.

Lemma 2.5. For any graph $G \in G_{6, n}^{\Pi} \backslash \Phi_{6}^{\Pi}(n-17,2,2)$ with $n \geq 19, G<\Phi_{6}^{\Pi}(n-17,2,2)$.

Figure 7: The graphs G and H.

Proof. First, using Lemma 2.1, we can show that for any graph $G \in G_{6, n}^{\Pi} \backslash \Phi_{6, n}^{\Pi}, G<\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)$ for some positive integers l_{1}, l_{2}, l_{3} with $\min \left\{l_{1}, l_{2}, l_{3}\right\} \geq 2$. Thus hereafter we assume that $G=$ $\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)$. If $\min \left\{l_{1}, l_{2}, l_{3}\right\}>2$, then we show that $\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)<\Phi_{6}^{\Pi}\left(l_{1}^{\prime}, l_{2}^{\prime}, 2\right)$ for some positive integers $l_{1}^{\prime}, l_{2}^{\prime} \geq 2$ with $l_{1}^{\prime}+l_{2}^{\prime}=n-15$ as follows: Let G and $H=\Phi_{6}^{\Pi}\left(l_{1}, l_{2}^{\prime}, 2\right)$ with $l_{1}+l_{2}^{\prime}=$ $n-15$ be as given in Figure 8. Without loss of generality, assume that $l_{3}=\min \left\{l_{1}, l_{2}, l_{3}\right\}>2$. By

Figure 8: The graphs G and H.
Lemma 1.2 we have

$$
\begin{aligned}
& m_{k}(G)=m_{k}(G-u v)+m_{k-1}\left(E_{6, l_{1}+3} \cup E_{6, l_{2}+4} \cup E_{6, l_{3}+4}\right) . \\
& m_{k}(H)=m_{k}\left(H-u^{\prime} v^{\prime}\right)+m_{k-1}\left(E_{6, l_{1}+3} \cup E_{6, l_{2}^{\prime}+4} \cup C_{6}\right) .
\end{aligned}
$$

Note that $G-u v=H-u^{\prime} v^{\prime}$ and by Lemma 2.3, $E_{6, l_{2}+4} \cup E_{6, l_{3}+4}<E_{6, l_{2}^{\prime}+4} \cup C_{6}$. Hence $\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, l_{3}\right)$ $<\Phi_{6}^{\Pi}\left(l_{1}, l_{2}^{\prime}, 2\right)$ and we may assume that $G=\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, 2\right)$ for some positive integers $l_{1}, l_{2} \geq 2$ with $l_{1}+l_{2}=n-15$.

If $\min \left\{l_{1}, l_{2}\right\}>2$, then we prove that $\Phi_{6}^{\Pi}\left(l_{1}, l_{2}, 2\right)<\Phi_{6}^{\Pi}(n-17,2,2)$. Let G and $H=\Phi_{6}^{\Pi}(n-$ $17,2,2$) be as shown in Figure 9.

By Lemma 1.2 we have

$$
\begin{aligned}
& m_{k}(G)=m_{k}(G-u v)+m_{k-1}\left(E_{6, l_{1}+4} \cup E_{6, l_{2}+4} \cup P_{5}\right), \\
& m_{k}(H)=m_{k}\left(H-u^{\prime} v^{\prime}\right)+m_{k-1}\left(E_{6, l_{1}+l_{2}+2} \cup C_{6} \cup P_{5}\right) .
\end{aligned}
$$

Since we have $G-u v=H-u^{\prime} v^{\prime}$ and $E_{6, l_{1}+4} \cup E_{6, l_{2}+4}<E_{6, l_{1}+l_{2}+2} \cup C_{6}$ by Lemma 2.3, we are done.

G

H

Figure 9: The graphs G and H.

Lemma 2.6. For $n \geq 19$, we have $\operatorname{ME}\left(\Phi_{6}^{I}(n-16,2 ; 2)\right)<M E\left(\Phi_{6}^{I I}(n-17,2,2)\right)$ and, moreover, $\Phi_{6}^{I}(n-16,2 ; 2)<\Phi_{6}^{I I}(n-17,2,2)$ except when $n=20,22$.

Proof.For convenience, let $G=\Phi_{6}^{I}(n-16,2 ; 2)$ and $H=\Phi_{6}^{I I}(n-17,2,2)$, as shown in Figure 10.

