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MULTI-VALUED MAPPINGS AND FIXED POINTS II

B. C. DHAGE

Abstract. In this paper, some hybrid fixed point principles for the sum of two multi-valued

operators in a Banach space are proved and they are further applied to a certain integral inclu-

sion of mixed type for proving the existence results under mixed Lipschitz and Carathéodory

conditions.

1. Introduction

Hybrid fixed point theorem of Krasnoselskii [12] which combines a topological fixed
point theorem of Schauder with a geometrical fixed point theorem of Banach has been
a subject of great interest for a long time. It is known that the fixed point theorem
of Krasnoselskii has nice applications to perturbed nonlinear differential and the mixed
type of integral equations including the allied areas of mathematics for proving the ex-
istence theorems under mixed Lipschitz and compactness conditions. See [6], [7], [16],
[19] ,[23] and the references therein. There are several extensions and generalizations of
Krasnoselskii fixed point theorem in the course of time. Recently Petruşel [16] has ob-
tained a multi-valued analogue of this theorem under some relaxed conditions and which
is further applied to a certain integral inclusion for proving the existence of solutions. In
this paper, we prove some nonlinear alternatives of Leray-Schauder type for the multi-
valued version of Krasnoselskii fixed point theorem involving the sum of two multi-valued
operators in a Banach space and apply them to prove the existence results for a certain
functional integral inclusion under mixed Lipschitz and Carathéodory conditions.

2. Preliminaries

Throughout this paper, unless otherwise mentioned, let X denote a Banach space
with norm ‖ · ‖. Let Pp(X) denote the class of all non-empty subsets of X with property
p. In particular, Pbd,cl(X) and Pcp,cv(X) denote respectively the classes of all bounded
and closed, and compact and convex subsets of X . For x ∈ X and Y, Z ∈ Pbd,cl(X), we
denote D(x, Y ) = inf{‖x−y‖ | y ∈ Y }, and ρ(Y, Z) = supa∈Y D(a, Z). Define a function
H : Pcl(X) × Pcl(X) → R

+ by

H(A,B) = max{ρ(A,B) , ρ(B,A)}.
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Note that ‖Y ‖ = H(Y, {0}).
A correspondence T : X → Pp(X) is called a multi-valued mapping on X . A point

x0 ∈ X is called a fixed point of the multi-valued operator T : X → Pp(X) if x0 ∈ T (x0).
The fixed points set of T will be denoted by Fix(T ).

Definition 2.1. Let T : X → Pbd,cl(X) be a multi-valued operator. Then T is called
a multi-valued contraction on X if there exists a constant k ∈ (0, 1) such that

H(T (x), T (y)) ≤ k‖x− y‖

for all x, y ∈ X . The constant k is called a contraction constant of T .

The following fixed point theorem for multi-valued contraction mappings appears in
Covitz and Nadler [4].

Theorem 2.1. Let (X, d) be a complete metric space and let T : X → Pcl(X) be a
multi-valued contraction. Then Fix(T ) is a non-empty and closed subset of X.

Let X be a metric space. A multi-valued mapping T : X → Pp(X) is called lower

semi-continuous (resp. an upper semi-continuous) if G is any open subset of X , then
{x ∈ X | Tx ∩ G 6= ∅}(resp.{x ∈ X | Tx ⊂ G}) is an open subset of X . The multi-
valued operator T is called totally compact if T (S) is a compact subset of X for any
S ⊂ X . T is called compact if T (S) is a relatively compact subset of X for all bounded
subsets S of X . Again T is called totally bounded if for any bounded subset S of X , T (S)
is a totally bounded subset of X . A multi-valued operator T : X → Pp(X) is called

completely continuous if it is upper semi-continuous and compact on X . Every compact
multi-valued operator is totally bounded but the converse may not be true. However,
these two notions are equivalent on a bounded subset in a complete metric space X .

The Leray-Schauder nonlinear alternative for compact single-valued mappings is

Theorem 2.2. Let U and U be open and closed subsets of a Banach space X respec-
tively such that 0 ∈ U and let T : U → X be continuous and totally compact mapping.

Then either
(i) T has a fixed point, or
(ii) there exists an element u ∈ ∂U such that λu = Tu for some λ > 1, where ∂U is the

boundary of U .

The Hausdorff measure of noncompactness for a bounded subset S of X is a nonneg-
ative real number χ(S) defined by

χ(S) = inf
{

r > 0 : S ⊂
n
⋃

i=1

Bi(xi, r), for some xi ∈ X
}

, (2.1)

where Bi(xi, r) = {x ∈ X | d(x, xi) < r}.
The measure of noncompactness χ enjoys the following properties:
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(χ1) χ(A) = 0 ⇔ A is relatively compact.

(χ2) χ(A) = χ(A) = χ(coA), where A and coA denote respectively the closure and

the closed convex hull of A.

(χ3) A ⊂ B ⇒ χ(A) ≤ α(B).

(χ4) χ(A ∪B) = max{χ(A), χ(B)}.

(χ5) χ(λA) = |λ|χ(A), ∀λ ∈ R.

(χ6) χ(A+B) ≤ χ(A) + χ(B).

The details of Hausdorff measure of noncompactness and its properties appear in

Deimling [5], Zeidler [24] and the references therein.

Definition 2.2. A multi-valued mapping T : X → Pcp(X) is called condensing if for

any bounded subset S of X , T (S) is bounded and χ(T (S)) < χ(S) for χ(S) > 0.

