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RECENT DEVELOPMENTS ON PSEUDO-DIFFERENTIAL

OPERATORS (II)

DER-CHEN CHANG, XIAOJING LYU AND BERT-WOLFGANG SCHULZE

Abstract. The analysis on manifolds with singularities is a rapidly developing field of
research, with new achievements and compelling challenges. We present here elements
of an iterative approach to building up pseudo-differential structures. Those participate
in operator algebras on singular manifolds and reflect the properties of parametrices of
elliptic operators, including boundary value problems.

Introduction

The relationship between partial differential operators and their symbols is the origin

of the calculus of pseudo-differential operators, where the symbols are not necessarily poly-

nomials in the covariables. Basics have been well-known through the works of Kohn and

Nirenberg [29], Hörmander [26], and many other authors. Standard material can be found in

numerous textbooks on this topic. From the very beginning of its development the pseudo-

differential analysis interacted with other fields of mathematics and applications in natural

sciences, especially, geometry, topology, and physics. New aspects and recent achievements

are outlined in [13]. In the present Part II we give more insight into pseudo-differential tech-

niques from the analysis on manifolds with singularities, with new starting points and future

possibilities and challenges.

The classical ideas around ellipticity of operators, parametrices, and index on smooth

closed manifolds are an inspiration also for the singular analysis. The same is true of other

traditional structures occurring in machineries for solving parabolic or hyperbolic problems.

The singular geometries in such contexts cause new and partly unexpected problems. Al-

though those are sometimes really hard, the new symbolic structures and iterative ideas that

are created so far are very beautiful. Also the remarkable progress during the past decades is
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an encouragement to participate in these fields. In this exposition we focus on what is nec-

essary for elliptic operators. Later on in other parts of this series we also turn to anisotropic

symbolic structures and parabolicity.

The interactions between classical pseudo-differential analysis and other fields of math-

ematics have attracted mathematicians since a long time. One of the most impressive exam-

ples is the index theory of elliptic operators and of boundary value problems (BVPs) on mani-

folds. In the article [21] Gelfand pointed out that the Fredholm index of a Shapiro-Lopatinskij

elliptic BVP is a function of the involved principal symbols alone. This lead to the question,

known as Gelfand’s program, how to express the index purely in terms of suitable equivalence

classes of symbols. In the subsequent development more aspects and objectives have been

included in the discussion, in particular, operator algebras, complex analysis, algebraic topol-

ogy, homotopy theory, and K -theory. The development culminated in the Atiyah-Singer index

theorem, cf. [3]. These achievements first concerned elliptic operators on a smooth closed

manifold, where the ellipticity of a classical (pseudo-) differential operator is determined by

its homogeneous principal symbol (and topological data of the underlying manifold). Later

on the development integrated boundary value problems for operators with the transmission

property at the boundary, cf. Boutet de Monvel [7]. It has been assumed in this paper that a

topological obstruction for the interior symbol vanishes, cf. Atiyah and Bott [4] for the case

of differential operators. During this period also operators without the transmission property

have been investigated, see the theory of pseudo-differential BVPs of Vishik and Eskin [59],

[60], and Eskin [18], based on a higher-dimensional analogue of Wiener-Hopf techniques.

Also questions about parametrices and the index have been considered in these works.

A “well-organized" pseudo-differential theory should be able to express the parametrices

of elliptic operators within a corresponding operator algebra. This is the case in “standard"

pseudo-differential operators on a closed smooth manifold. Then the ellipticity of the corre-

sponding operator is equivalent to its Fredholm property in standard Sobolev spaces. If the

manifold is non-compact and smooth, ellipticity and parametrices can be formulated as well.

However, the nature of “coefficients" of operators and also the kind of smoothing operators

close to the non-compact ends of the manifold are very essential for Fredholmness and in-

dex in (which kind of?) Sobolev spaces. The difference between different notions of ellipticity

and index theory can be illustrated by comparing different compactifications of the respective

manifold. For instance, if M is a smooth compact manifold, v ∈ M a single point, then M \ {v}

can be first compactified to M0 := M itself. However, when v is regarded as an embedded con-

ical singularity we write M1 rather than M . Another compactification M2 of M \ {v} consists

of a manifold with smooth boundary, where ∂M2 is a sphere of dimension dim M −1. While

for M0 we have the usual pseudo-differential calculus on M in the smooth sense across v, on

M1 there is the calculus on M1 \ {v} with M1 as a manifold with conical singularity v, which



RECENT DEVELOPMENTS ON PSEUDO-DIFFERENTIAL OPERATORS (II) 3

is rather different from the smooth one close to v . Moreover, ∂M2 admits the completely dif-

ferent calculus of BVPs. We then have even different choices of non-equivalent theories, e.g.,

BVPs with or without the transmission property at the boundary. The spaces M0, M1 and M2

are examples of stratified spaces, and the indicated pseudo-differential structures are deter-

mined by corresponding symbolic hierarchies, the components of which are contributed by

the involved strata. We can also compactify M \ {v} in such a way that the boundary is a man-

ifold with edges or corners, i.e., stratified again. Then for operators and their ellipticity we

need symbolic hierarchies of more than 2 components.

The idea of this paper is to pick some crucial parts of recent inventions in singular analy-

sis which are necessary for the indicated pseudo-differential structures and to establish new

insight and contributions to building up singular operators in corresponding algebras with

symbolic structures.

1. Manifolds with singularities

1.1. Hierarchies of stratified spaces

Manifolds appear in numerous models of physics. For instance, the boundary of a smooth

domain in Euclidean space Rn is a manifold of dimension n −1. It is then of interest to study

harmonic functions in the domain with respect to their behaviour at the boundary. Denot-

ing the domain including its boundary by M , we have an example of a smooth manifold with

boundary, while the open interior is a smooth manifold in the “usual" sense, i.e., every point

has a neighbourhood that is differomorphic to Rn . Dirichlet or Neumann problems for the

Laplacian are classical examples of elliptic BVPs. Those can be represented by a row matrix

operator

A =
(

A

T j

)
, (1.1)

j = 0,1, where A stands for the Laplace operator ∆ = ∑n
i=1

∂2

∂x2
i

, and T0 for the restriction of a

function to the boundary, T1 for the restriction of the normal derivative to the boundary. As

is well-known, smoothness of right hand sides of A u = t( f , g ), i.e., f ∈ C∞(M), g ∈ C∞(∂M),

entails smoothness of solutions u up to the boundary. This is a special case of elliptic regular-

ity. More generally, f ∈ H s−2(int M), g ∈ H s−1/2(∂M) (for compact M and s > 3/2) gives rise to

u ∈ H s(int M). However, if M is not smooth, for instance, a cone or a cube, then it is far from

being obvious, in which kind of spaces we can formulate elliptic regularity, and, in particular,

how to substitute the smoothness of solutions up to the singular points of the boundary. Also

unique solvability or Fredholmness of the operator can break down. What concerns the sym-

bolic structure of parametrices close to the boundary, even in the case of a smooth boundary,

the answer in terms of interior and boundary symbols is not obvious, although known by
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Boutet de Monvel’s calculus, cf. [7] or Rempel and Schulze [35]. Non-smooth, e.g., piecewise

smooth boundaries, require the tools of the singular analysis, for instance, of operators on

stratified spaces. Other important problems are mixed, transmission and crack problems, cf.

[27], [24], which require the analysis on manifolds with conical and edge singularities.

A prototype of a mixed elliptic problem is the Zaremba problem for the Laplacian. In this

case the boundary is subdivided into submanifolds (∂M)±, i.e., ∂M = (∂M)− ∪ (∂M)+, with

common boundary (∂M)−∩ (∂M)+ := Z of codimension 1 which is in simplest cases smooth.

In the Zaremba problem there are posed Dirichlet conditions on (∂M)−, Neumann condi-

tions on (∂M)+. This problem for a smooth interface has been investigated also in [10] from

the point of view of the edge calculus of BVPs, where the interface is the edge. It is also impor-

tant to admit interfaces with singularities, e.g., with conical points, edges, or corners. Then

the corresponding configuration is a stratified space of a higher depth. These examples show

that singular manifolds play the role of underlying spaces for interesting analytic objects, here

BVPs for (pseudo-)differential operators. More examples come from particle physics, quan-

tum chemistry, material sciences, and other fields of applications.

For a topological space B we set

B△ := (R+×B)/({0}×B) and B∧ :=R+×B. (1.2)

The space B is often called the link of the cone B△ or of the open stretched cone B∧. In our

considerations below we fix a splitting of variables

(r, ·) ∈ B∧

and only admit other splittings, regarded to be regular with respect to the fixed one, when the

transition (r, ·) → (r̃ , ·̃) is smooth up to r = 0 in a sense to be defined below after Definition 1. In

an iterative manner we construct categories Mk of stratified spaces of increasing singularity

orders, with M0, being the system of smooth manifolds. We then assume that Mk−1 for k ∈
N, k ≥ 1, is already introduced, and we pass to Mk .

Definition 1 ([48]).

(i) A (paracompact) topological space M belongs to Mk for k ∈N, k ≥ 1, if there is a subset

sk (M) ⊆ M , sk (M) ∈M0, such that M \ sk (M) ∈Mk−1.

(ii) There is a neighbourhood V of sk (M) in M with the structure of a locally trivial regular

B△-bundle over sk (M) for some B ∈Mk−1.

Definition 1 (ii) refers to bundles over a smooth manifold X , where the fibre is a cone.

The meaning is similar to a vector bundle E over X with bundle projection π : E → X and fibre

F which is, say, a finite-dimensional complex vector space. A possible definition is based on
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a system of trivialisations π−1U := E |U ∼=U ×F, where U runs over an open covering of X and

on a given cocycle of transition maps χE
V ,U : (U

∩
V )×F → (U

∩
V )×F with U ,V belonging to

the open covering. For B△ instead of F we denote the corresponding bundle by E△. In order

to define regular singularities (not cuspidal ones) we ask the existence of bundles E∧ with

fibre B∧, E 0 with fibre B , and E with fibre R×B , such that both E∧ and E 0 are subbundles of E

determined by the inclusions of fibres B∧ ⊂ R×B and B ⊂ R×B , the latter realised as {0}×B ,

and that then the transition maps for E△

χE△
V ,U : (U

∩
V )×B△ → (U

∩
V )×B△ (1.3)

are obtained as quotient maps χE△
V ,U =χ

E+
V ,U /χE 0

V ,U , where χ
E+
V ,U is the cocycle of transition maps

for E+, the subbundle of E with fibre R+×B , and χE 0

V ,U is the induced cocycle for E 0 as a sub-

bundle of E+.

In addition we require homogeneity of

χ
E+
V ,U : (U

∩
V )× (R+×B) → (U

∩
V )× (R+×B) (1.4)

in the sense

χ
E+
V ,U (x,δr, ·) =χ

E+
V ,U (x,r, ·)

for every δ ∈R+ and (x,r, ·) ∈ (U
∩

V )× (R+×B). In other words, fibres R+×B or B△ are trans-

formed via transforming the Cartesian product R+×B by id
R+ ×β, where β : B → B is an iso-

morphism in Mk−1. Isomorphisms β can be defined in an iterative manner, beginning from

B ∈M0 where isomorphisms are simply diffeomorphisms. The iterative definition of isomor-

phisms in Mk for k ∈N, k ≥ 1, is straightforward.

Remark 1. A topological space M belongs to Mk for k ∈N, k ≥ 1, if

(i) M is stratified, i.e., there is singled out a sequence

s(M) := (s0(M), s1(M), . . . , sk (M)) (1.5)

of subsets s j (M) ⊆ M belonging to M0, j = 0, . . . ,k, such that

s j (M)
∩

sl (M) =; for all j ̸= l , M =
k∪

j=0
s j (M),

and

dim s j (M) > dim sl (M) for j < l for 0 ≤ j ≤ k −1. (1.6)

(ii) We have

M j := M \
k∪

i= j+1
si (M) ∈M j for 0 ≤ j ≤ k −1,

and s j (M) for j ≥ 1 has a neighbourhood V j in M j with the structure of a locally trivial

B△
j−1-bundle over s j (M) for some B j−1 ∈M j−1.
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In fact, by virtue of Definition 1 (i) we have Mk−1 = M \ sk (M) ∈Mk−1. Thus sk−1(M) :=
sk−1(Mk−1) gives rise to Mk−2 := Mk−1\sk−1(M), etc. In order to verify (1.6) we identify a neigh-

bourhood of any point of sk (M) with B△
k−1×Ωk for an open setΩk ⊆Rqk , qk := dim sk (M), Bk−1

∈ Mk−1. Then sk−1(M) can be locally identified with sk−1(B△
k−1) ×Ωk = sk−1(B∧

k−1 ×Ωk ) =
R+× sk−1(Bk−1 ×Ωk ). Thus

dim sk−1(M) = 1+dim sk−1(Bk−1)+dim sk (M)

which yields dim sk−1(M) > dim sk (M). Applying the same conclusion to Mk−1 and then iter-

ating the arguments we obtain the inequalities (1.6).

1.2. Examples and remarks

Let us set

dim M := dim s0(M).

Example 1.

(i) Let M be a smooth manifold with boundary ∂M . As in the above-mentioned Zaremba

problem we assume that

∂M = (∂M)−∪ (∂M)+, (∂M)−∩ (∂M)+ := Z ,

i.e., the boundary is subdivided into submanifolds (∂M)± with common smooth bound-

ary Z of codimension 1 on ∂M . Then we have M ∈ M2 and s0(M) = M \ ∂M , s1(M) =
∂M \ Z , s2(M) = Z .

(ii) As noted before a topological space can be stratified in different ways. E.g., we have M =
Rn ∈ M0. However, if we embed in Rn a smooth hypersurface S of some codimension

≥ 1, then we have M =Rn ∈M1 and s0(M) = M \ S, s1(M) = S. In particular, S can be the

origin; then Rn becomes a manifold with embedded conical singularity, and we have

M =Rn ∈M1.