Figure 10: The graphs G and H.
First, assume that $n \geq 20$. By Lemma 1.2 we have

$$
\begin{aligned}
m_{k}(G) & =m_{k}(G-u v)+m_{k-1}(G-u-v) \\
& =m_{k}(G-u v)+m_{k-1}\left(E_{6, n-7} \cup P_{5}\right) \\
& =m_{k}(G-u v)+m_{k-1}\left(E_{6, n-13} \cup P_{6} \cup P_{5}\right)+m_{k-2}\left(E_{6, n-14} \cup P_{5} \cup P_{5}\right), \\
m_{k}(H) & =m_{k}\left(H-u^{\prime} v^{\prime}\right)+m_{k-1}\left(H-u^{\prime}-v^{\prime}\right) \\
& =m_{k}\left(H-u^{\prime} v^{\prime}\right)+m_{k-1}\left(E_{6, n-13} \cup C_{6} \cup P_{5}\right) \\
& =m_{k}\left(H-u^{\prime} v^{\prime}\right)+m_{k-1}\left(E_{6, n-13} \cup P_{6} \cup P_{5}\right)+m_{k-2}\left(E_{6, n-13} \cup P_{4} \cup P_{5}\right) .
\end{aligned}
$$

Since $G-u v=H-u^{\prime} \nu^{\prime}$, we only need to consider $E_{6, n-14} \cup P_{5}<E_{6, n-13} \cup P_{4}$. By Lemma 1.2 we have

$$
\begin{aligned}
& m_{k}\left(E_{6, n-14} \cup P_{5}\right)=m_{k}\left(P_{n-14} \cup P_{5}\right)+m_{k-1}\left(P_{n-20} \cup P_{4} \cup P_{5}\right) \\
& m_{k}\left(E_{6, n-13} \cup P_{4}\right)=m_{k}\left(P_{n-13} \cup P_{4}\right)+m_{k-1}\left(P_{n-19} \cup P_{4} \cup P_{4}\right) .
\end{aligned}
$$

Note that the assumption $n \geq 20$ guarantees that $E_{6, n-14}$ is defined. By Lemma 1.5 (iii) we have $P_{n-14} \cup P_{5}<P_{n-13} \cup P_{4}$, provided that $5 \leq n-14$ and $4 \leq n-13$, i.e., $n \geq 19$. Since we are assuming $n \geq 20$, the said quasi-inequality holds. Similarly, we have $P_{n-20} \cup P_{5}<P_{n-19} \cup P_{4}$,
provided that $n \geq 25$. If $n=24, P_{n-20} \cup P_{5}$ and $P_{n-19} \cup P_{4}$ are both equal to $P_{4} \cup P_{5}$. If $n=$ 23, we have $P_{n-20} \cup P_{5}=P_{3} \cup P_{5}<P_{n-19} \cup P_{4}=P_{4} \cup P_{4}$ by Lemma 1.5 (iii). If $n=22$, then $P_{n-20} \cup P_{5}>P_{3} \cup P_{4}=P_{n-19} \cup P_{4}$. Similarly, we have $P_{n-20} \cup P_{5}<P_{n-19} \cup P_{4}$ for $n=21$ and $P_{n-20} \cup P_{5}<P_{n-19} \cup P_{4}$ for $n=20$. So for $n \geq 20$, we have $P_{n-20} \cup P_{5} \leq P_{n-19} \cup P_{4}$ and hence $E_{6, n-14} \cup P_{5}<E_{6, n-13} \cup P_{4}$ except for $n=20,22$. Thus for $n \geq 20$, we always have $G<H$ except possibly when $n=20,22$.

Now we treat the case $n=19$. We have

$$
\begin{aligned}
m_{k}(G) & =m_{k}(G-u v)+m_{k-1}(G-u-v) \\
& =m_{k}(G-u v)+m_{k-1}\left(E_{6,12} \cup P_{5}\right), \\
m_{k}(H) & =m_{k}\left(H-u^{\prime} v^{\prime}\right)+m_{k-1}\left(H-u^{\prime}-v^{\prime}\right) \\
& =m_{k}\left(H-u^{\prime} v^{\prime}\right)+m_{k-1}\left(C_{6} \cup C_{6} \cup P_{5}\right) .
\end{aligned}
$$