It is known that contraction and completely continuous mappings are condensing,

but the converse may not be true. See Petruşel [16, 17]. The one of the famous fixed

point theorems for condensing multi-valued mappings is the following variant of a fixed

point theorem of O’Regan [20] under slightly weaker condition.

Theorem 2.3. Let U and U be open and closed subsets of a Banach space X re-

spectively such that 0 ∈ U and let T : U → Pcp,cv(X) be an upper semi-continuous and

condensing mapping such that T (U) is bounded. Then either

(i) T has a fixed point, or

(ii) there exists an element u ∈ ∂U such that λu ∈ Tu for some λ > 1, where ∂U is the

boundary of U .

In the following section we prove the main fixed point theorems of this paper.

3. Multi-valued Fixed Point Theory

Before going to the main fixed point results of this section, we state some of the

results which are useful in the sequel.

Theorem 3.1.(Rybinski [22]) Let S be a nonempty and closed subset of a Banach

space X and let Y be a metric space. Assume that F : S×Y → Pcl,cv(S) be a multi-valued

mapping satisfying

(a) H(F (x1, y), F (x2, y)) ≤ k‖x1 − x2‖ for each (x1, y), (x2, y) ∈ S × Y ,

(b) for every x ∈ S, F (x, ·) is lower semi-continuous (briefly l.s.c.) on Y .

Then there exists a continuous mapping f : S × Y → S such that f(x, y) ∈ F (f(x, y), y)

for each (x, y) ∈ S × Y .

The following lemmas are useful in the sequel.

Lemma 3.1.([Lim [14]) Let (X, d) be a complete metric space and let T1, T2 : X →
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Pbd,cl(X) be two multi-valued contractions with the same contraction constant k. Then

ρ(Fix(T1), F ix(T2)) ≤
1

1 − k
sup
x∈X

ρ(T1(x), T2(x)).

Lemma 3.2. (Hu and Papageorgiou [10]) Let X be a Banach space. Then

H(Y + Z, Y +W ) ≤ H(Z,W )

for Y, Z,W ∈ Pbd(X).

Lemma 3.3. (Kisielewicz [10]) Let X be a Banach space. Then

H(λY, λZ) ≤ |λ|H(Z,W )

for Y, Z ∈ Pbd(X) and for each λ ∈ R.

Theorem 3.2. Let U be an open subset of X such that 0 ∈ U and let A : X →
Pbd,cl,cv(X), B : U → Pcp,cv(X) be two multi-valued operators satisfying

(a) A is contraction with a contraction constant k, and
(b) B is l.s.c. and totally compact.
Then either

(i) the operator inclusion λx ∈ A(λx) +Bx has a solution in U for λ = 1, or
(ii) there exists an element u ∈ ∂U such that λx ∈ A(λx) + Bx for some λ > 1, where

∂U is the boundary of U .

Proof. Define a multi-valued operator T : X × U → Pcl,cv,bd(X) by

T (x, y) = Ax+By. (3.1)

We show that T (x, y) is multi-valued contraction operator in x for each fixed y ∈ X . Let
x1, x2 ∈ X be arbitrary. Then by Lemma 3.2,

H(T (x1, y), T (x2, y)) = H(A(x1) +B(y), A(x2) +B(y))

≤ H(A(x1), A(x2))

≤ k‖x1 − x2‖.

This shows that the multi-valued operator Ty(·) = T (., y) is a contraction on X with a

contraction constant k. Hence an application of Covitz-Nadler fixed point theorem yields
that the fixed point set

Fix(Ty) = {x ∈ X | x ∈ A(x) +B(y)}

is nonempty and closed for each y ∈ X.
Now the operator T (x, y) satisfies all the conditions of Theorem 3.1 and hence there

exists a continuous mapping f : X × U → X such that f(x, y) ∈ A(f(x, y)) +B(y). Let
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us define C(y) = Fix(Ty), C : U → Pcl(X). Let us consider the single-valued operator
c : U → X defined by c(x) = f(x, x), for each x ∈ U . Then c is a continuous mapping
having the property that

c(x) = f(x, x) ∈ A(f(x, x)) +B(x) = A(c(x)) +B(x),

for each x ∈ U .
Now, we will prove that c is compact on U . To do this, it is sufficient to show that C

is compact on U . Let ǫ > 0. Since B is totally compact on U , B(U) is compact. Then
there exists Y = {y1, . . . , yn} ⊂ X such that

B(U ) ⊂ {w1, . . . , wn} + B(0, (1 − k)ǫ)

⊂
n
⋃

i=1

B(yi) + B(0, (1 − k)ǫ),

where wi ∈ B(yi), for each i = 1, 2, . . . , n. It follows that, for each y ∈ U ,

B(y) ⊂
n
⋃

i=1

B(yi) + B(0, (1 − k)ǫ)

and hence there exists an element yk ∈ Y such that

ρ(B(y), B(yk)) < (1 − k)ǫ.

Then

ρ(C(y), C(yk)) = ρ(Fix(Ty), F ix(Tyk
))

≤
1

1 − k
sup
x∈U

ρ(Ty(x), Tyk
(x))

=
1

1 − k
sup
x∈U

ρ(A(x) +B(y), A(x) +B(yk))

≤
1

1 − k
sup
x∈U

ρ(B(y), B(yk))

<
1

1 − k
(1 − k)ǫ

= ǫ.

It follows that for each u ∈ C(y) there is vk ∈ C(yk) such that ‖u − vk‖ < ǫ.