(iii) For any B ∈Mk−1 we have B△ ∈Mk and

sk (B△) = v

with v being the vertex of B△ represented by {v}×B in the quotient space in (1.2), and

sk− j (B△) =R+× sk− j (B), j = 1, . . . ,k. Moreover,

B△×X ∈Mk

for every X ∈M0, and s j (B△×X ) = s j (B△)×X , j = 0, . . . ,k.

(iv) For M ∈Mk , k ≥ 1, we have M \ s0(M) ∈Mk−1.
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Theorem 1. For M ∈Mk , N ∈Ml we have M ×N ∈Mk+l .

Let M ∈Mk and define

the stretched space M ∈Mk associated with M (1.7)

and the double

2M ∈Mk−1. (1.8)

In order to see the meaning we first look at the case M = B△×X for some B ∈Mk−1, X ∈M0.

Then we set

M :=R+×B ×X ∈Mk and 2M :=R×B ×X ∈Mk−1.

Concerning M ∈Mk in general, from Definition 1 and the subsequent considerations we eas-

ily see that the B-bundle over sk (M) can be invariantly attached to M \ sk (M) which yields M.

Recall that the B-bundle is at the same time a subbundle of a corresponding R×B-bundle.

Therefore, the construction of attaching that can be performed for another copy of M \sk (M),

a negative counterpart of the former space. We then obtain M=: M+ as before and a negative

counterpart M−. Both can be glued together along the common B-bundle to the double 2M.

2. Corner-degenerate differential operators

2.1. The principal symbolic hierarchies

In the present section we consider natural (pseudo)-differential operators A on a strati-

fied space M ∈Mk and illustrate the way on how A, first given on s0(M) and with a controlled

“corner behaviour" close to M \ s0(M), acquires from the stratification

s(M) = (s0(M), s1(M), . . . , sk (M)) (2.1)

of M a principal symbolic hierarchy

σ(A) = (σ0(A),σ1(A), . . . ,σk (A)). (2.2)

Other principal symbolic effects appear when the underlying space M has conical exits at

infinity. We shall see below, that there is a relationship between operator-valued edge sym-

bols acting on an infinite open stretched cone X ∧ for X ∈M0, and corresponding parameter-

dependent symbols at the singularity of X△ “in the finite". Therefore we also look at the exit

behaviour of symbols and operators as a background information on the nature of operator-

valued components of (2.2).

We consider here scalar operators, but the notions easily extend to operators between

distributional sections of vector bundles. Let us start with the case of differential operators.
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For X ∈ M0 by Diffµ(X ) we denote the set of all differential operators A on X of order µ ∈
N, µ≥ 1, with smooth coefficients. Then σ0(A) is the homogeneous principal symbol of order

µ as an invariantly defined smooth function on T ∗X \ 0, the cotangent bundle of X minus

zero section, indicated by 0. For µ = 0 we set Diff0(X ) := C∞(X ) and interpret σ0(·) as the

corresponding function.

Let us first consider some examples and observe structures in special cases. A smooth

manifold M with boundary belongs to M1 and we have

s(M) = (s0(M), s1(M)) for s0(M) = M \∂M , s1(M) = ∂M .

The neighbourhood V in Definition 1 (ii) in this case can be identified with [0,1)×∂M , a

collar neighbourhood of ∂M , and the cone bundle is trivial in this case, namely R+×∂M , the

normal bundle of the boundary. We tacitly assume that M is Riemannian and ∂M equipped

with the induced Riemannian metric. The space B ∈M0 is a single point. Consider a differ-

ential operator A on M of order µ with smooth coefficients up to the boundary, and write A

in local coordinates x ∈R+×Ω for an open set Ω⊆Rq for q := dim∂M in the form

A =
∑

|α|≤µ
aα(x)Dα

x (2.3)

for coefficients aα ∈C∞(R+×Ω). There is then the standard homogeneous principal symbol

σ0(A)(x,ξ) =
∑

|α|=µ
aα(x)ξα for (x,ξ) ∈R+×Ω× (Rn \ {0}).

In addition we have the homogeneous principal boundary symbol

σ1(A)(y,η) := ∑
|α|=µ,α=(α′,α′′)

aα′,α′′(0, y)Dα′
r ηα

′′
for (y,η) ∈Ω× (Rq \ {0}). (2.4)

Here x = (r, y), ξ = (ρ,η), α = (α′,α′′) ∈N×Nq , q = n −1. We can interpret (2.4) as a family of

continuous operators

σ1(A)(y,η) : H s(R+) → H s−µ(R+) (2.5)

for every s ∈R for H s(R+) = H s(R)|R+ , with H s(R) being the standard Sobolev space of smooth-

ness s on the real axis. For (2.4) homogeneity means

σ1(A)(y,δη) = δµκδσ1(A)(y,η)κ−1
δ (2.6)

for all δ ∈R+, where

(κδu)(r ) := δ1/2u(δr ), δ ∈R+. (2.7)
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Remark 2. As is well-known, σ0-ellipticity of A, i.e., σ0(A)(x,ξ) ̸= 0 for all (x,ξ) ∈ T ∗M \ 0, has

the consequence that (2.5) is a Fredholm operator for every (y,η) ∈Ω×(Rq \{0}) and s >µ−1/2

(even surjective in this case). As far as it concerns the behaviour of operators for r →∞, the

“conical exit" of the half-axis to infinity, this comes from the ellipticity of subordinate interior

and exit symbols for every fixed (y,η) ∈Ω× (Rq \ {0}), namely,

σψ(σ1(A)(y,η))(ρ) = aµ,0(0, y)ρµ ̸= 0 for all ρ ∈R\ {0},

σe(σ1(A)(y,η))(ρ) =
∑

|α|=µ,α=(α′,α′′)
aα′,α′′(0, y)ρα′

ηα
′′ ̸= 0 for all ρ ∈R, (2.8)

σψ,e(σ1(A)(y,η))(ρ) = aµ,0(0, y)ρµ ̸= 0 for all ρ ∈R\ {0}.

The boundary symbols of an elliptic operator are responsible for the nature of additional

elliptic boundary conditions of trace and potential type, and also for a topological obstruc-

tion of Atiyah and Bott, formulated in [4] for the existence of Shapiro-Lopatinskij elliptic con-

ditions for elliptic differential operators.

In the context of the edge symbolic calculus below, we will deepen the impression on the

role of conical exits to infinity of a manifold. Let us recall a well-known result.

Let

A =
∑

|α|≤µ
aα(x̃)Dα

x̃ (2.9)

be a differential operator in Rn+1 ∋ x̃ with coefficients aα(x̃) ∈ S0
cl(R

n+1
x̃ ), where x̃ formally

plays the role of a covariable, and let aα,(0)(x̃) be the homogeneous principal symbol of aα(x̃)

of order zero in x̃ ̸= 0. Set

σψ(A)(x̃, ξ̃) := ∑
|α|=µ

aα(x̃)ξ̃α for (x̃, ξ̃) ∈Rn+1 × (Rn+1 \ {0}), (2.10)

σe(A)(x̃, ξ̃) := ∑
|α|≤µ

aα,(0)(x̃)ξ̃α for (x̃, ξ̃) ∈ (Rn+1 \ {0})×Rn+1, (2.11)

σψ,e(A)(x̃, ξ̃) := ∑
|α|=µ

aα,(0)(x̃)ξ̃α for (x̃, ξ̃) ∈ (Rn+1 \ {0})× (Rn+1 \ {0}). (2.12)

Moreover, let

H s;g (Rn+1) := 〈x̃〉−g H s(Rn+1), s, g ∈R.

It can be easily verified that A : S (Rn+1) → S (Rn+1) is continuous and extends to a continu-

ous operator

A : H s;g (Rn+1) → H s−µ;g (Rn+1) (2.13)

for every s, g ∈R.
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Remark 3. The Euclidean space Rn+1 is an example of a manifold with conical exit to infinity

|x̃| →∞. The symbols (2.10) illustrate on how the operator (2.9) “acquires" from the conical

exit a symbolic structure

σE(A) := (σe(A),σψ,e(A)),

here the pair of (principal) exit symbols. The homogeneities are altogether

σψ(A)(x̃,δξ̃) = δµσψ(A)(x̃, ξ̃) for all (x̃, ξ̃) ∈Rn+1 × (Rn+1 \ {0}),

σe(A)(λx̃, ξ̃) = σe(A)(x̃, ξ̃) for all (x̃, ξ̃) ∈ (Rn+1 \ {0})×Rn+1, (2.14)

σψ,e(A)(λx̃,δξ̃) = δµσψ(A)(x̃, ξ̃) for all (x̃, ξ̃) ∈ (Rn+1 \ {0})× (Rn+1 \ {0}),

and λ,δ ∈ R+. An adequate compactification of Rn+1 in this context is a closed ball B , where

intB corresponds to Rn+1 itself, while ∂B can be identified with the sphere Sn = {x̃/|x̃| : x̃ ̸= 0}.

The operator (2.9) is called (σψ,σe,σψ,e)-elliptic if σψ(A)(x̃, ξ̃) ̸= 0 for all (x̃, ξ̃) ∈ Rn+1 ×
(Rn+1\{0}), σe(A)(x̃, ξ̃) ̸= 0 for all (x̃, ξ̃) ∈ (Rn+1\{0})×Rn+1, and σψ,e(A) ̸= 0 for all (x̃, ξ̃) ∈ (Rn+1\

{0})× (Rn+1 \ {0}).

Theorem 2. The following conditions are equivalent:

(i) A is (σψ,σe,σψ,e)-elliptic,

(ii) The operator

A : H s(Rn+1) → H s−µ(Rn+1) (2.15)

is Fredholm for every s ∈R.

Let us now turn to natural differential operators on a space M ∈ Mk . Those will be ex-

pressed locally close to sk (M) in “stretched variables". As such they will be degenerate in a

similar way as operators in polar or cylindrical coordinates that are originally smooth across

an embedded conical or edge singularity.

A differential operator

A = ∑
|α|≤µ

aα(x̃)Dα
x̃ (2.16)

of order µ ∈ N with smooth coefficients in Rn+1 ∋ x̃ in polar coordinates (r, x) ∈ R+× Sn for

x̃ ̸= 0 takes the form

A = r−µ
µ∑

j=0
a j (r )

(− r
∂

∂r

) j (2.17)

for coefficients a j (r ) ∈ C∞(R+,Diffµ− j (X )) and X = Sn in this case. The minus sign at the

Fuchs type derivative r∂r is motivated by the Mellin transform.
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More generally, an operator of orderµwith smooth coefficients inRn+1×Rq ∋ (x̃, y), q > 0,

A =
∑

|α|≤µ
aα(x̃, y)Dα

x̃,y (2.18)

in polar coordinates for x̃ ̸= 0 becomes edge-degenerate, i.e.,

A = r−µ ∑
j+|α|≤µ

a jα(r, y)
(− r

∂

∂r

) j (r D y )α (2.19)

for coefficients a jα(r, y) ∈C∞(R+×Rq ,Diffµ−( j+|α|)(X )), X = Sn .

Example 2.

(i) The Laplacian

∆=
n+1∑
j=1

∂2

∂x̃2
j

in Rn+1 in polar coordinates (r, x) ∈R+×Sn in Rn+1 \ {0} has the form

∆= r−2
(
(r

∂

∂r
)2 + (n −1)r

∂

∂r
+∆Sn

)
(2.20)

where ∆Sn is the Laplace operator on Sn .

(ii) The operator
n+1∑
j=1

x̃ j
∂

∂x̃ j

in polar coordinates takes the form

r
∂

∂r
.

(iii) The Laplace-Beltrami operator belonging to the Riemannian metric

dr 2 + r 2gX +d y2

on R+×X ×Rq , where gX is a Riemannian metric on X has the form

r−2
( 2∑

j=0
a j (r )

(
r
∂

∂r

) j +
q∑

l=1
(r

∂

∂yl
)2

)
for coefficients a j (r ) ∈C∞(R+,Diff2− j (X )).

Definition 2. Let M ∈Mk ,k ≥ 1.

(i) For dim sk (M) = 0 the space Diffµdeg(M), µ ∈N, is defined as the set of all A ∈ Diffµdeg(M \

sk (M)) that are close to sk (M) in the splitting of variables (r, ·) ∈R+×X , X ∈Mk−1, of the

form

A = r−µ
µ∑

j=0
a j (r )

(− r
∂

∂r

) j , (2.21)

for coefficients a j (r ) ∈C∞(R+,Diffµ− j
deg (X )).
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(ii) For dim sk (M) =: q > 0 the space Diffµdeg(M), µ ∈N, is defined as the set of all

A ∈ Diffµdeg(M \ sk (M)) that are close to sk (M) in the splitting of variables

(r, ·, y) ∈R+×X ×Ω, X ∈Mk−1,Ω⊆Rq , of the form

A = r−µ ∑
j+|α|≤µ

a jα(r, y)
(− r

∂

∂r

) j (r D y )α, (2.22)

for coefficients a jα(r, y) ∈C∞(R+×Ω,Diffµ− j
deg (X )).

We now define

σk (A)(z) =
µ∑

j=0
a j (0)z j (2.23)

for dim sk (M) = 0, z ∈ Γβ (= {z ∈C : Re z =β} for some β ∈R), and

σk (A)(y,η) = r−µ ∑
j+|α|≤µ

a jα(0, y)
(− r

∂

∂r

) j(rη)α (2.24)

for dim sk (M) > 0,(y,η) ∈ T ∗Ω\0. The symbolσk (A)(z) takes values in Diffµdeg(X ) for dim sk (M)

= 0, and in Diffµdeg(X ∧) for dim sk (M) > 0, cf. (1.6).

By virtue of

Diffµdeg(M) ⊆ Diffµdeg(M \ sk (M))

we can determine also σk−1(A) with respect to sk−1(M) which is of dimension > 0, cf. (1.6).