Note that $G-u v=H-u^{\prime} v^{\prime}$, so we only need to establish $E_{6,12}<C_{6} \cup C_{6}$. Now for all positive integers k, since

$$
\begin{aligned}
m_{k}\left(E_{6,12}\right) & =m_{k}\left(P_{12}\right)+m_{k-1}\left(P_{4} \cup P_{6}\right) \\
& =m_{k}\left(P_{6} \cup P_{6}\right)+m_{k-1}\left(P_{5} \cup P_{5}\right)+m_{k-1}\left(P_{4} \cup P_{6}\right) \\
& =m_{k}\left(P_{6} \cup P_{6}\right)+m_{k-1}\left(P_{4} \cup P_{5}\right)+m_{k-2}\left(P_{3} \cup P_{5}\right)+m_{k-1}\left(P_{4} \cup P_{6}\right) \\
& \leq m_{k}\left(P_{6} \cup P_{6}\right)+m_{k-1}\left(P_{4} \cup P_{6}\right)+m_{k-2}\left(P_{4} \cup P_{4}\right)+m_{k-1}\left(P_{4} \cup P_{6}\right) \\
& =m_{k}\left(C_{6} \cup C_{6}\right),
\end{aligned}
$$

where at least one inequality holds strictly, we are done. So we also obtain $G<H$ in this case.
For $n=20$, and $n=22$, by calculation we obtain Tables 2 and 3. So, for these cases, we have neither $G \leq H$ nor $G \succeq H$. Making use of Theorem 1.1, we also obtain $M E(G)=30.0168$ and $M E(H)=30.0334$ when $n=20$, and $M E(G)=31.877$ and $M E(H)=31.9742$ when $n=22$. In either case, we have $M E(G)<M E(H)$.

Table 2: The k-matching numbers of G and H for $k=1, \ldots, 10$.

$k=$	1	2	3	4	5	6	7	8	9	10
$m_{k}(G)$	22	203	1014	4239	5683	6311	4008	1321	191	8
$m_{k}(H)$	22	203	1024	4238	5674	6281	3964	1296	188	8

The proof is completed.
In conclusion, we obtain the following result:
Theorem 2.7. For any graph $G \in G_{6, n} \backslash\left\{\Phi_{6}^{I I}(n-17,2,2)\right\}$ with $n \geq 19$, we have $M E(G)<M E$ $\left(\Phi_{6}^{I I}(n-17,2,2)\right)$ and, moreover, $G<\Phi_{6}^{I I}(n-17,2,2)$ except when $n=20,22$ and $G=\Phi_{6}^{I}(n-$ $16,2 ; 2)$.

Table 3: The k-matching numbers of G and H for $k=1, \ldots, 11$.

$k=$	1	2	3	4	5	6	7	8	9	10	11
$m_{k}(G)$	24	246	1410	4760	9888	14011	13600	7217	1956	237	8
$m_{k}(H)$	24	246	1410	4760	9888	13594	13600	7207	1964	240	8

We would like to add that when $n=18, G_{6, n}^{\Pi}$ is empty, $G_{6, n}^{I}=\Phi_{6, n}^{I}$ and $\Phi_{6, n}^{I}(2,2 ; 2)>G$ for every $G \in G_{6, n} \backslash \Phi_{6, n}^{I}(2,2 ; 2)$. When $n<18, G_{6, n}$ is empty.

References

[1] L. Chen and Y. Shi, The maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem., 73 (2015), 105-119.
[2] L. Chen, J. Liu and Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter, Complexity, to appear.
[3] I. Gutman, Graphs with greatest number of matchings, Publ. Inst. Math. (Beograd), 27 (1980), 67-76.
[4] I. Gutman, X. Li, Y. Shi and J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem., 60 (2008), 415-426.
[5] I. Gutman nad S. Wagner, The matching energy of a graph, Discr. Appl. Math., 160 (2012), 2177-2187.
[6] B. Huo, X. Li and Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, European J. Combin., 32 (2011), 662-673.
[7] B. Huo, X. Li and Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs, Lin. Algebra Appl., 434(2011), 1370-1377.
[8] S. J. Ji, X. L. Li and Y. T. Shi, Extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 697-706.
[9] H. H. Li, B. S. Tam and L. Su, On the signless Laplacian coeffcients of unicyclic graphs, Lin. Algebra Appl., 439 (2013), 2008-2009.
[10] H. H. Li, Y. X. Zhou, L. Su, Graphs with extremal matching energies and prescribed parameters, MATCH Commun. Math. Comput. Chem., 72 (2014), 239-248.
[11] S. L. Li and W. G. Yan, The matching energy of graphs with given parameters, Discr. Appl. Math., 162 (2014), 415-420.
[12] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[13] X. L. Li, Y. T. Shi and M. Q. Wei, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem., 72 (2014), 183-214.
[14] K. Xu, K. C. Das and Z. Zheng, The minimal matching energy of (n, m)-graphs with a given matching number, MATCH Commun. Math. Comput. Chem., 73 (2015), 93-104.

College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
E-mail: yunxia2008@163.com
College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
E-mail: lhh@jxnu.edu.cn