Hence, for each y ∈ U , C(y) ⊂
n
⋃

i=1

Bǫ(vi), where vi ∈ C(yi), i = 1, 2, . . . , n. Therefore

c(U) ⊂ C(U) ⊂
n
⋃

i=1

Bǫ(vi) and so c is a totally compact operator on U .

Finally, note that the mapping c : U → X satisfies all the assumptions of Leray-
Schauder’s nonlinear alternative and hence an application of it yields that either
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(i) the operator equation λx = c(x) ∈ A(c(x)) +Bx = A(λx) + Bx has a solution in U

for λ = 1 , or

(ii) there exists an element u ∈ ∂U such that λu = c(u) ∈ A(c(u)) +Bx = A(λu) + Bu

for some λ > 1, where ∂U is the boundary of U .

This completes the proof.

Corollary 3.1. Let Br(0) and Br(0) denote respectively the open and closed balls

in a Banach space X centered at origin 0 of radius r. Let A : X → Pcl,cv,bd(X),

B : Br(0) → Pcp,cv(X) be two multi-valued operators satisfying

(a) A is contraction, and

(b) B is l.s.c. and totally compact.

Then either

(i) the operator inclusion λx ∈ A(λx) +Bx has a solution in Br(0) for λ = 1 ,or

(ii) there exists an element X with ‖u‖ = r satisfying λu ∈ A(λu) +Bu for some λ > 1,

where ∂U is a boundary of U .

To prove the next fixed point theorem, we need the following result of Petryshyn and

Fitzpatrik [18] in the sequel.

Lemma 3.4. Let Let X be a metric space and let A : X → Pbd,cl(X) be a multi-valued

contraction with a contraction k. Then for any bounded subset S of X , χ(A(S)) ≤ kχ(S).

Theorem 3.3. Let U and U be respectively the open and closed subsets of a Banach

space X such that 0 ∈ U . Let A : U → Pcl,cv,bd(X) and B : U → Pcp,cv(X) be two

multi-valued operators such that A(U) +B(U) is bounded. Suppose that

(a) A is contraction with a contraction k,

(b) B is u.s.c. and compact.

Then either

(i) the operator inclusion λx ∈ Ax +Bx has a solution for λ = 1 ,or

(ii) there is an element u ∈ ∂U such that λu ∈ Au + Bu for some λ > 1, where ∂U is

the boundary of U .

Proof. Since A is multi-valued contraction, it is both lower as well as upper semi-

continuous on X . Therefore the multi-valued operator T : X → X defined by T (x) =

(A + B)(x) = Ax + Bx is upper semi-continuous on X . Obviously A : U → Pcp,cv(X),

since α(Ax) ≤ kα({x}) = 0. As a result, we have T : U → Pcp,cv(X). Let S be a

bounded subset of U . Then by property (χ6),

χ(T (S)) ≤ χ(A(S) +B(S)) ≤ χ(A(S)) + χ(B(S)).

As B is completely continuous, we have that χ(B(S)) = 0. Again from Lemma 3.3, it

follows that χ(A(S)) ≤ kχ(S). Hence we have

χ(T (S)) = χ(A(S)) ≤ kχ(S)
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for all bounded sets S in U . Also T (U) is bounded. Now the desired conclusion follows
by an application of Theorem 2.3 to the multi-valued operator T on U . This completes
the proof.

Corollary 3.2. Let Br(0) and Br(0) denote respectively the open and closed balls
in a Banach space X centered at origin 0 of radius r. Let A : Br(0) → Pcl,cv,bd(X),
B : Br(0) → Pcp,cv(X) two multi-valued operators satisfying
(a) A is a multi-valued contraction with the contraction constant k, and
(b) B is u.s.c. and compact.
Then either
(i) the operator inclusion λx ∈ Ax +Bx has a solution in Br(0) for λ = 1 ,or
(ii) there is an element u ∈ X with ‖u‖ = r such that λu ∈ Au+Bu for some λ > 1.

Proof. We just show that T (Br(0)) is bounded, where Tx = Ax + Bx, x ∈ Br(0).
From the definition of T it follows that T (Br(0)) ⊂ A(Br(0)) + B(Br(0)). Since B is
compact, B(Br(0)) is a compact set and consequently a bounded subset of X . We only
prove that A(Br(0)) is a bounded set in X . Let x ∈ Br(0) be arbitrary. Then for any
a ∈ Ax we have

|a| ≤ ‖A(x)‖

≤ H(A(x), A(0)) + ‖A(0)‖

≤ k|x| + ‖A(0)‖

≤ kr + ‖A(0)‖

<∞,

and so A(Br(0)) is bounded. Now the desired conclusion follows by an application of
Theorem 2.3. This competes the proof.

The Kuratowskii measure α of noncompactness in a Banach space is a nonnegative
real number α(S) defined by

α(S) = inf
{

r > 0 : S ⊂
n
⋃

i=1

Si, and diam(Si) ≤ r, ∀ i
}

(3.2)

for all bounded subsets S of X .

It is known that the Kuratowskii measure α of noncompactness has all the properties
(χ1) through (χ6) of Hausdorff measure of noncompactness on X . The following useful
results appear in Banas and Goebel [2].

It is known that the Kuratowskii measure α of noncompactness has all the properties
(χ1) through (χ6) of Hausdorff measure of noncompactness on X . The following useful
results appear in Banas and Goebel [2].