For k ≥ 2 we can continue this construction, and we finally obtain k +1 components of σ(A),

namely, (2.2), where σ0(A) ∈C∞(T ∗(int M)\0) is the standard homogeneous principal symbol

of A on s0(M). The other components σ j (A), j > 0, are operator-valued and associated with

s j (M). They are of analogous form as (2.24), parametrised by (y,η) ∈ T ∗s j (M) \ 0, and take

values in Diffµdeg(B△
j−1), cf. notation after Remark 1 for 0 < j < k. As such they define families

of continuous operators

σ j (A)(y,η) : C∞
0 (s0(B△

j−1)) →C∞
0 (s0(B△

j−1)). (2.25)

Let us set

(ιδu)(r, ·) := u(δr, ·), δ ∈R+ (2.26)

which defines a group ι := {ιδ}δ∈R+ of isomorphisms

ιδ : C∞
0 (s0(B△

j−1)) →C∞
0 (s0(B△

j−1)). (2.27)

The symbols (2.25) are homogeneous in the sense

σ j (A)(y,δη) = δµιδσ j (A)(y,η)ι−1
δ , δ ∈R+, (2.28)

also referred to as twisted homogeneity of order µ.
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Remark 4. In the well-known edge pseudo-differential calculus, created in [42], for B ∈M0

it is common to take the group κ = {κδ}δ∈R+ , defined by κδ := δ
dimB△

2 ιδ. Such a modification

does not change the meaning of homogeneity. However, in pseudo-differential theories with

twisted symbolic estimates a suitable additional power of δ makes sense, and this will be also

the case for higher singularities. Moreover, the involved distribution spaces are affected by

the choice of the δ-power. For instance, if B ∈ M0 is compact, then κ is a group of unitary

operators in L2(B△) := r− dimB
2 L2(B∧).

Remark 5. Let A ∈ Diffµdeg(M), Ã ∈ Diffµ̃deg(M); then A Ã ∈ Diffµ+µ̃deg (M), and we have σ(A Ã) =
σ(A)σ(Ã), with componentwise composition and the rule σk (A Ã) = T µ̃σ(A)σ(Ã) when

dim sk (M) = 0 for (T β f )(z) := f (z +β) for β ∈R.

2.2. Fourier and Mellin representations of differential operators

After having introduced typical differential operators on a singular manifold M ∈Mk , it

is an obvious question on how to formulate spaces of pseudo-differential operators Lµ(M)

containing Diffµdeg(M) for µ ∈ N, such that
∪

µ Lµ(M) is an algebra which is closed under the

construction of parametrices of elliptic elements. Such a program has many aspects, and the

details, even in the case of a manifold with conical or edge singularities, show that a notion

Lµ(M) is loaded with other data, e.g., weights, or extra trace and potential data along the strata

s j (M), 0 < j ≤ k, equipped with symbols, likewise involved in the ellipticity. In particular, op-

erators in Lµ(M) should consist of block matrices that integrate potential and trace operators,

similarly as in boundary value problems, e.g., for the Laplacian with Dirichlet or Neumann

conditions. Throughout this discussion the notion “algebra" is used here in the sense that al-

gebraic operations are possible within the structure when the operators fit together, e.g., rows

and columns in the middle of matrix compositions.

The operators in such algebras are to be designed in such a way that they induce con-

tinuous operators in natural distribution spaces. While differential operators essentially act

“as they are", i.e., by local differentiations, pseudo-differential operators have to be specified

by quantisations (operator conventions) that modify the operators in “naive" representation

via Fourier or Mellin transform by some smoothing operators in order to achieve an expected

continuity property, say, in weighted Sobolev spaces, or subspaces with asymptotics. In ad-

dition, besides differential operators there can appear other operators, contributed by the

strata, either in compositions or parametrix constructions, such as ideals of smoothing Mellin

plus Green operators, which are in general non-compact. Those have a non-trivial symbolic

structure, and also the Fredholm index of elliptic operators can be affected by such contribu-

tions. Some phenomena of that kind can be illustrated in the framework of quantisations of

(in general, operator-valued) symbols.
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An operator A ∈ Diffµdeg(M) for dim sk (M) = 0, cf. (2.21), can be written as a Fourier

(pseudo-)differential operator on the r half-axis R+

Au(r ) = Opr (p)u(r ) = r−µ
Ï

e i (r−r ′)ρp(r,ρ)u(r ′)dr ′d̄ρ (2.29)

for an operator-valued symbol

p(r,ρ) = p̃(r,rρ) for p̃(r, ρ̃) ∈C∞(R+,Diffµdeg(X ;Rρ̃)). (2.30)

Here C∞(R+,Diffµdeg(X ;Rρ̃)) is the set of all operator functions of the form

p̃(r, ρ̃) :=
µ∑

j=0
a j (r )(−i ρ̃) j , (2.31)

for coefficients a j (r ) ∈C∞(R+,Diffµ− j
deg (X )). In (2.29) as argument functions we can take for the

moment u(r ) ∈C∞
0 (R+,C∞

0 (K )) for any K b s0(X ), C∞
0 (K ) = {u ∈C∞

0 (s0(X )) : supp u ⊆ K }.

Another useful representation refers to the Mellin transform on the half-axis

Mu(z) :=
∫ ∞

0
r z u(r )

dr

r
, (2.32)

where u(r ) ∈ C∞
0 (R+,C∞

0 (K )) entails Mu(z) ∈ A (C,C∞
0 (K )) and Mu(z)|Γβ

∈ S (Γβ,C∞
0 (K )) for

any real β. Here

Γβ := {z ∈C : Re z =β}. (2.33)

Distribution spaces on Γβ such as the Schwartz space S (Γβ,E) with values in a Fréchet space

E are interpreted as spaces defined as pull back of corresponding spaces referring to R under

the map Γβ → R, z 7→ Im z. Other examples in that sense are L2(Γβ), or spaces of pseudo-

differential symbols

Sµ(R+×Ω×Γβ×Rq )

of order µ, depending on variables (r, y) ∈ R+×Ω and covariables (z,η) ∈ Γβ×Rq . The moti-

vation for such a notation is that we distinguish spaces for different β,β′. Another notation in

this context is that we say that a family fβ of elements, for instance, in S (Γβ,E), uniformly be-

longs to that space for c ≤β≤ c ′, if that family is bounded in S (R,E), under the identification

of the latter space with S (Γβ,E). For instance, the property

Mu(z)|Γβ
∈S (Γβ,C∞

0 (K ))

for u(r ) ∈C∞
0 (R+,C∞

0 (K )) is uniform in compact β-intervals.

Let us call

Mγu := Mu|Γ1/2−γ (2.34)
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the weighted Mellin transform with weight γ ∈R. Recall that

M−1
γ g (r ) =

∫
Γ 1

2 −γ
r−z g (z)d̄ z, (2.35)

d̄ z = (2πi )−1d z. Weighted Mellin pseudo-differential operators are defined as

Opγ

M ( f )u(r ) := M−1
γ

(
f (r, z)Mγu(z)

)
(2.36)

for Mellin symbols f (r, z) ∈ Sµ(R+×Γ1/2−γ), later on also for f (r,r ′, z) ∈ Sµ(R+×R+×Γ1/2−γ),

or more general, also operator-valued symbols. Note that

Opγ

M ( f ) := r γOpM (T −γ f )r−γ (2.37)

for (T β f )(z) := f (z +β) for any β ∈R and OpM := Op0
M , or

Opγ

M ( f )u(r ) :=
Ï ( r

r ′
)−(1/2−γ+iρ)

f (r,1/2−γ+ iρ)u(r ′)
dr ′

r ′ d̄ρ. (2.38)

We apply Mellin operators for symbols of the form

f (r, z) :=
µ∑

j=0
a j (r )z j (2.39)

with the same coefficients a j (r ) ∈C∞(R+,Diffµ− j
deg (X )) as in (2.31). For (2.29) we then obtain

A = Opr (p) = Opγ

M ( f ), (2.40)

regarded as a map

A : C∞
0 (R+,C∞

0 (K )) →C∞
0 (R+,C∞

0 (K )) (2.41)

for any K b s0(X ). Because of the holomorphic dependence of f on z the choice of the weight

γ is not essential. However, as soon as we want to extend (2.41) to weighted Sobolev spaces,

the weight becomes important. The symbol σk (A)(z), cf. (2.29), is equal to

σk (A)(z) = f (0, z). (2.42)

Assuming for the moment γ= 1/2 the relationship between

f (r, z) and p(r,ρ) = p̃(r,rρ)

involved in (2.40) can be illustrated by the correspondence between z and −i rρ =: b(r,ρ),

where

−r
∂

∂r
= Op1/2

M (z) = Opr (b). (2.43)
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This yields

Op1/2
M ( f ) =

µ∑
j=0

a j (r )Op1/2
M (z j )

=
µ∑

j=0
a j (r )(Opr (b)) j =

µ∑
j=0

a j (r )Opr (b# j )

(2.44)

for b# j := b#r b#r . . .#r b with j factors of the Leibniz product between symbols b(r,ρ), in the

composition of Fourier pseudo-differential operators. In other words,

p(r,ρ) =
µ∑

j=0
a j (r )(−i rρ)# j . (2.45)

Note that in this case the Leibniz products are “exact", i.e., finite sums, since the factors are

polynomials in the covariable ρ.

Remark 6. For every n ∈N there are numbers sn,k , Sn,k such that

r n∂n
r =

n∑
k=0

sn,k (r∂r )k , (r∂r )n =
n∑

k=0
Sn,k r k∂k

r .

The numbers sn,k and Sn,k are known as the Stirling numbers of first and second kind, respec-

tively. More details may be found in [16, Section 2.2.1].

The symbol σk (A) in the terminology of (2.23) is

σk (A)(z) = f (0, z). (2.46)

Let us now do similar things for operators A ∈ Diffµdeg(M), dim sk (M) = q > 0, cf. Defini-

tion 2 (ii). An operator (2.22) can be written as a Fourier (pseudo-) differential operator on the

r half-axis R+

Au(r, y) = Opy,r (p)u(r, y) = r−µ
Ï

e i (r−r ′)ρ+i (y−y ′)ηp(r, y,ρ,η)u(r ′, y ′)dr ′d y ′d̄ρd̄η (2.47)

for an operator-valued symbol

p(r, y,ρ,η) = p̃(r, y,rρ,rη) for p̃(r, y, ρ̃, η̃) ∈C∞(R+×Ω,Diffµdeg(X ;R1+q
ρ̃,η̃ )). (2.48)

From (2.48) we pass to another operator-valued symbol

Opr (r−µp)(y,η) ∈ Sµ(Ω×Rq ;C∞
0 (K ∧),C∞

0 (K ∧)) (2.49)

for K ∧ =R+×K , K b s0(X ). We then have

Au(·, y) = Opy (Opr (r−µp)(y,η))u(·, y) =
Ï

e i (y−y ′)ηOpr (r−µp)(y,η)u(·, y ′)d y ′d̄η. (2.50)
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Analogously as in boundary value problems we now form a higher principal edge symbol, in

fact, another representation of (2.24),

σk (A)(y,η) = Opr (r−µp0)(y,η) ∈ S(µ)(Ω× (Rq \ {0});C∞
0 (K ∧),C∞

0 (K ∧)) (2.51)

for

p0(r, y,ρ,η) := p̃(0, y,rρ,rη). (2.52)

Applying Mellin operators for symbols

f (r, y, z,η) = f̃ (r, y, z,rη) for f̃ (r, y, z, η̃) := ∑
j+|α|≤µ

a jα(r, y)z j η̃α, (2.53)

it follows that

A = Opy (Opγ

Mr
(r−µ f )(y,η)), (2.54)

i.e.,

Au(r, y)=
Ï ( r

r ′
)−(1/2−γ+iρ)

e i (y−y ′)η f (r, y,1/2−γ+ iρ,η)u(r ′, y ′)
dr ′

r ′ d̄ρd y ′d̄η, (2.55)

The edge symbol in this case can be written

σk (A)(y,η) = Opγ

Mr
(r−µ f0)(y,η) (2.56)

for

f0(r, y, z,η) := f̃ (0, y, z,rη). (2.57)

Let us point out that both in (2.47) with (2.48) and in (2.54) with the symbol (2.53) the

involved r -variable is treated as a left variable, i.e., contained as a multiplication operator

by r from the left. Clearly there are also right symbols where r under the oscillatory integral

turns to r ′, but for the moment we ignore such a representation. For γ= 1/2 the relationship

between

f (r, y, z,η) = f̃ (r, y, z,rη) and p(r, y,ρ,η) = p̃(r, y,rρ,rη)

involved in (2.47) follows from

Opy (Op1/2
Mr

( f )(y,η)) = ∑
j+|α|≤µ

a jα(r, y)Op1/2
Mr

((z) j )Opy ((rη)α)

=
∑

j+|α|≤µ
a jα(r, y)Opr ((−i rρ)) j Opy ((rη)α), (2.58)

i.e., we obtain

p(r, y,ρ,η) = ∑
j+|α|≤µ

a jα(r, y)(−i rρ)# j (rη)α. (2.59)
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2.3. Mellin pseudo-differential operators

Consider pseudo-differentialoperators based on the weighted Mellin transform Mγ

Au(r )=
Ï ( r

r ′
)−(1/2−γ+iρ)

f (r,r ′,1/2−γ+ iρ)u(r ′)
dr ′

r ′ d̄ρ, (2.60)

cf. also formula (2.55). We shall see that there are many choices of amplitude functions.

In particular, we may have f (r,r ′, z) ∈ Lµ

(cl)(X ;Γ1/2−γ) for a closed smooth manifold X . The

elements of the pseudo-differential calculus based on the Fourier transform have analogues

for Mellin pseudo-differential operators. In particular, every operator (2.60) can be written as

a properly supported operator, modulo a smoothing one.