Lemma 3.5.([5, page 7]) Let α and χ denote respectively the Kuratowskii and Haus-
dorff measure of noncompactness in a Banach space X. Then α(S) ≤ 2χ(S) for any
bounded set S in X.
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Lemma 3.6.If A : X → X is a single-valued Lipschitz map with a Lipschitz constant

k, that is,

‖Ax−Ay‖ ≤ k‖x− y‖

for all x, y ∈ X, and for some real number k > 0, then we have α(A(S)) ≤ k α(S) for

any bounded subset S of X.

Theorem 3.4. Let U and U be respectively the open and closed subsets of a Banach

space X such that 0 ∈ U . Let A : U → X be a single-valued and B : U → Pcp,cv(X) be a

multi-valued operator such that A(U) +B(U) is bounded. Suppose that

(a) A is contraction with a contraction k < 1/2, and

(b) B is u.s.c. and compact.

Then either

(i) the operator inclusion λx ∈ Ax +Bx has a solution for λ = 1 ,or

(ii) there is an element u ∈ ∂U such that λu ∈ Au + Bu for some λ > 1, where ∂U is

the boundary of U .

Proof. Since A is single-valued contraction, it is continuous on X . Therefore the

multi-valued operator T : X → Pp(X) defined by T (x) = (A+B)(x) = Ax+Bx is upper

semi-continuous on X . Obviously A : U → Pcp,cv(X), since α(Ax) ≤ kα({x}) = 0. As a

result, we have T : U → Pcp,cv(X). Let S be a bounded subset of U . As B is completely

continuous, we have that χ(B(S)) = 0. From Lemmas 3.5 and 3.6, and property (χ6), it

follows that

χ(T (S)) ≤ χ(A(S) +B(S))

≤ ≤ χ(A(S)) + χ(B(S))

≤ α(A(S))

≤ kα(S)

≤ 2 kχ(S)

< χ(S)

whenever χ(S) > 0. Hence we have χ(T (S)) < χ(S), χ(S) > 0 for all bounded sets S

in U . Also T (U) is bounded. Now the desired conclusion follows by an application of

Theorem 2.3 to the multi-valued operator T on U . This completes the proof.

Corollary 3.3. Let Br(0) and Br(0) denote respectively the open and closed balls in

a Banach space X centered at origin 0 of radius r. Let A : Br(0) → X, B : Br(0) →
Pcp,cv(X) two multi-valued operators satisfying

(a) A is a single-valued contraction with contraction constant k < 1/2,

(b) B is u.s.c. and compact.

Then either

(i) the operator inclusion λx ∈ Ax +Bx has a solution in Br(0) for λ = 1 ,or

(ii) there is an element u ∈ X with ‖u‖ = r such that λu ∈ Au+Bu for some λ > 1.
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In the following section we will prove an existence theorem for a certain functional

integral inclusion of mixed type by an application of the abstract fixed point theorem of
this section.

4. Functional Integral Inclusions

Let R denote the real line. Given a closed and bounded interval J = [0, 1] in R,
consider the following functional integral inclusion (in short FII),

x(t) ∈ q(t)+

∫ µ(t)

0

k1(t, s)F (s, x(θ(s))) ds+

∫ σ(t)

0

k2(t, s)G(s, x(η(s))) ds, t ∈ J, (4.1)

where q : J → R, k1, k2 : J × J → R, F,G : J × R → Pp(R) and µ, θ, σ, η : J → J .
By a solution of the FII (4.1) we mean a function x ∈ C(J,R) that satisfies

x(t) = q(t) +

∫ µ(t)

0

k1(t, s)v1(s) ds+

∫ σ(t)

0

k2(t, s)v2(s) ds,

for some v1, v2 ∈ L1(J,R) satisfying v1(t) ∈ F (s, x(θ(s))) and v2(t) ∈ G(s, x(η(s))) a.e.
for t ∈ J .

We also need the following definitions in the sequel.

Definition 4.1. A multi-valued map F : J → Pp(R) is said to be measurable if for
any y ∈ R, the function t→ d(y, F (t)) = inf{|y − x| : x ∈ F (t)} is measurable.

Definition 4.2. A measurable multi-valued function F : J → Pp(R) is said to be
integrably bounded if there exists a function h ∈ L1(J,R) such that ‖v‖ ≤ h(t) a.e. t ∈ J
for all v ∈ F (t).

Remark 4.1. It is known that if F : J → Pcp(R) is a an integrably bounded multi-
valued function , then the set S1

F of all Lebesgue integrable selections of F is closed and
non-empty. See Hu and Papageorgiou [10].

Denote
A±B = {a± b | a ∈ A and b ∈ B},

λA = {λa | a ∈ A},

|F (t, x)| = {|u| : u ∈ F (t, x)}

and
‖F (t, x)‖ = sup{|u| : u ∈ F (t, x)}.

Definition 4.3. Let E be a Banach space with norm ‖ · ‖. A multi-valued function

β : J × E → Pcl,bd(E) is called Carathéodory if
(i) t→ β(t, x) is measurable for each x ∈ E, and
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(ii) x→ β(t, x) is an upper semi-continuous almost everywhere for t ∈ J.

Definition 4.4. A Carathéodory multi-valued function β : J × E → E is called
L1-Carathéodory if for every real number r > 0 there exists a function hr ∈ L1(J,R)
such that

‖F (t, x)‖ = sup{‖u‖ : u ∈ F (t, x)} ≤ hr(t) a.e. t ∈ J

for all x ∈ E with |x| ≤ r.

Denote
S1

β(x) = {v ∈ L1(J,R) | v(t) ∈ β(t, x(t)) a.e. t ∈ J}.

Then we have the following lemmas due to Lasota and Opial [13].

Lemma 4.1. Let E be a Banach space. If dim(E) < ∞ and β : J × E → Pbd,cl(E)
is L1-Carathéodory, then S1

β(x) 6= ∅ for each x ∈ E.

Lemma 4.2. Let E be a Banach space, β a Carathéodory multi-valued map with
S1

β 6= ∅ and let L : L1(J,E) → C(J,E) be a continuous linear mapping. Then the
operator

L ◦ S1
β : C(J,E) → Pbd,cl(C(J,E))

is a closed graph operator on C(J,E) × C(J,E).

In the sequel, let us denote

S1
F (x) = {v ∈ L1(J,R) | v(t) ∈ β(t, x(θ(t))) a.e. t ∈ J}.

and
S1

G(x) = {v ∈ L1(J,R) | v(t) ∈ β(t, x(η(t))) a.e. t ∈ J}.

We consider the following hypotheses in the sequel.

(H0) The functions µ, θ, σ, η : J → J are continuous.
(H1) The function q : J → R is continuous.
(H2) The functions k1, k2 are continuous on J × J with K1 = maxt,s∈J |k1(t, s)| and

K2 = maxt,s∈J |k2(t, s)|.
(H3) The multi-valued function t 7→ F (t, x) is integrably bounded for all x ∈ R.
(H4) There exists a function ℓ ∈ L1(J,R) such that

H(F (t, x), F (t, y)) ≤ ℓ(t)|x− y| a.e. t ∈ J

for all x, y ∈ R.
(H5) The multi-valued function G : J × R → Pcp,cv(R) is L1-Carathéodory.
(H6) There exists a function φ ∈ L1(J,R) with φ(t) > 0 a.e. t ∈ J and a nondecreasing

function ψ : R
+ → (0,∞) such that

‖G(t, x)‖ ≤ φ(t)ψ(|x|) a.e. t ∈ J

for all x ∈ R.
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Lemma 4.3. Suppose that the hypothesis (H4) holds. Then for any a ∈ F (t, x),

|a| ≤ ℓ(t)|x| + ‖F (t, 0)‖, t ∈ J

for all x ∈ R.

Proof. Let x ∈ R be arbitrary. Then by the triangle inequality,

‖F (t, x)‖ = H(F (t, x), 0)

≤ H(F (t, x), F (t, 0)) +H(F (t, 0), 0)

≤ H(F (t, x), F (t, 0)) + ‖F (t, 0)‖,

for all t ∈ J . Hence for any a ∈ F (t, x),

|a| ≤ ‖F (t, x)‖

≤ H(F (t, x), F (t, 0)) + ‖F (t, 0)‖

≤ ℓ(t)|x| + ‖F (t, 0)‖,

for all t ∈ J . The proof of the lemma is complete.

Theorem 4.1. Assume that the hypotheses (H0)-(H6) hold. Suppose that there is a
real number r > 0 such that

r >
K1L+ ‖q‖ +K2‖φ‖L1ψ(r)

1 −K1‖ℓ‖L1

, K1‖ℓ‖L1 < 1, (4.2)

where L =

∫ 1

0

‖F (s, 0)‖ ds. Then the FII (4.1) has a solution on J .

Proof. Let X = C(J,R). Consider the open ball Br(0) in X centered at origin 0 of
radius r, where the real number r satisfies the inequality (4.2). Define two operators A
and B on Br(0) by

Ax =
{

u ∈ X | u(t) = q(t) +

∫ µ(t)

0

k1(t, s)v(s) ds, t ∈ J and v ∈1
F (x)

}

(4.3)

and

Bx =
{

u ∈ X | u(t) =

∫ σ(t)

0

k2(t, s)v(s) ds, t ∈ J and v ∈ S1
G(x)

}

. (4.4)

Then the FII (4.1) is equivalent to the operator inclusion

x(t) ∈ Ax(t) +Bx(t), t ∈ J. (4.5)

We will show that the multi-valued operators A and B satisfy all the conditions of

Theorem 3.2. Clearly the operators A and B are well defined since S1
F (x) 6= ∅ 6= S1

G(x)
for each x ∈ X .
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We first show that Ax is a closed, convex and bounded subset ofX for each x ∈ X . Let

{un} be a sequence in Ax converging to a point u. Then there is a sequence {vn} ⊂ S1
F (x)

such that

un(t) = q(t) +

∫ µ(t)

0

k1(t, s)vn(s) ds

and vn → v. Since F (t, x) is closed for each (t, x) ∈ J × R, we have v ∈ S1
F (x). As a

result

u(t) = q(t) +

∫ µ(t)

0

k1(t, s)v(s) ds ∈ Ax(t) ∀ t ∈ J.

Hence A has closed values on X .

Again let u1, u2 ∈ Ax. Then the are v1, v2 ∈ S1
F (x) such that

u1(t) = q(t) +

∫ µ(t)

0

k1(t, s)v1(s) ds t ∈ J,

and

u2(t) = q(t) +

∫ µ(t)

0

k1(t, s)v2(s) ds t ∈ J.