Remark 7. For (δλu)(r ) := u(λr ), λ> 0, and a Mellin amplitude function f (r,r ′, z) we have

δλOpγ

M ( f )δ−1
λ = Opγ

M ( fλ)

for fλ(r,r ′, z) = f (λr,λr ′, z).

Remark 8. By virtue of Mγu( 1
2 −γ+iρ) = ∫

r ( 1
2−γ+iρ)u(r )dr /r and u(r ) = ∫

r−( 1
2−γ+iρ)Mγu( 1

2 −
γ+ iρ)d̄ρ for a properly supported operator A = Opγ

M ( f ) we have

Au(r ) =
∫

r−( 1
2−γ+iρ)(r ( 1

2−γ+iρ) Ar−( 1
2−γ+iρ))Mγu(

1

2
−γ+ iρ)d̄ρ. (2.61)

Thus

fL := r ( 1
2−γ+iρ) Ar−( 1

2−γ+iρ) (2.62)

is a left Mellin symbol of A.

3. Kernel cut-off and Mellin quantization

3.1. Kernel cut-off based on the Fourier transform

Pseudo-differential operators on spaces M ∈M1, i.e., with conical or edge singularities,

contain symbols that are holomorphic in the covariable z ∈ C belonging to the Mellin trans-

form on R+. We saw in Subsection 2.2 that differential operators A ∈ Diffµdeg(M) on M ∈Mk

locally close to sk (M) can be expressed both in terms of the Fourier and the Mellin transform.

We now deepen the relations between Fourier and Mellin symbols of degenerate pseudo-

differential operators. In addition we study here kernel cut-off which creates holomorphic

symbols with remarkable properties. Kernel cut-off is a generic term for systems of operators

acting on symbols. The method has been introduced in [41] and later on widely applied in the

analysis of operators on manifolds with conical or edge singularities, cf. [43] or [45]. In this
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subsection we refer to technical details on the kernel cut-off technique, contributed by Seiler

[54] and Krainer [31].

Let us start with a definition of kernel cut-off in connection with the Fourier transform. In

order to motivate the construction we first consider a scalar symbol with constant coefficients

a(ξ) ∈ Sµ

(cl)(R
n). (3.1)

The associated pseudo-differential operator

Op(a)u(x) =
Ï

e i (x−x ′)ξa(ξ)u(x ′)d x ′d̄ξ

in Rn has the distributional kernel k(a)(x −x ′) for

k(a)(θ) :=
∫

e iθξa(ξ)d̄ξ. (3.2)

In (3.2) we interpret a(ξ) as an element of S ′(Rn
ξ

); then k(a)(θ) ∈S ′(Rn
θ

). We often refer to the

following standard properties of the Fourier transform:

(−θ)αk(a)(θ) = k(Dα
ξ a)(θ), Dα

θ k(a)(θ) = k(ξαa)(θ), α ∈Nn . (3.3)

Lemma 1. We have

χ(θ)k(a)(θ) ∈S (Rn
θ ) (3.4)

for every excision function χ(θ) in Rn .

Proof. We employ the identities

|θ|2N e iθξ = (−1)N∆N
ξ e iθξ, ∆M

θ e iθξ = (−1)M |ξ|2M e iθξ

for every N , M ∈N. This yields after integration by parts

χ(θ)|θ|2N∆M
θ k(a)(θ) = χ(θ)|θ|2N (−1)M

∫
e iθξ|ξ|2M a(ξ)d̄ξ

= (−1)(N+M)χ(θ)
∫

e iθξ∆N
ξ (|ξ|2M a(ξ))d̄ξ (3.5)

as well as

χ(θ)k(a)(θ) = χ(θ)(−1)N |θ|−2N
∫

e iθξ∆N
ξ a(ξ))d̄ξ (3.6)

which follows from the second equation of (3.5) for M = 0. Since (3.6) holds for an arbitrary ex-

cision function χ and every N from ∆N
ξ

a(ξ)) ∈ Sµ−2N (Rn) we conclude k(a)(θ) ∈C∞(Rn \ {0}),

in particular, sing suppk(a) ⊆ {0}. This is equivalent to the pseudo-locality of the operator

Op(a), i.e., the singular support of its distributional kernel is contained in diag(Rn ×Rn).

Therefore, in order to verify (3.4) it suffices so show that

sup|θ|≥C ||θ|2N∆M
θ k(a)(θ)|
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is bounded for some C > 0 and suitable sufficiently large M , N . But this follows from the ab-

solute convergence of the integrals on the right hand side of (3.5) for arbitrary M by choosing

N so large that µ+2(M −N ) <−n. ���

Let

ψ(θ) := 1−χ(θ)

which is a cut-off function, i.e., ψ ∈C∞
0 (Rn), ψ(θ) ≡ 1 in a neighbourhood of θ = 0. We call

VF (ψ)a(ξ) := Fθ→ξ(ψk(a))(ξ) (3.7)

a kernel cut-off operator and VF (χ) := Fθ→ξ(χk(a))(ξ) a kernel excision operator.

Proposition 1. The operator (3.7) induces a continuous map

VF (ψ) : Sµ

(cl)(R
n) → Sµ

(cl)(R
n), (3.8)

where

VF (ψ)a(ξ) = a(ξ) mod S−∞(Rn). (3.9)

Proof. We have

k(a)(θ) =ψ(θ)k(a)(θ)+χ(θ)k(a)(θ). (3.10)

Then (3.9) follows from (3.4). Because of

a(ξ) =VF (ψ)a(ξ)+VF (χ)a(ξ)

and the continuity of VF (χ) : Sµ

(cl)(R
n) → S−∞(Rn) which is a consequence of Lemma 1 we

obtain the continuity of (3.8). ���

We have ψ(θ)k(a)(θ) ∈S ′(Rq ) and

supp(ψk(a)) compact. (3.11)

Thus VF (ψ)a(ξ) admits the interpretation of an operator VF (ψ) : Sµ

(cl)(R
n) → A (Cn

ζ
) for ζ :=

ξ+ iδ ∈Cn , such that VF (ψ)a|Imζ=0 =VF (ψ)a(ξ). We shall see below that

VF (ψ)a(ξ+ iδ) ∈ Sµ

(cl)(R
n
ξ ) and VF (ψ)a(ξ+ iδ) = a(ξ) mod Sµ−1

(cl) (Rn) (3.12)

for every fixed δ ∈Rn , uniformly in compact sets in Rn
δ

.

It is desirable to extend the definition of VF (·) to arbitrary φ ∈ C∞
0 (Rn), and even to φ in

the space

C∞(Rn)b := {
φ ∈C∞(Rn) : sup

θ∈Rn
|Dα

θφ(θ)| <∞ for all α ∈Nn}
. (3.13)
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Clearly, for φ ∈ C∞(Rn)b in general we lose the existence of holomorphic extensions to the

complex space Cn .

Observe that VF (φ)a(ξ) = Fθ→ξ(φ(θ)k(a)(θ))(ξ), can be written as an oscillatory integral

VF (φ)a(ξ) =
∫

e−iθξφ(θ)
{∫

e iθξ′a(ξ′)d̄ξ′
}
dθ =

Ï
e−iθξ̃φ(θ)a(ξ− ξ̃)dθd̄ ξ̃. (3.14)

In order to unify the terminology we call VF (φ) a kernel cut-off operator also when φ is more

general than a cut-off function, and the same notation is used for VF (φ). This concerns again

an extension of VF (φ)a(ξ) for φ ∈C∞
0 (Rn) into the complex space Cn ∋ ζ= ξ+iδ which defines

an operator VF (φ) : Sµ

(cl)(R
n) →A (Cn

ζ
) such that

VF (φ)a|Imζ=0 =VF (φ)a(ξ). (3.15)

In our applications we will employ several generalisations of kernel cut-off operators, in par-

ticular, to parameter-dependent symbols

a(ξ,λ) ∈ Sµ

(cl)(R
n+l
ξ,λ ), (3.16)

l ∈N. For k(a)(θ,λ) := ∫
e iθξa(ξ,λ)d̄ξ we then have

k(a)(θ,λ) ∈S ′(Rn+l
θ,λ ), and χ(θ)k(a)(θ,λ) ∈S (Rn+l

θ,λ ),

i.e., for an excision function χ(θ)

VF (χ)a(ξ,λ) = Fθ→ξ(χk(a))(ξ,λ) ∈S (Rn+l
ξ,λ ) = S−∞(Rn+l

ξ,λ ).

Then VF (ψ) := 1−VF (χ) for ψ(θ) = 1−χ(θ) is a corresponding kernel cut-off operator in the

parameter-dependent set-up, where

VF (ψ)a(ξ,λ) = a(ξ,λ) mod S−∞(Rn+l ).

More generally for φ ∈C∞(Rn)b we form

VF (φ)a(ξ,λ) =
Ï

e−iθξ̃φ(θ)a(ξ− ξ̃,λ)dθd̄ ξ̃. (3.17)

For φ ∈ C∞
0 (Rn) it follows that VF (φ)a(ξ,λ) extends to a function VF (φ)a(ζ,λ) which is holo-

morphic in ζ ∈Cn , and, as we shall show below,

VF (φ)a(ξ+ iδ,λ) ∈ Sµ

(cl)(R
n+l
ξ,λ )

for every δ ∈Rn , uniformly in compact sets, and

VF (φ)a(ξ+ iδ,λ) =VF (φ)a(ξ,λ) mod Sµ−1
(cl) (Rn+l )

for every δ ∈Rn .
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Remark 9. We have

Dα
ξ,λVF (φ)a(ξ,λ) =VF (φ)Dα

ξ,λa(ξ,λ) (3.18)

for every α ∈Nn+l .

In fact, using the first identity of (3.3) we obtain

Dα
ξ VF (φ)a(ξ,λ) =

∫
e−iξθφ(θ)(−θ)αk(a)(θ,λ)dθ

=
∫

e−iξθφ(θ)k(Dα
ξ a)(θ,λ)dθ =VF (φ)Dα

ξ a(ξ,λ).

Clearly the derivatives in λ also commute with the kernel cut-off operator.

If E is a Fréchet space with a countable semi-norm system (pl )l∈N, we set

C∞(Rn ,E)b := {
φ ∈C∞(Rn ,E) : sup

θ∈Rn
pl (Dα

θφ(θ)) <∞ for all α ∈Nn , l ∈N
}
.

Remark 10. We saw that the kernel cut-off operators VF (φ) act with respect to the covariables.

This allows us to extend the constructions to symbols

a(x,ξ,λ) ∈ Sµ

(cl)(U ×Rn+l
ξ,λ ),

depending on further variables x ∈ U , U ⊆ Rm open. The idea is simply to apply VF (φ) to

a(x0,ξ,λ) ∈ Sµ

(cl)(R
n+l
ξ,λ ) for every fixed x0 ∈ U . We also can take U = Rm and require the sym-

bolic estimates uniformly in x ∈ Rm . Since those symbol spaces are functions in C∞(Rm ,

Sµ

(cl)(R
n+l
ξ,λ ))b the essential information comes from the case with constant coefficients.

Let us now complete the information on kernel cut-off operators and give the outstand-

ing proofs, starting with the oscillatory integral (3.17) for any φ ∈C∞(Rn)b. Our main applica-

tions concern the case n = 1. This will be assumed from now on.

Theorem 3. The kernel cut-off operator VF : (φ, a) → VF (φ)a defines a bilinear continuous

mapping

VF : C∞(R)b ×Sµ

(cl)(R
1+l
ξ,λ ) → Sµ

(cl)(R
1+l
ξ,λ ), (3.19)

and VF (φ)a(ξ,λ) admits an asymptotic expansion

VF (φ)a(ξ,λ) ∼
∞∑

k=0

(−1)k

k !
Dk

θφ(0)∂k
ξ a(ξ,λ). (3.20)

Proof. The mapping C∞(Rθ)b × Sµ

(cl)(R
1+l
ξ,λ ) → C∞(R1+l

ξ,λ ,Sµ

(cl)(Rθ ×Rξ̃)b) for Sµ

(cl)(Rθ ×Rξ̃)b :=
C∞(Rθ,Sµ

(cl)(Rξ̃))b, defined by (φ, a) →φ(θ)a(ξ− ξ̃,λ), is bilinear continuous. In order to show

the continuity of (3.19) it suffices to verify that VF (φ)a ∈ Sµ

(cl)(R
1+l
ξ,λ ) and to apply the closed
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graph theorem. Since Dβ

ξ,λVF (φ)a(ξ,λ) = VF (φ)(Dβ

ξ,λa(ξ,λ)) for any β ∈ N1+l , it suffices to

show

|VF (φ)a(ξ,λ)| ≤ c〈ξ,λ〉µ (3.21)

for all (µ,λ) ∈R1+l , for a constant c > 0. We regularise the oscillatory integral (3.17) as follows:

VF (φ)a(ξ,λ) =
Ï

e−iθξ̃〈θ〉−2{(1−∂2
θ)Nφ(θ)}aN (ξ, ξ̃,λ)dθd̄ ξ̃,

where

aN (ξ, ξ̃,λ) = (1−∂2
ξ̃

){〈ξ̃〉−2N a(ξ− ξ̃,λ)} (3.22)

for N ∈ N sufficiently large. The function (3.22) is a linear combination of terms (∂ j

ξ̃
〈ξ̃〉−2N )

(∂k
ξ

a)(ξ− ξ̃,λ) for 0 ≤ j ,k ≤ 2. For the following conclusions we recall Peetre’s inequality 〈ξ′+
ξ′′〉s ≤ c |s|〈ξ′〉|s|〈ξ′′〉s for all ξ′,ξ′′ ∈ R, s ∈ R. We have 〈ξ− ξ̃,λ〉µ ≤ C〈ξ̃〉|µ|〈ξ,λ〉µ, when we write

(ξ− ξ̃,λ) = (ξ,λ)− (ξ̃,0). It follows that

|∂ j

ξ̃
〈ξ̃〉−2N (∂k

ξ a)(ξ− ξ̃,λ)| ≤ |∂ j

ξ̃
〈ξ̃〉−2N ||(∂k

ξ a)(ξ− ξ̃,λ)|

≤ c〈ξ̃〉−2N 〈ξ− ξ̃,λ〉µ ≤ c〈ξ̃〉|µ|−2N 〈ξ,λ〉µ

for some c > 0. This implies analogous estimates for the function (3.22). For N so large that

µ−2N ≤ 0 we obtain the estimate (3.21).