Now for any γ ∈ [0, 1],

γu1(t) + (1 − γ)u2(t)

= γ
[

q(t) +

∫ µ(t)

0

k1(t, s)v1(s) ds
]

+ (1 − γ)
[

q(t) +

∫ µ(t)

0

k1(t, s)v2(s) ds
]

= q(t) +

∫ µ(t)

0

k1(t, s)[γv1(s) + (1 − γ)v2(s)] ds

= q(t) +

∫ µ(t)

0

k1(t, s)v(s) ds

where v(t) = γv1(t) + (1 − γ)v2(s) ∈ F (t, x) for all t ∈ J . Hence γu1 + (1 − γ)u2 ∈ Ax

and consequently Ax is convex for each x ∈ X .

To prove A has bounded values, let x ∈ X be arbitrary and let y ∈ Ax. Then there

is a v ∈ S1
F (x) such that

y(t) = q(t) +

∫ µ(t)

0

k1(t, s)v(s) ds, t ∈ J.
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By (H1),

|y(t)| ≤ |q(t)| +

∫ µ(t)

0

|k1(t, s)||v(s)| ds

≤ |q(t)| +K1

∫ 1

0

|v(s)| ds

≤ ‖q‖ +K1

∫ 1

0

‖F (s, x(θ(t)))‖ ds

≤ ‖q‖ +K1

∫ 1

0

h(s) ds

≤ ‖q‖ +K1‖h‖L1.

for all t ∈ J . Taking the supremum over t,

‖y‖ ≤ ‖q‖ +K1‖h‖L1

for all y ∈ Tx. Hence Ax is a bounded subset of X for each x ∈ X . As a result, A defines

a multi-valued operator A : X → Pcl,cv,bd(X).

Next we show that B has compact values on Br(0). Now the operator B is equivalent

to the composition L ◦ S1
G of two operators on L1(J,R), where L : L1(J,R) → X is a

continuous operator defined by

Lv(t) =

∫ σ(t)

0

k2(t, s)v(s) ds.

To show Q has compact values, it then suffices to prove that the composition operator

L ◦ S1
G has compact values on Br(0). Let x ∈ Br(0) be arbitrary and let {vn} be a

sequence in S1
G(x). Then, by the definition of S1

G, vn(t) ∈ G(t, x(η(t))) a. e. for t ∈ J .

Since G(t, x(η(t))) is compact, there is a convergent subsequence of vn(t) (for simplicity

call it vn(t) itself) that converges in measure to some v(t), where v(t) ∈ G(t, x(η(t))) a.e.

for t ∈ J . From the continuity of L, it follows that Lvn(t) → Lv(t) pointwise on J as

n → ∞. In order to show that the convergence is uniform, we first show that {Lvn} is

an equi-continuous sequence. Let t, τ ∈ J ; then

|Lvn(t) − Lvn(τ)| ≤

∣

∣

∣

∣

∣

∫ σ(t)

0

k2(t, s)vn(s) ds−

∫ σ(τ)

0

k2(τ, s)vn(s) ds

∣

∣

∣

∣

∣
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for some vn ∈ S1
G(x). This further implies that

|Lvn(t) − Lvn(τ)| ≤

∣

∣

∣

∣

∣

∫ σ(t)

0

k2(t, s)vn(s) ds−

∫ σ(τ)

0

k2(τ, s)vn(s) ds

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ σ(t)

0

k2(t, s)vn(s) ds−

∫ σ(t)

0

k2(τ, s)vn(s) ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ σ(t)

0

k2(τ, s)vn(s) ds−

∫ σ(τ)

0

k2(τ, s)vn(s) ds

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

0

|k2(t, s) − k2(τ, s)| |vn(s)| ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ σ(t)

σ(τ)

|k2(τ, s)| |vn(s)| ds

∣

∣

∣

∣

∣

(4.6)

Since vn ∈ L1(J,R), the right hand side of (4.6) tends to 0 as t → τ . Hence, {Lvn} is
equi-continuous, and an application of the Arzelá-Ascoli theorem implies that there is a
uniformly convergent subsequence. We then have Lvnj

→ Lv ∈ (L ◦ S1
F )(x) as j → ∞,

and so (L ◦ S1
F )(x) is compact. Thus we have B : Br(0) → Pcp,cv(X).

Next we show that A is a multi-valued contraction on X . let x, y ∈ X be and
u1 ∈ A(x). Then u1 ∈ X and

u1(t) = q(t) +

∫ µ(t)

0

k1(t, s)v1(s) ds

for some v1 ∈ S1
F (x). Since

H(F (t, x(t)), F (t, y(t)) ≤ ℓ(t)|x(t) − y(t)|,

we obtain that there exists w ∈ F (t, y(t)) such that

|v1(t) − w| ≤ ℓ(t)|x(t) − y(t)|.

Thus the multi-valued operator U defined by U(t) = S1
F (y)(t) ∩K(t), where

Next we show that A is a multi-valued contraction on X . let x, y ∈ X be and
u1 ∈ A(x). Then u1 ∈ X and

u1(t) = q(t) +

∫ µ(t)

0

k1(t, s)v1(s) ds

for some v1 ∈ S1
F (x). Since

H(F (t, x(t)), F (t, y(t)) ≤ ℓ(t)|x(t) − y(t)|,

we obtain that there exists w ∈ F (t, y(t)) such that

|v1(t) − w| ≤ ℓ(t)|x(t) − y(t)|.
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Thus the multi-valued operator U defined by U(t) = S1
F (y)(t) ∩K(t), where

K(t) = {w | |v1(t) − w| ≤ ℓ(t)|x(t) − y(t)|}

has nonempty values and is measurable. Let v2 be a measurable selection for U (which
exists by Kuratowski-Ryll-Nardzewski’selection theorem. See [4]). Then v2 ∈ F (t, y(t))
and

|v1(t) − v2(t)| ≤ ℓ(t)|x(t) − y(t)| for all t ∈ J.

Define

u2(t) = q(t) +

∫ µ(t)

0

k1(t, s)v2(s) ds.

It follows that u2 ∈ A(y) and

|u1(t) − u2(t)| ≤

∣

∣

∣

∣

∣

∫ µ(t)

0

k1(t, s)v1(s) ds−

∫ µ(t)

0

k1(t, s)v2(s) ds

∣

∣

∣

∣

∣

≤

∫ µ(t)

0

k1(t, s)|v1(s) − v2(s)| ds

≤

∫ µ(t)

0

ℓ(t)k1(t, s)|x(s) − y(s)| ds

≤ K1‖ℓ‖L1‖x− y‖

Taking the supremum over t, we obtain

‖u1 − u2‖ ≤ K1‖ℓ‖L1‖x− y‖.

From this and the analogous inequality obtained by interchanging the roles of x and y
we get that

H(A(x), A(y)) ≤ K1‖ℓ‖L1‖x− y‖,

for all x, y ∈ X . This shows that A is a multi-valued contraction since K1‖ℓ‖L1 < 1.
Next we show that B is completely continuous on X . Let S be a subset of Br(0).

Then ‖x‖ ≤ r for all x ∈ S. First we prove that B is totally bounded on X . To do this,
it is enough to prove that B(S) is a uniformly bounded and equi-continuous set in X .
To see this, let u ∈ Bx be arbitrary. Then there is a v ∈ S1

G(x) such that

u(t) =

∫ σ(t)

0

k2(t, s)v(s) ds.

Hence

|u(t)| ≤

∫ σ(t)

0

|k2(t, s)||v(s)| ds

≤

∫ σ(t)

0

K2‖G(s, x(η(s)))‖ ds

≤

∫ σ(t)

0

K2hr(s)ds

= K2‖hr‖L1
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for all x ∈ S and so B(S) is a uniformly bounded set in X . Again let t, τ ∈ J. Then for

any y ∈ Bx, one has

|y(t) − y(τ)| =

∣

∣

∣

∣

∣

∫ σ(t)

0

k2(t, s)v(s) ds −

∫ σ(τ)

0

k2(τ, s)v(s) ds

∣

∣

∣

∣

∣

for some v ∈ S1
G(x). This further implies that

|y(t) − y(τ)| ≤

∣

∣

∣

∣

∣

∫ σ(t)

0

k2(t, s)v(s) ds−

∫ σ(τ)

0

k2(τ, s)v(s) ds

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ σ(t)

0

k2(t, s)v(s) ds−

∫ σ(t)

0

k2(τ, s)v(s) ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ σ(t)

0

k2(τ, s)v(s) ds −

∫ σ(τ)

0

k2(τ, s)v(s) ds

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ σ(t)

0

|k2(t, s) − k2(τ, s)| |v(s)| ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ σ(t)

σ(τ)

|k2(τ, s)| |v(s)| ds

∣

∣

∣

∣

∣

≤

∫ 1

0

|k2(t, s) − k2(τ, s)| ‖G(s, x(η(s)))‖ ds

+

∣

∣

∣

∣

∣

∫ σ(t)

σ(τ)

K1‖G(s, x(η(s)))‖ ds

∣

∣

∣

∣

∣

≤

∫ 1

0

|k2(t, s) − k2(τ, s)|hr(s) ds+K1|p(t) − p(τ)|

where p(t) =
∫ σ(t)

0 hr(s) ds.

Since µ and q are continuous on the compact interval J , they are uniformly continuous.

Therefore, we have

|y(t) − y(τ)| → 0 as n→ ∞.

Thus B(S) is uniformly bounded and equi-continuous set in X . Hence Bx is compact

by Arzela-Ascoli theorem.

Next we show that B is a upper semi-continuous multi-valued mapping on X. Let

{xn} be a sequence in S such that xn → x∗. Let {yn} be a sequence such that yn ∈ Bxn

and yn → y∗. We shall show that y∗ ∈ Bx∗. Since yn ∈ Bxn, there exists a vn ∈ S1
G(xn)

such that

yn(t) =

∫ σ(t)

0

k2(t, s)vn(s) ds, t ∈ J.
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We must prove that there is a v∗ ∈ S1
G(x∗) such that

y∗(t) =

∫ σ(t)

0

k2(t, s)v∗(s)ds, t ∈ J.

Consider the continuous linear operator K : L1(J,R) → C(J,E) defined by

Ky(t) =

∫ σ(t)

0

k2(t, s)v(s) ds, t ∈ J.

Now ‖yn − y∗‖ → 0 as n→ 0. From Lemma 4.2, it follows that K ◦ S1
G is a closed graph

operator. Also from the definition of K, we have yn ∈ K ◦ S1
G(xn). Since yn → y∗, there

is a point v∗ ∈ S1
G(x∗) such that

y∗(t) =

∫ σ(t)

0

k2(t, s)v∗(s) ds, t ∈ J.

This shows that B is a upper semi-continuous operator on X. Thus B is an upper semi-

continuous and totally bounded and hence completely continuous multi-valued operators

on X .