In order to show (3.20) we employ the Taylor expansion

φ(θ) =
N∑

k=0

1

k !
(∂k

θφ)(0)θk +θN+1φN+1(θ),

for φN+1(θ) = 1
N !

∫ 1
0 (1− t )N (∂N+1

θ
φ)(tθ)d t . The function φN+1(θ) belongs to C∞(R)b. Integra-

tion by parts in (3.17) gives us

VF (φ)a(ξ,λ) =
N∑

k=0

1

k !
(∂k

θφ)(0)
Ï

e−iθξ̃θk a(ξ− ξ̃,λ)dθd̄ ξ̃

+
Ï

e−iθξ̃θN+1φN+1(θ)a(ξ− ξ̃,λ)dθd̄ ξ̃

=
N∑

k=0

(−1)k

k !
(Dk

θφ)(0)(∂k
ξ a)(ξ,λ)+ (−1)N+1VF (φN+1)∂N+1

ξ a(ξ,λ).

In the latter equation we employed the identity

(∂k
ξ a)(ξ,λ) =

Ï
e−iθξ̃(∂k

ξ a)(ξ− ξ̃,λ)dθd̄ ξ̃

and the expression (3.17), applied to φN+1. From the first part of the proof we know that

VF (φN+1)(∂N+1
ξ

a)(ξ,λ) is a symbol in Sµ−(N+1)(R1+l ). This completes the proof of (3.20). ���
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Corollary 1. Let ψ(θ) ∈C∞
0 (R) be a cut-off function on R (i.e., ψ≡ 1 in a neighbourhood of 0),

and set ψε(θ) =ψ(εθ) for 0 < ε≤ 1. Then for every a(ξ,λ) ∈ Sµ

(cl)(R
1+l ) we have

lim
ε→0

VF (ψε)a(ξ,λ) = a(ξ,λ) (3.23)

in the topology of Sµ

(cl)(R
1+l ).

In fact, we have limε→0ψε = 1 in the topology of C∞(R)b; then (3.23) is a consequence of

the continuity of (3.19) for a fixed symbol on the left hand side of (3.19).

Corollary 2. Let φ ∈C∞(R)b have the property ∂k
θ
φ(0) = 0 for all 0 ≤ k ≤ N . Then VF (φ) defines

a continuous mapping

VF (φ) : Sµ

(cl)(R
1+l ) → Sµ−(N+1)

(cl) (R1+l ).

This is a consequence of the asymptotic expansion (3.20), combined with the continuity

of (3.19) for fixed φ on the left hand side of (3.19).

Corollary 3. Let χ(θ) be an excision function. Then VF (χ) defines a continuous operator

VF (χ) : Sµ

(cl)(R
1+l ) → S−∞(R1+l ) =S (R1+l

ξ,λ ).

In particular,

χ(θ)k(a)(θ,λ) ∈S (R1+l
θ,λ )

for every a(ξ,λ) ∈ Sµ

(cl)(R
1+l ).

Remark 11. By virtue of the way to regularise the oscillatory integral (3.17) it is also possible

to generalise VF (φ) to functions φ ∈C∞(R) satisfying the estimates

|Dk
θφ(θ)| ≤ ck〈θ〉ν for all k ∈N,

for constants ck > 0; the number ν ∈R is arbitrary and fixed.

Definition 3. Let Sµ

(cl)(C×Rl ) denote the space of all h(ζ,λ) ∈A (C,Sµ

(cl)(R
l
λ

)) such that

h|Iδ×Rl ∈ Sµ

(cl)(Iδ×Rl ) (3.24)

for every δ ∈R, uniformly in compact δ-intervals; Iδ = {ζ ∈C : Imζ= δ}.

The spaces Sµ

(cl)(C×Rl ) are Fréchet in a natural way. For any K bR we set C∞
0 (K ) := {u ∈

C∞(R) : suppu ⊆ K } which is a Fréchet space.

Theorem 4. For every K bR the kernel cut-off operator VF : (φ, a) →VF (φ)a induces a bilinear

continuous mapping

VF : C∞
0 (K )×Sµ

(cl)(R
1+l
ξ,λ ) → Sµ

(cl)(C×Rl ). (3.25)
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Proof. We have

k(a)(θ,λ) =
∫

e iθξ′a(ξ′,λ)d̄ξ′ ∈S ′(R1+l
θ,λ ),

and φ(θ)k(a)(θ,λ) has compact support with respect to θ for φ ∈C∞
0 (K ), K bR. Thus

VF (φ)a(ξ,λ) = ∫
e−iθηφ(θ)k(a)(θ,λ)dθ extends to a function

VF (φ)a(ξ+ iδ,λ) =
∫

e−iθξeθδφ(θ)k(a)(θ,λ)dθ =VF (φδ)a(ξ,λ), (3.26)

φδ(θ) := eθδφ(θ)∈C∞
0 (K ), which is holomorphic in ζ= ξ+iδ ∈C. Theorem 3 yieldsVF (φ)a(ξ+

iδ,λ) ∈ Sµ

(cl)(R
1+l
ξ,λ ) for every δ. Since δ→φδ represents a continuous mapping R→C∞

0 (K ) the

continuity of

VF : C∞
0 (K )×Sµ

(cl)(R
1+l
ξ,λ ) → Sµ

(cl)(R
1+l
ξ,λ )

implies that (3.24) is uniform in compact δ-intervals. The closed graph theorem gives us also

the continuity of (3.25) with respect to the Fréchet topology of the space Sµ

(cl)(C×Rl ). ���

Corollary 4. Let ψ ∈C∞
0 (R) be a cut-off function, and a(ξ,λ) ∈ Sµ

(cl)(R×Rl ). Then we have

h(ζ,λ) :=VF (ψ)a(ζ,λ) ∈ Sµ

(cl)(C×Rl ) (3.27)

and

h(ξ+ iδ,λ)|δ=0 = a(ξ,λ) mod S−∞(R1+l ). (3.28)

In fact, the relation (3.27) is a consequence of Theorem 4, and (3.28) follows from

a(ξ,λ)−h(ξ,λ) =VF (1−ψ)a(ξ,λ),

together with Corollary 2.

Corollary 5. Let φ ∈C∞
0 (R) and define

hδ(ξ,λ) :=VF (φ)a(ξ+ iδ,λ)

for any fixed δ ∈R. Then a → hδ defines a continuous map

Sµ

(cl)(R
1+l ) → Sµ

(cl)(R
1+l ) (3.29)

and we have

h0(ξ,λ) = hδ(ξ,λ) mod Sµ−1
(cl) (R1+l ). (3.30)

In fact, the continuity (3.29) is a direct consequence of the continuity of (3.25). Moreover,

the relation (3.30) is a consequence of the asymptotic expansion (3.20) applied to the function

eθδφ(θ), cf. the formula (3.26).



26 D.-C. CHANG, X. LYU AND B.-W. SCHULZE

Lemma 2. Let h(ζ,λ) ∈ Sµ

(cl)(C×Rl ; H , H̃), and set hδ(ξ,λ) := h(ξ+ iδ,λ). Then the mapping,

R→ Sµ

(cl)(R
1+l
ξ,λ ), δ→ hδ,

is continuous.

Proof. By virtue of the holomorphy of h in ζ we have

(hδ−hδ0 )(ξ,λ) = (δ−δ0)
∫ 1

0
Dξhδ0+θ(δ−δ0)(ξ,λ)dθ.

Let π be one of the semi-norms of the Fréchet topology of Sµ(R1+l ). Then for |δ−δ0| ≤ ε for

any ε> 0 we have

π(hδ−hδ0 ) ≤ |δ−δ0|sup{π(Dξhδ′) : |δ′−δ0| ≤ ε}.

By assumption we have hδ′(ξ,λ) ∈ Sµ(R1+l ) uniformly in compact δ′-intervals. The same

is true of Dξhδ′ . This shows π(hδ − hδ0 ) → 0 as δ → δ0, and we obtain the continuity of

R→ Sµ(R1+l ), since π is arbitrary. In addition, for classical symbols we have to show the con-

tinuous in δ dependence of the homogeneous components (hδ)(µ− j )(ξ,λ) ∈ S(µ− j )(R1+l \ {0})

and of the remainders

hδ(ξ,λ)−
N∑

j=0
χ(ξ,λ)hδ,(µ− j )(ξ,λ) ∈ Sµ−(N+1)(R1+l )

for some excision function χ. Taylor expansion of h in δ at δ= 0 gives us

hδ(ξ,λ) =
N∑

j=0

1

j !
D j

ξ
h0(ξ,λ)δ j +δN+1

∫ 1

0

(1−θ)N

N !

(
DN+1

ξ hθδ

)
(ξ,λ)dξ. (3.31)

The first part of the proof shows that the remainder rδ is continuous in δ with values in

Sµ−(N+1)(R1+l ). Moreover, the homogeneous components hδ,(µ− j ) in (ξ,λ) ̸= 0, j = 0, . . . , N ,

coincide with the respective homogeneous components of the sum on the right hand side of

(3.31). Those are polynomials in δ with coefficients in S(µ− j )(R1+l \{0}) and hence continuous

in δ.

Choose an excision function χ(ξ,λ), write χhδ,(µ−k) = χ
∑N

j=0
1
j ! (D j

ξ
h0)(µ−k)δ

j for 0 ≤ k ≤
N , and consider χhδ =χ

∑N
j=0

1
j ! (D j

ξ
h0)δ j +χrδ. Then

hδ =χhδ+ (1−χ)hδ = (1−χ)hδ+χrδ+χ
N∑

j=0

1

j !
(D j

ξ
h0)δ j .

Subtracting from (3.31) the sum of the terms χhδ,(µ−k) over k = 0, . . . , N , yields

hδ−χ
N∑

k=0
hδ,(µ−k) =

(
(1−χ)hδ+χrδ

)+χ
N∑

j=0

1

j !

(
D j

ξ
h0 −

N∑
k=0

(D j
ξ

h0)(µ−k)
)
δ j . (3.32)

The first term on the right is continuous in δ with values in Sµ−(N+1)(R1+l ). The second term

is a polynomial in δ with coefficients in Sµ−(N+1)(R1+l ) and as such also continuous in δ. ���
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Proposition 2. For every h(ζ,λ) ∈ Sµ

(cl)(C×Rl ) we have

(∂ζh)(ζ,λ) ∈ Sµ−1
(cl) (C×Rl )

(here ∂ζ is the differentiation of h as a holomorphic function with values in Sµ

(cl)(R
l )).

Proof. Let us set hδ(η,λ) := h(ξ+ iδ,λ). By Lemma 2 the mapping R2 → Sµ−1
(cl) (R1+l

ξ,λ ), (ξ,δ)

→ (∂ξhδ)(ξ,λ), is continuous, and we have (∂ξhδ)(ξ,λ) = (∂ζh)(η+ iδ,λ). Thus ζ → ∂ζh ∈
C (Cζ,Sµ−1

(cl) (Rl
λ

))∩A (Cζ,Sµ

(cl)(R
l
λ

)). Then Cauchy’s integral formula yields ∂ζh(ζ,λ) ∈
A (C,Sµ−1

(cl) (Rl
λ

)). Since

(∂ζh)δ = ∂ξhδ ∈ Sµ−1
(cl) (R1+l

ξ,λ )

uniformly in compact δ-intervals, it follows that ∂ζh(ζ,λ) ∈ Sµ−1
(cl) (C×Rl ). ���

Theorem 5. Let h(ζ,λ) ∈ Sµ

(cl)(C×Rl ) and fix δ ∈R; then

(i) hδ ∈ Sµ−ε
(cl) (R1+l

ξ,λ ) for some ε≥ 0 (ε ∈N in the classical case) implies h ∈ Sµ−ε
(cl) (C×Rl );

(ii) hδ ∈ Sµ

cl(R
1+l
ξ,λ ) implies h ∈ Sµ

cl(C×Rl ).

Proof. Without loss of generality we may assume δ= 0. Let us apply the Taylor expansion at

δ= 0:

h(ξ+ iδ,λ) =
N∑

j=0

1

j !
(∂ j

ξ
h0)(ξ,λ)δ j +δN+1

∫ 1

0

(1−θ)N

N !
(∂N+1

ζ h)(ξ+ iθδ,λ)dθ.

By virtue of Lemma 2 and Proposition 2 the remainder is continuous in δ with values in

Sµ−(N+1)
(cl) (R1+l

ξ,λ ). In the case (i) it follows that h ∈ C (C,Sµ−ε
(cl) (Rl

λ
)) and, in the case (ii), h ∈

C (C,Sµ

cl(R
l
λ

). Then Cauchy’s integral formula gives us

h ∈A (C,Sµ−ε
(cl) (Rl )) and h ∈A (C,Sµ

cl(R
l )),

respectively. In addition we obtain hδ ∈ Sµ−ε
(cl) (R1+l

ξ,λ ) and hδ ∈ Sµ

cl(R
1+l
ξ,λ ), uniformly in compact

δ-intervals. This shows the assertion. ���

3.2. Kernel cut-off based on the Mellin transform

We now turn to the Mellin version of kernel cut-off operators. By using the elementary

relationship between Fourier and Mellin transform the Mellin kernel cut-off can be reduced to

the one based on the one-dimensional Fourier transform. However, because of some specific

modifications we prefer to formulate some basics once again in direct form.