Now the operators A and B satisfy all the conditions of Theorem 3.2 and hence an

application of it yields that either the conclusion (i) or the conclusion (ii) holds. We

show that the conclusion (ii) is not possible. Let λu ∈ Au + Bu, for some λ > 1. Then

there are v1 ∈ S1
F (u) and v2 ∈ S1

G(u) such that

λu(t) = q(t) +

∫ µ(t)

0

k1(t, s)v1(s) ds+

∫ σ(t)

0

k2(t, s)v2(s) ds.

By Lemma 4.3,

|u(t)| ≤ λ|u(t)| ≤ q(t) +

∫ µ(t)

0

|k1(t, s)||v1(s)| ds+

∫ σ(t)

0

|k2(t, s)||v2(s)| ds

≤ q(t) +

∫ µ(t)

0

|k1(t, s)|ℓ(s)|u(θ(s))| ds

+

∫ µ(t)

0

|k1(t, s)|‖F (t, 0)‖ ds+

∫ σ(t)

0

|k2(t, s)|‖G(s, u(η(s)))‖ ds

≤ L+ ‖q‖ +

∫ µ(t)

0

K1ℓ(s)|u(θ(s))| +

∫ σ(t)

0

K2φ(s)ψ(|u(η(s))|) ds

≤ K1L+ ‖q‖ +K1‖ℓ‖L1‖u‖ +K2‖φ‖L1ψ(‖u‖).

Taking the supremum over t, we obtain

‖u‖ ≤ K1L+ ‖q‖ +K1‖ℓ‖L1‖u‖ +K2‖φ‖L1ψ(‖u‖).
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Substituting ‖u‖ = r in the above inequality yields

r ≤
K1L+ ‖q‖ +K2‖φ‖L1ψ(r)

1 −K1‖ℓ‖L1

which is a contradiction to (4.2). Hence the conclusion (ii) of Theorem 3.2 does not hold
and consequently the operator inclusion x ∈ Ax + Bx has a solution in Br(0). This
further implies that the FII (4.1) has a solution on J . This completes the proof.

5. Applications

As an application of the integral equations, we consider the following nonlinear func-
tional two point boundary valued problems (BVP) of ordinary differential inclusion,

{

x′′(t) ∈ F (t, x(θ(t))) +G(t, x(η(t))) a.e. t ∈ J

x(0) = 0 = x(1)
(5.1)

and
{

x′′(t) ∈ F (t, x(θ(t))) +G(t, x(η(t))) a.e. t ∈ J

x(0) = 0 = x′(1)
(5.2)

where F,G : J × R → Pf (R) and θ, η : J → J are continuous.
By a solution of the FBVP (5.1) or (5.2) we mean a function x ∈ AC1(J,R) that

satisfies
x′′(t) = v1(t) + v2(t), for all t ∈ J,

for some v1 v2 ∈ L1(J,R) satisfying v1(t) ∈ F (t, x(θ(t))) and v2(t) ∈ G(t, x(η(t))) almost
everywhere for t ∈ J , where AC1(J,R) is the space of continuous real-valued functions
whose first derivative exists and is absolutely continuous on J .

Theorem 5.1. Assume that the hypotheses (H1)-(H4) hold. Suppose that there exists
a real number r > 0 such that

r >
L+ ‖φ‖L1ψ(r)

4 − ‖ℓ‖L1

, ‖ℓ‖L1 < 4, (5.3)

where L =
∫ 1

0
‖F (s, 0)‖ ds. Then the FBVP (5.1) has a solution on J .

Proof. The FBVP (5.1) is equivalent to the FII

x(t) ∈

∫ 1

0

k(t, s)F (s, x(θ(s))) ds +

∫ 1

0

k(t, s)G(s, x(η(s))) ds, t ∈ J, (5.4)

where k(t, s) is the Green’s function associated with the linear homogeneous BVP

{

x′′(t) = 0 a.e. t ∈ J

x(0) = 0 = x(1).
(5.5)
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It is known that the Green’s function G(t, s) satisfies the inequality

|k(t, s)| ≤
1

4
.

Now the desired conclusion follows by an application of Theorem 4.1 with q(t) = 0,
µ(t) = 1, σ(t) = 1 for all t ∈ J and k1(t, s) = k2(t, s) = k(t, s) for all t ∈ J . The proof is
complete.

Theorem 5.2. Assume that the hypotheses (H1)-(H4) hold. Suppose that there exists
a real number r > 0 such that

r >
L+ ‖φ‖L1ψ(r)

1 − ‖ℓ‖L1

, ‖ℓ‖L1 < 1, (5.6)

where L =
∫ 1

0
‖F (s, 0)‖ ds. Then the FBVP (5.2) has a solution on J .

Proof. The FBVP (5.2) is equivalent to the FII

x(t) ∈

∫ 1

0

H(t, s)F (s, x(θ(s))) ds +

∫ 1

0

H(t, s)G(s, x(η(s))) ds, t ∈ J, (5.7)

where H(t, s) is the Green’s function associated with the linear homogeneous BVP

{

x′′(t) = 0 a.e. t ∈ J

x(0) = 0 = x′(1).
(5.8)

It is known that the Green’s function H(t, s) satisfies the inequality

|H(t, s)| ≤ 1.

Now the desired conclusion follows by an application of Theorem 4.1 with q(t) = 0, µ(t) =
1, σ(t) = 1 for all t ∈ J and k1(t, s) = k2(t, s) = H(t, s) for all t, s ∈ J . The proof is
complete.
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