Let us start with a scalar symbol f (z) ∈ Sµ

(cl)(Γ0). Concerning notation such as (2.33) we

refer to the material around the Mellin transform in Subsection 2.2. For convenience we first
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focus on the weight γ= 1/2. Later on we draw consclusions for arbitrary weights. Recall that

the Mellin operator Op1/2
M ( f )u(r ), cf. (2.36), is interpreted as a Mellin oscillatory integral, or

Op1/2
M ( f )u(r ) =

∫ ∞

0

{∫ ∞

−∞
(r /r ′)−iρ f (iρ)d̄ρ

}
u(r ′)dr ′/r ′. (3.33)

Then

m( f )(s) :=
∫ ∞

−∞
s−iρ f (iρ)d̄ρ = M−1

1/2 f (s), (3.34)

cf. (2.35), is a distribution on R+ ∋ s. Interpreting T (R+) := M−1
1/2S (Γ0) as a Mellin analogue

of the Schwartz space, we have m( f )(s) ∈ T ′(R+) with T ′(R+) being the dual of T (R+), the

Mellin analogue of the space of temperate distributions. Note that

(
log s

) j m( f )(s) = m
(
D j

ρ f
)
(s),

(− s
∂

∂s

) j m( f )(s) = m
(
(iρ) j f

)
(s), j ∈N. (3.35)

Setting s := e−θ,θ ∈R, it follows that

m( f )(e−θ) =
∫ ∞

−∞
e iρθ f (iρ)d̄ρ = k( f (i ·))(θ), (3.36)

cf. notation (3.2). In this section a cut-off function will be any ψ(s) ∈C∞
0 (R+,s) that is equal to

1 in a neighbourhood of s = 1. Moreover, an excision function will be any χ(s) ∈C∞(R+,s) such

that 1−χ(s) is a cut-off function. From Lemma 1 we know that χ(e−θ)m( f )(e−θ) ∈ S (Rθ) for

every excision function χ(s). In particular, we obtain

sing suppm( f ) ⊆ {1}.

Set

C∞(R+)B = {φ ∈C∞(R+) : sups∈R+ |(s∂s) jφ(s)| <∞ for all j ∈N}. (3.37)

Observe that the function pull back under the diffeomorphism R→ R+, θ→ e−θ =: s induces

an isomorphism

C∞(R+)B →C∞(R)b, (3.38)

cf. (3.13). For any φ ∈C∞(R+)B we set

VM (φ)( f ) := M1/2,s→z (φm( f ))(s), (3.39)

called a Mellin kernel cut-off operator.

Proposition 3. The operator VM (ψ) for a cut-off function ψ induces a continuous map

VM (ψ) : Sµ

(cl)(Γ0) → Sµ

(cl)(Γ0), (3.40)

where

VM (ψ) f = f mod S−∞(Γ0). (3.41)
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Proof. We have m( f )(s) = ψ(s)m( f )(s)+χ(s)m( f )(s) for χ(s) = 1−ψ(s). Then (3.41) follows

from

χ(s)m( f )(s) ∈T (R+). (3.42)

Because of f =VM (ψ) f +VM (χ) f and the continuity of VM (χ) : Sµ

(cl)(Γ0) → S−∞(Γ0) which is a

consequence of (3.42) we obtain the continuity of (3.40). ���

We have ψ(s)m( f )(s) ∈T ′(R+) and

supp(ψm( f )) compact. (3.43)

Thus VM (ψ) f (iρ) admits the interpretation of an operator VM (ψ) : Sµ

(cl)(Γ0) → A (Cz ) for z :=
β+ iρ ∈C, such that VM (ψ) f |Re z=0 =VM (ψ) f (iρ). We shall see below that

VM (ψ) f (β+ iρ) ∈ Sµ

(cl)(Γβ) and VM (ψ) f (β+ iρ) = f (iρ) mod Sµ−1
(cl) (Γ0) (3.44)

for every fixed β ∈R, uniformly in compact sets in Rβ.

The expression VM (φ) f (iρ) will be interpreted as a Mellin oscillatory integral

VM (φ) f (iρ) = M1/2,s→ρφ(s)
∫

s−iρ′
f (iρ′)d̄ρ′ =

Ï
si ρ̃φ(s) f (i (ρ− ρ̃))d s/s d̄ ρ̃. (3.45)

For our applications below we admit parameter-dependent amplitude functions with param-

eters λ ∈Rl . First let

f (iρ,λ) ∈ Sµ(Γ0 ×Rl ). (3.46)

Theorem 6. The kernel cut-off operator VM : (φ, f ) → VM (φ) f defines a bilinear continuous

mapping

VM : C∞(R+)B ×Sµ

(cl)(Γ0 ×Rl ) → Sµ

(cl)(Γ0 ×Rl ), (3.47)

and VM (φ) f (iρ,λ) admits an asymptotic expansion

VM (φ) f (iρ,λ) ∼
∞∑

k=0

1

k !

(
(s∂s)kφ

)
(1)∂k

ρ f (iρ,λ). (3.48)

Proof. We reduce the proof to that of Theorem 3. The expression (3.45) will be applied to

f (iρ,λ) =: a(ρ,λ), and we substitute s = e−θ. Then we obtain

VM (φ) f (iρ,λ) =
Ï

e−iθρ̃φ(e−θ)a(ρ− ρ̃,λ)dθd̄ ρ̃. (3.49)

By virtue of the isomorphism (3.38) we can apply Theorem 3 which gives us the bilinear con-

tinuous mapping (3.47). For the asymptotic expansion (3.48) it suffices to apply (3.20), using

the relations ∂k
θ
φ(e−θ) = (−s∂s)kφ(s), and φ(e−θ)|θ=0 =φ(1). ���
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Let us generalise the kernel cut-off operator VM to the weighted Mellin transform Mγ, cf.

the formula (2.34), applied to amplitude functions f (1/2−γ+ iρ,λ) ∈ Sµ

(cl)(Γ 1
2−γ×Rl ). Instead

of (3.45) we form

VM (φ) f (1/2−γ+ iρ,λ) = Mγ,s→ρφ(s)
∫

s−(1/2−γ+iρ′) f (1/2−γ+ iρ′,λ)d̄ρ′

=
Ï

s1/2−γ+iρφ(s)s−(1/2−γ+iρ′) f (1/2−γ+ iρ′,λ)d s/s d̄ρ′

=
Ï

si ρ̃φ(s) f (1/2−γ+ i (ρ− ρ̃),λ)d s/s d̄ ρ̃. (3.50)

Corollary 6. Theorem 6 has a straightforward generalisation to the weighted Mellin transform,

cf. (2.34), and instead of (3.47) we obtain a bilinear continuous mapping

VM : C∞(R)B ×Sµ

(cl)(Γ1/2−γ×Rl ) → Sµ

(cl)(Γ1/2−γ×Rl ), (3.51)

and VM (φ) f (1/2−γ+ iρ,λ) admits an asymptotic expansion

VM (φ) f (1/2−γ+ iρ,λ) ∼
∞∑

k=0

1

k !

(
(s∂s)kφ

)
(1)∂k

ρ f (1/2−γ+ iρ,λ). (3.52)

Corollary 7. Let ψ(s) ∈C∞
0 (R+) be a cut-off function on R+, and set ψε(s) :=ψ(sε) for 0 < ε≤ 1.

Then for every f (1/2−γ+ iρ,λ) ∈ Sµ

(cl)(Γ1/2−γ×Rl ) we have

lim
ε→0

VM (ψε) f (1/2−γ+ iρ,λ) = f (1/2−γ+ iρ,λ) (3.53)

in the topology of Sµ

(cl)(Γ1/2−γ×Rl ).

In fact, we have limε→0ψε = 1 in the topology of C∞(R+)B; then (3.53) is a consequence

of the continuity of (3.51) for a fixed symbol on the left hand side of (3.51).

Corollary 8. Let φ ∈ C∞(R+)B have the property (s∂s)kφ(1) = 0 for all 0 ≤ k ≤ N . Then VM (φ)

defines a continuous mapping

VM (φ) : Sµ

(cl)(Γ1/2−γ×Rl ) → Sµ−(N+1)
(cl) (Γ1/2−γ×Rl ).

This is a consequence of the asymptotic expansion (3.52), combined with the continuity

of (3.51).

Corollary 9. Let χ(s) ∈C∞(R+)B vanish of infinite order at s = 1. Then VM (χ) defines a contin-

uous mapping

VM (χ) : Sµ

(cl)(Γ1/2−γ×Rl ) → S−∞(Γ1/2−γ×Rl ) =S (Γ1/2−γ×Rl ).

In particular,

χ(s)m( f )(s,λ) ∈T γ(R+,s ,S (Rl
λ))

for every f (1/2−γ+iρ,λ) ∈ Sµ

(cl)(Γ1/2−γ×Rl ). Here T γ(R+,s) := M−1
γ S (Γ 1

2−γ); the former T (R+,s)

corresponds to T 1/2(R+,s).
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Definition 4. Let Sµ

(cl)(C×Rl ) denote the space of all h(z,λ) ∈A (C,Sµ

(cl)(R
l
λ

)) such that

h|Γδ×Rl ∈ Sµ

(cl)(Γδ×Rl ) (3.54)

for every δ ∈R, uniformly in compact δ-intervals.

The spaces Sµ

(cl)(C×Rl ) are Fréchet in a natural way.

Recall that for any K bR+ we set C∞
0 (K ) := {u ∈C∞(R+) : suppu ⊆ K }.

Theorem 7. For every K b R+ the kernel cut-off operator VM : (φ, f ) → VM (φ) f induces a bi-

linear continuous mapping

VM : C∞
0 (K )×Sµ

(cl)(Γβ×Rl
λ) → Sµ

(cl)(C×Rl ). (3.55)

for any β ∈R.

Proof. For simplicity we consider the case β = 0. Let us first go back to the analogue of the

formula (3.50), namely,

VM (φ) f (iρ,λ) =
∫

siρφ(s)
{∫

s−iρ′
f (iρ′,λ)d s/s

}
d̄ρ′.

In this case we have

m( f )(s,λ) =
∫

s−iρ′
f (iρ′,λ)d s/s ∈T ′(R1+l

θ,λ ),

and φ(s)kM ( f )(s,λ) has compact support with respect to s. Thus

VM (φ) f (iρ,λ) =
∫

siρφ(s)

m( f )(s,λ)d s/s extends to a function

VM (φ) f (δ+ iρ,λ) =
∫

sδ+iρφ(s)m( f )(s,λ)d s/s (3.56)

which is holomorphic in w = δ+ iρ ∈ C. The arguments are analogous to the corresponding

case of Fourier transforms of scalar distributions with compact support. We have

h(δ+ iρ,λ) :=VM (φ) f (δ+ iρ,λ) =VM (φδ) f (iρ,λ) (3.57)

for φδ(s) := sδφ(s)∈C∞
0 (K ). From (3.50) we have VM (φ) f (δ+ iρ,λ) ∈ Sµ

(cl)(Γδ×Rl
λ

) for every δ.

Since δ→φδ represents a continuous mapping R→C∞
0 (K ), the continuity of

VM : C∞
0 (K )×Sµ

(cl)(Γ0 ×Rl
λ) → Sµ

(cl)(Γδ×Rl
λ)

implies that (3.54) is uniform in compact δ-intervals. The closed graph theorem gives us also

the continuity of (3.55) with respect to the Fréchet topology of the space Sµ

(cl)(C×Rl ). ���

The following results can be proved in an analogous manner as those in the final part of

Subsection 3.1.
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Corollary 10. Let ψ ∈C∞
0 (R+) be a cut-off function, and f (z,λ) ∈ Sµ

(cl)(Γδ×Rl ). Then we have

h(z,λ) := VM (ψ) f (z,λ) ∈ Sµ

(cl)(C×Rl ) (3.58)

and

h(z,λ)|Γδ×Rl = f (z,λ) mod S−∞(Γδ×Rl ). (3.59)

Corollary 11. Let φ ∈C∞
0 (R+) and define

hδ(iρ,λ) := (VM (φ) f )(δ+ iρ,λ)

for any fixed δ ∈R. Then f → hδ defines a continuous map

Sµ

(cl)(Γ0 ×Rl ) → Sµ

(cl)(Γ0 ×Rl ) (3.60)

and we have

h0(iρ,λ) = hδ(iρ,λ) mod Sµ−1
(cl) (Γ0 ×Rl ). (3.61)

Lemma 3. Let h(z,λ) ∈ Sµ

(cl)(C×Rl ), and set hδ(iρ,λ) := h(δ+ iρ,λ). Then the mapping, R→
Sµ

(cl)(Γ0 ×Rl ), δ→ hδ, is continuous.

Proposition 4. For every h(z,λ) ∈ Sµ

(cl)(C×Rl ) we have

(∂z h)(z,λ) ∈ Sµ−1
(cl) (C×Rl )

(here ∂z is the differentiation of h as a holomorphic function with values in Sµ

(cl)(R
l )).

Theorem 8. Let h(z,λ) ∈ Sµ

(cl)(C×Rl ) and fix δ ∈R; then

(i) hδ ∈ Sµ−ε
(cl) (Γδ×Rl ) for some ε≥ 0 (ε ∈N in the classical case) implies h ∈ Sµ−ε

(cl) (C×Rl );

(ii) hδ ∈ Sµ

cl(Γδ×Rl ) implies h ∈ Sµ

cl(C×Rl ).

3.3. Mellin quantization

By Mellin quantisation we understand the representation of Fourier by Mellin pseudo-

differential operators. This does not concern the push forward of an operator under the dif-

feomorphism R→ R+, t 7→ e−t , but the shape of Fourier-based pseudo-differential operators

on the r half-axis as an open subset of R in terms of the Mellin transform with respect to the

same half-axis coordinate. In Subsection 2.2 we discussed aspects of such a change for differ-

ential operators. From the mere pseudo-differential viewpoint the change from the Fourier

to the Mellin picture is nothing else than a change of the phase function from (r − r ′)ρ to

(logr ′ − logr )ρ. However, the control of symbols is far from being completely trivial, since

such a change produces (smoothing) remainders with a singular behaviour at r = 0 that can

affect (or destroy) a desired mapping property of operators close to r = 0.
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Let us now give a striking example for “unexpected" effects that appear under replac-

ing the Fourierbythe Mellin transform in pseudo-differential operators in dimension 1. First

consider operators

Op(a)u(r ) =
Ï

e i (r−r ′)ρa(ρ)u(r ′)dr ′d̄ρ (3.62)

for symbols a(ρ) ∈ S0
cl(R). Let us form the truncation of Op(a) : L2(R) → L2(R) to the half-axis

Op+(a) := r+Op(a)e+ : L2(R+) → L2(R+) (3.63)

where e+ : L2(R+) → L2(R) extends functions by zero from R+ to R and r+ : L2(R) → L2(R+)

restricts to R+. Eskin in his book [18] found out a Mellin representation of (3.63) locally at r = 0

in terms of Mellin pseudo-differential operators with meromorphic Mellin symbols, modulo

Hilbert-Schmidt operators, including the behaviour under compositions and the nature of

parametrices for elliptic operators. Later on this structure has been deepened in different

directions, see, in particular, [36], [37], [38], and also Theorem 3.64 below.

The half-axis R+ ∈ M1 is a manifold with conical singularity r = 0 and conical exit to

infinitiy r →∞. We then have the cone algebra over R+ which is in its simplest form furnished

by zero-order classical pseudo-differential operators

A =ωOpM (h)ω′+ (1−ω)Aint(1−ω′′)+M +G , (3.64)

OpM (·) = Op0
M (·), elements h(r, z) ∈C∞(R+,S0

cl(C)), cut-off functions ω′′ ≺ω≺ω′ on the half-

axis, Aint ∈ L0
cl(R+) with exit property of order 0 at r =∞, and smoothing Mellin plus Green

operators M +G with discrete asymptotics at r = 0. The operator M is essentially a smooth-

ing Mellin operator with meromorphic symbol, not necessarily compact in L2(R+), while the

Green operator is an asymptotics generating compact smoothing operator. The notation

comes from Green’s function in solution formulas of boundary value problems. A specific

part of such operators is a pseudo-differential operator locally along the boundary with Green

operator-valued symbol. In Sections 4 and 5 below we encounter Green operators for bound-

ary value problems with the transmission property at the boundary. This calculus, cf. Boutet

de Monvel [7], and the monograph [35], is also based on the truncation convention, using the

operators e+ and r+ in direction of the inner normal R+.

Theorem 9. [44] The operator (3.63) is an element of the cone algebra on R+ where the half-axis

is regarded as a manifold with conical singularity, the origin.

A similar truncation result holds on a manifold M with boundary of dimension > 0. In

this case M is interpreted as a manifold with edge, where the edge is just the boundary. The

pseudo-differential calculus of boundary value problems on M is then a special case of the
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edge calculus. The corresponding operators are more general than those with the transmis-

sion property at the boundary. Typical examples of operators of the latter kind will be dis-

cussed later on in this exposition. Those are of independent interest. The tools for the case

without the transmission property and the edge calculus in general are another chapter of the

singular analysis. We will develop step by step more details on these operator structures. Let

us only recall for the moment that the corresponding algebras are designed to express para-

metrices of elliptic operators within the calculus. In particular, this is the case for the edge

algebra, with its two-component principal symbolic structure (σ0,σ1), where σ1 takes values

in the above-mentioned cone algebra.

Theorem 10 ([47]). Let M be a manifold with smooth boundary, 2M it double, and Ã a classical

pseudo-differential operator on 2M , say, of order zero, and let A := r+ Ãe+ be the corresponding

truncated operator with e+ being the extension by zero from int M to 2M and r+ the restriction

to int M . Then A is an element of the edge algebra on M where the boundary is interpreted as

edge.

We now outline a few aspects of the Mellin quantisation in concise form.

Let us set

M(r,r ′) :=
r−1 for r = r ′,

(r − r ′)−1(logr − logr ′) for r ̸= r ′.
(3.65)

Then we have M(r,r ′) ∈C∞(R+×R+) and M(r,r ′) > 0 for every (r,r ′) ∈R+×R+.

Lemma 4. For every k ∈N\ {0} we have

∂k
r ′M(r,r ′)|r ′=r = ck r−k−1 (3.66)

for suitable constants ck ∈R, in particular,

(r ′∂r ′)k {r ′M(r,r ′)}|r ′=r ∈C∞(R+), and r k−1∂k
r ′{M(r,r ′)−1}|r ′=r ∈C∞(R+). (3.67)

Proof. Set 1+x = r /r ′, |x| < 1 for r,r ′ ∈R+. Then

logr − logr ′ = log(1+x) =
∞∑

j=1

(−1) j+1

j
x j =

∞∑
j=1

(−1) j+1

j

(r − r ′) j

r ′ j .

Thus

M(r,r ′) = logr − logr ′

r − r ′ =
∞∑

k=0

(−1)k

k +1

(r − r ′)k

r ′k+1
.

It follows that ∂k
r M(r,r ′)|r=r ′ = k !(−1)k (k + 1)−1r ′−k−1 which gives us (3.66). Then the first

relation of (3.67) follows from Remark 6. By induction we see that ∂k
r ′(M(r,r ′)−1) is a linear
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combination of expressions M(r,r ′)−m−1∏m
l=1∂

jl

r ′M(r,r ′) where m ≤ k and
∑m

l=1 jl = k. Thus

∂k
r ′(M(r,r ′)−1|r ′=r is a linear combination of terms r m+1r−m−k , 0 ≤ m ≤ k, which show the

second relation of (3.67). ���

Given any a(ξ,λ) ∈ Sµ(R1+l ) and φ(θ) ∈C∞
0 (R+) we form

(QM (φ)a)(iρ,λ) :=
∫
R

∫
R

e−i sξe iξs−iρφ(s)a(ξ,λ)d sd̄ξ. (3.68)

Moreover, for any f (iρ,λ) ∈ Sµ(Γ0 ×Rl ) and ψ(s) ∈C∞
0 (R+) we form

(QF (ψ) f )(ξ,λ) :=
∫ ∞

−∞

∫ ∞

0
siτe−iξe i sξψ(s) f (iτ,λ)

d s

s
d̄τ. (3.69)

Theorem 11. (i) The expression (3.68) yields a separately continuous mapping

QM : C∞
0 (R+)×Sµ

(cl)(R
1+l ) → Sµ

(cl)(Γ0 ×Rl ), (φ, a) →QM (φ)a. (3.70)

There are coefficients ck j (φ) (only depending on (∂l
sφ)(1), l ∈N, but not on the symbol a)

such that

QM (φ)a(iρ,λ) ∼φ(1)a(−ρ,λ)+
∞∑

k=1

k∑
j=0

ck j (φ)(−ρ) j (∂k+ j
ρ a)(−ρ,λ), (3.71)

(ρ,λ) ∈R1+l .

(ii) The operator (3.69) yields a separately continuous mapping

QF : C∞
0 (R+)×Sµ

(cl)(Γ0 ×Rl ) → Sµ

(cl)(R×Rl ), (ψ, f ) →QF (ψ) f . (3.72)

There are coefficients dk j (ψ) (only depending on (∂l
sψ)(1), l ∈N, but not on the symbol f )

such that

(QF (ψ) f )(ξ,λ) ∼ψ(1) f (iξ,λ)+
∞∑

k=1

k∑
j=0

dk j (ψ)(−iξ) j (∂k+ j
ξ

f )(−iξ,λ),

(ξ,λ) ∈R1+l .

(iii) If φ and ψ are equal to 1 in a neighbourhood of 1, then we have

QM (φ)QF (ψ) f = f mod S−∞(Γ0 ×Rl ),

QF (ψ)QM (φ)a = a mod S−∞(R×Rl ).

Proof. We will show that QM and QF generate linear mappings (3.70) and (3.72), respectively,

and we will obtain the separate continuity.
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We mainly look at general symbols. Then the asserted asymptotic expansion (3.71) shows

that QM transforms classical symbols to classical ones. Using the function (3.65) and substi-

tuting ξ 7→ −M(s,1)(ρ+ξ) = (1− s)−1logs (ρ+ξ), taking into account that the amplitude func-

tion has compact support in s, it follows that

QM (φ)a(iρ,λ) =
∫
R

∫ ∞

0
siξφ(s)sM(s,1)a(−M(s,1)(ρ+ξ),λ)

d s

s
d̄ξ (3.73)

In fact, replacing ξ in e−i sξs−iρ by −s−1logs (ρ+ξ) gives us for the first factor

e−i sξ = e−i s(−s−1logs (ρ+ξ)) = e i (logs (ρ+ξ)) = siρsiξ. The regularisation of the oscillatory integral

(3.73) gives us a symbol in Sµ(Γ0 ×Rq ). Let us now derive the asymptotic expansion (3.71).

From Taylor’s formula, applied to a(M(s,1)(ρ+ξ,λ)) with respect to ξ at ξ= 0 under the inte-

gral in (3.73) we obtain for every N ∈N

(QM (φ)a)(iρ,η) =
N∑

k=0
bk (iρ,λ)+ rN+1(iρ,λ)

where

bk (iρ,λ) = (−1)k

k !

∫
R

∫ ∞

0
siξξkφ(s)sM(s,1)k+1(∂k

ξ a)(−M(s,1)ρ,λ)
d s

s
d̄ξ,

rN+1(iρ,λ) =
∫ 1

0

(1− t )N

N !
(−1)N+1

∫
R

∫ ∞

0
siξξN+1φ(s)sM(s,1)N+2

(∂N+1
ξ a)(−M(s,1)(ρ+ tξ,λ)

d s

s
d̄ξd t .

Using standard properties of oscillatory integrals we obtain rN+1(iρ,λ) ∈ Sµ−(N+1)(Γ0×Rl ) and

bk (iρ,λ) = (−1)k

k !
(s′∂s′)

k{
φ(s′)s′M(s′,1)k+1(∂k

ξ a)(−M(s′,1)ρ,λ)
}|s′=1.

which implies the claimed asymptotic expansion.

The proof of (ii) is analogous to (i) when we employ that QF (ψ) f can be written in the

form

(QF (ψ) f )(ξ,λ) =
∫
R

∫
R+

r−iτe−iξe−i rξψ(r )M(r,1)−1 f (−M(s,1)−1(i (ξ+τ)),λ)
dr

r
d̄τ. (3.74)

Finally, for (iii) we observe that, using compact supports in s and r in the respective oscillatory

integrals,

QMQF f (iρ,λ) =
Ï

e−i sξe iξs−iρφ(s)
{Ï

r iτe i rξe−iξψ(r ) f (iτ,λ)
dr

r
d̄τ

}
d sd̄ξ

=
Ï

s−iρφ(s)
(∫

e−i sξ
[∫

e i rξψ(r )r iτ dr

r

]
d̄ξ

)
f (iτ,λ)d̄τd s
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=
∫

s−iρφ(s)
(
Fξ→sF−1

r→ξ[r−1ψ(r )r iτ]
)

f (iτ,λ)d̄τd s

=
Ï

s−iρφ(s)ψ(s)siτ f (iτ,λ)d̄τ
d s

s
=

Ï
r i (ρ−τ)(φψ)(r−1) f (iτ,λ)d̄τ

dr

r

=
∫
R

∫ ∞

0
r i ρ̃(φψ)(r−1) f (i (ρ− ρ̃),λ)d̄ ρ̃

dr

r
=VM (ϕM ) f (iρ,λ) (3.75)

with VM (ϕM ) being the kernel cut-off operator for ϕM (r ) := (φψ)(r−1), cf. (3.45). In an analo-

gous manner we can show that

QF (ψ)QM (φ)a(ξ,λ) =
∫
R

∫
R

e−iθρ(φψ)(−θ+1)a(ξ−ρ,λ)dθd̄ρ

= VF (ϕF )a(ξ,λ) (3.76)

which is the Fourier kernel cut-off operator with the cut-off function ϕF (θ) = (φψ)(−θ+ 1),

see the formulas (3.44), (3.45) and (3.14), respectively. ���

Remark 12.

(i) Let φ1,φ2 and ψ1,ψ2 be functions in C∞
0 (R+) that are equal to 1 in a neighbourhood of

1. Then for every a(ρ,η) ∈ Sµ(R1+l ) we have

QM (φ1)a =QM (φ2)a mod S−∞(Γ0 ×Rl ),

and for every f (z,η) ∈ Sµ(Γ0 ×Rl )

QF (ψ1) f =QF (ψ2) f mod S−∞(R×Rl ).

(ii) If φ and ψ are functions in C∞
0 (R+) that are equal to 1 in a neighbourhood of 1, then for

every µ ∈R the mappings QM (φ) and QF (ψ) induce isomorphisms

QM (φ) : Sµ

(cl)(R
1+l )/S−∞(R1+l ) → Sµ

(cl)(Γ0 ×Rl )/S−∞((Γ0 ×Rl )

and

QF (ψ) : Sµ

(cl)(Γ0 ×Rl )/S−∞(Γ0 ×Rl ) → Sµ

(cl)(R×Rl )/S−∞(R×Rl ),

respectively.

Theorem 12. Let φ,ψ ∈C∞
0 (R+) be equal to 1 near 1.

(i) For a(r,ρ,λ) := ã(r,rρ,λ), ã(r, ρ̃,λ) ∈C∞(R+,Sµ(R1+l
ρ̃,λ )), and

f (r, iρ,λ) := (QM (φ)ã)(r, iρ,λ) (3.77)

we have

Opr (a)(λ)−Op1/2
M ( f )(λ) = Opr

(
(1−φ(

r ′

r
))a

)
(λ)

as operators C∞
0 (R+) →C∞(R+).



38 D.-C. CHANG, X. LYU AND B.-W. SCHULZE

(ii) Let f (r, iρ,λ) ∈C∞(R+,Sµ(Γ0 ×Rl )), and

a(r,ρ,η) :=QF (ψ) f (r,rρ,λ).

Then we have

Op1/2
M ( f )(λ)−Opr (a)(λ) = Op1/2

M

(
(1−ψ(

r ′

r
)) f

)
(λ)

as operators C∞
0 (R+) →C∞(R+).

Proof. (i) Let us write

a(r,ρ,λ) =φ(
r ′

r
)a(r,ρ,λ)+ (

1−φ(
r ′

r
)
)
a(r,ρ,λ). (3.78)

Then the assertion is proved if we show that

Opr (φ(
r ′

r
)a)(λ) = Op1/2

M ( f )(λ) (3.79)

as operators C∞
0 (R+) →C∞(R+). For u ∈C∞

0 (R+) we have

Opr

(
φ(

r ′

r
)a

)
(λ)u(r ) =

∫
R

∫ ∞

0
e i (r−r ′)ρφ

(r ′

r

)
a(r,ρ,λ)u(r ′)dr ′d̄ρ

=
∫
R

∫ ∞

0

( r

r ′
)−iρD(r,r ′, iρ,λ)u(r ′)

dr ′

r ′ d̄ρ = Op
1
2
M (m)(λ)u(r )

for D(r,r ′, iρ,λ) := M(r,r ′)r ′φ(r ′/r )a(r,−M(r,r ′)ρ,λ). Here we substituted τ=−M(r,r ′)ρ and

then replaced again τ by ρ.

We now define

f (r,τ,λ) := r iτ(Op
1
2
M (D)(λ)(r ′)−iτ)(r ) =

∫
R

∫ ∞

0
siξD(r, sr, i (ξ+τ),λ)

d s

s
d̄ξ. (3.80)

The right hand side of (3.80) follows from r iτ
Î

r−iρm(r,r ′, iρ,η)r ′iρr ′−iτdr ′/r ′d̄ρ for the ex-

pression in the middle and the substitutions s = r ′/r,ξ= ρ−τ. Observe that (3.80) makes sense

since the factor φ(r ′/r ) produces a properly supported operator. Then we have Op
1
2
M (D)(λ) =

Op
1
2
M ( f )(λ), cf. the formula (2.62) for γ= 1/2. From

M(r,r ′) = r−1(1− r /r ′)−1log(r /r ′)

we obtain M(r, sr ) = r−1(1− s)−1log(1/s) and M(t ,1) = t−1(1−1/t )−1log t . Thus∫
R

∫ ∞

0
siξD(r, sr, i (ξ+τ),λ)

d s

s
d̄ξ=

∫
R

∫ ∞

0
siξr−1(1− s)−1log(1/s)srφ(s)

ã(r,−(1− s)−1log(1/s)(ξ+τ),λ)
d s

s
d̄ξ=QM (φ)ã(r, iτ,λ),

(3.81)
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cf. (3.73). In other words, we proved the relation (3.77).

(ii) Analogously as (3.78) we write

f (r, iτ,λ) =ψ
(r ′

r

)
f (r, iτ,λ)+ (

(1−ψ(
r ′

r
)
)

f (r, iτ,λ)

which reduces the assertion to Opγ

M (ψ(r ′/r ) f )(λ) := Opr (a)(λ) as C∞
0 (R+) → C∞(R+). For

u ∈C∞
0 (R+) we have

Op1/2
M (ψ(

r ′

r
) f )(λ)u(r ) =

∫
R

∫ ∞

0
(

r

r ′ )−iτψ(
r ′

r
) f (r, iτ,λ)u(r ′)

dr ′

r ′ d̄τ

=
∫
R

∫ ∞

0
e i (r−r ′)τg (r,r ′,τ,λ)u(r ′)dr ′d̄τ,

for

g (r,r ′,τ,λ) := (
r ′M(r,r ′)

)−1
ψ

(r ′

r

)
f (r,−M(r,r ′)−1iτ,λ). (3.82)

Because of the factor ψ(r ′/r ) the operator Opr (g )(λ) is properly supported, and hence, when

we form

a(r,τ,λ) := e−i rτ(Opr (g )(λ)e i r ′τ)(r ) =
∫
R

∫ ∞

0
e−i (r ′−1)ξg (r,r r ′,

ξ

r
+τ,λ)dr ′d̄ξ, (3.83)

it follows that

Opγ

M

(
ψ(r ′/r ) f

)
(λ)u(r ) = Opr (a)(λ)u(r ).

Formula (3.74) together with (3.82) shows that a(r,τ,λ) is as asserted. ���

Remark 13. Note that for a(r,ρ,λ) = ã(rρ,λ) it follows that f (iρ,η) = (QM (φ)ã)(iρ,λ), i.e., f

is independent of r.

Theorem 11, Remark 12, and (12) can be generalised in many ways.

First of all we may admit symbols smoothly depending on several variables, for instance,

the relations (3.70) and (12) generalise to

QM : C∞
0 (R+)×Sµ

(cl)(R+×Ω×R1+l ) → Sµ

(cl)(R+×Ω×C×Rl ) (3.84)

and

QF : C∞
0 (R+)×Sµ

(cl)(R+×Ω×Γ 1
2−γ×Rl ) → Sµ

(cl)(R+×Ω×C×Rl ), (3.85)

respectively, for any open set Ω⊆Rq . A similar observation is true of Remark 12 and Theorem

12.
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Remark 14. Theorem 12 (i) can be regarded as a Mellin quantisation, Theorem 12 (ii) as an

inverse Mellin quantisation.

For any a(ξ,λ) ∈ Lµ

cl(X ;R1+l ) and φ(s) ∈C∞
0 (R+) we form

(QM (φ)a)(iρ,λ) :=
∫
R

∫
R

e i (1−s)ρs−zφ(s)a(ξ,λ)d sd̄ξ, (3.86)

(z,λ) ∈C×Rl , z = 1/2−γ+iρ. Moreover, for any f (z,λ) ∈ Lµ

cl(X ;Γ1/2−γ×Rl ) and ψ(s) ∈C∞
0 (R+)

we set

(QF (ψ) f )(ξ,λ) :=
∫
Γ1/2−γ

∫ ∞

0
sz e i (s−1)ξψ(s) f (z,λ)

d s

s
d̄ z, (3.87)

(ξ,λ) ∈C×Rl .

Theorem 13.

(i) The formula (3.86) induces a separately continuous mapping

QM : C∞
0 (R+)×Lµ

cl(X ;R1+q ) → Mµ

O
(X ;Rq )

(φ, a) →QM (φ)a. There are coefficients ck j (φ,γ) (only depending on (∂l
tφ)(1), l ∈N, and

γ ∈R, but not on the symbol a) such that

(QM (φ)a)(1/2−γ+ iρ,η) ∼φ(1)a(−ρ,η)+
∞∑

k=1

k∑
j=0

ck j (φ,γ)(−ρ) j (∂k+ j
ρ a)(−ρ,η), (3.88)

(ρ,η) ∈R1+q .

(ii) The formula (3.69) induces a separately continuous mapping

QF : C∞
0 (R+)×Lµ

cl(X ;Γ1/2−γ×Rq ) → Lµ

cl(X ;C×Rq ),

(ψ, f ) →QF (ψ) f . There are coefficients dk j (ψ,γ) (only depending on (∂l
sψ)(1), l ∈N, and

γ ∈R, but not on the symbol f ) such that

(QF (ψ) f )(ξ,λ) ∼ ψ(1) f (1/2−γ− iξ,λ)

+
∞∑

k=1

k∑
j=0

dk j (ψ,γ)(−iξ) j (∂k+ j
ξ

f )(1/2−γ− iξ,λ), (3.89)

(ξ,λ) ∈R1+l .

(iii) If φ and ψ are equal to 1 in a neighbourhood of 1 then we have

QM (φ)QF (ψ) f = f mod L−∞(X ;Γ1/2−γ×Rl ),

QF (ψ)QM (φ)a = a mod L−∞(X ;R1+l ).

The following theorem is a Mellin quantisation result for edge-degenerate symbols.
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Theorem 14. Let φ ∈ C∞
0 (R+) be equal to 1 near 1 and fix a weight γ ∈ R. For p(r, y,ρ,η) :=

p̃(r, y,rρ,rη), p̃(r, y, ρ̃, η̃) ∈C∞(R+×Ω,Lµ

cl(X ;R1+q
ρ̃,η̃ )) and h(r, y, z,η):= h̃(r, y, z,rη), h̃(r, y, z, η̃):=

QM (φ)p̃(r, y, z, η̃) belonging to C∞(R+×Ω, Mµ

O
(X ;Rq )), we have

Opr (p)(y,η)−Opγ

M (h)(y,η) = Opr ((1−φ(r ′/r ))p)(y,η), (3.90)

where h̃(r, y, z, η̃) ∈C∞(R+×Ω, Mµ

O
(X ;Rq )) and

Opr ((1−φ(r ′/r ))p)(y,η) ∈C∞(Ω,L−∞(X ∧;Rq )). (3.91)

Proof. The proof is a direct consequence of Theorem 12 (i). ���

Remark 15. Let h̃(r, y, z, η̃) and p̃(r, y, ρ̃, η̃) be as in Theorem 14 and set

p0(r, y,ρ,η) := p̃(0, y,rρ,rη), h0(r, y, z,η) := h̃(0, y, z,rη).

Then we have Opr (p0)(y,η)−Opγ

M (h0)(y,η) = Opr ((1−φ(r ′/r ))p0)(y,η); the right hand side is

again an element of C∞(Ω,L−∞(X ∧;Rq )).

Theorem 15. Let ψ ∈ C∞
0 (R+) be equal to 1 near 1 and fix a weight γ ∈ R. For h(r, y, z,η) :=

h̃(r, y, z,rη), h̃(r, y, z, η̃) ∈C∞(R+×Ω, Mµ

O
(X ;Rq

η̃ )) and p(r, y,ρ,η) := p̃(r, y,rρ,rη), p̃(r, y, ρ̃, η̃) =
QF (ψ)h̃(r, y, ρ̃, η̃) belonging to C∞(R+×Ω,Lµ

cl(X ;R1+q
ρ̃,η̃ )), we have

Opγ

M (h)(y,η)−Opr (p)(y,η) = Opγ

M ((1−ψ(r ′/r ))h)(y,η), (3.92)

where

Opγ

M ((1−ψ(r ′/r ))h)(y,η) ∈C∞(Ω,L−∞(X ∧;Rq )). (3.93)

Proof. The proof is a direct consequence of Theorem 12 (ii). ���

Remark 16. Let h̃(r, y, z, η̃) and p̃(r, y, ρ̃, η̃) be as in Theorem 15 and

p0(r, y,ρ,η), h0(r, y, z,η)

as in Remark 15. Then we have Opr (p0)(y,η)−Opγ

M (h0)(y,η) = Opγ

M ((1−ψ(r ′/r ))h0)(y,η); the

right hand side is again an element of C∞(Ω,L−∞(X ∧;Rq )).

4. Boundary value problems are edge problems

4.1. Boundary value problems for differential operators

Let us develope here some essential tools for understanding ellipticity of boundary value

problems (BVPs). For instance, consider an embedded submanifold M ⊂ Rn with smooth

boundary ∂M = X and assume that M is either compact or the half-space

R
n
+ := {x ∈Rn : xn ≥ 0}.
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In order to see some examples, let A be an elliptic operator in Rn , first a differential operator

of order 2m, m ∈N\ {0}. Among the best studied cases is the Laplacian A =∆=∑n
j=1

∂2

∂x2
j

with

Dirichlet boundary conditions. The Dirichlet problem

∆u = f in int M ,

T0u = g on X .

for T0u := u|X is elliptic with respect to a principal symbolic hierarchy

σ(A ) := (σψ(A ),σ∂(A ))

for A =
(
∆

T0

)
, where σψ(A )(ξ) =σψ(∆)(ξ) =−|ξ|2, ξ ̸= 0 in this case is called the interior sym-

bol and concerning notation in the following theorems, see [45, Definition 3.2.6].

σ∂(A )(η) :=
(
−|η|2 + ∂2

∂x2
n

γ0

)
: H s(R+) →

H s−2(R+)

⊕
C

the boundary symbol, γ0u := u(0), η= (ξ1, . . . ,ξn−1) ̸= 0, s is assumed to be > 3/2 ( the concrete

choice will be unessential). The representations of σψ(A ) and σ∂(A ) refer to representations

in R
n
+, however, similarly as the invariance of σψ(·)(x,ξ) as a function on T ∗M \ 0 also the

boundary symbol σ∂(·)(y,η) is invariantly defined as an operator function on T ∗(X ) \ 0.

In general, if A =∑
|α|≤µ aα(x)Dα

x is an elliptic differential operator of order 2m then the bound-

ary conditions are usually formulated in terms of differential operators B j , 0 ≤ j ≤ m −1, of

orders 0 ≤ m j ≤ 2m − 1, given in a collar neighborhood of the boundary X . The boundary

conditions then have the form

Tu := (B j u|∂M ) j=0,...,m−1

and the column matrix

(
A

T

)
represents the boundary value problem

Au = f in int M , Tu = g on X .

As the pair of interior and boundary symbols we have in this case

σψ(A)(y,ξ) = ∑
|α|=µ

aα(x)ξα, ξ ̸= 0,

and

σ∂(A )(y,η) =
(
σ∂(A)

σ∂(T )

)
(y,η)
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for

σ∂(A)(y,η) := σψ(A)(y,0,η,Dxn )

σ∂(T )(y,η)u := (
σψ(B j )(y,0,η,Dxn )u|xn=0

)
j=0,...,m−1

η ̸= 0. Again the components of σ(A ) = (σψ(A),σ∂(A)) are represented in coordinates in R
n
+,

and the boundary symbol is operator-valued,

σ∂(A )(y,η) : H s(R+) →
H s−µ(R+)

⊕
Cm

(4.1)

s >µ−1/2.

Definition 5. The BVP A is said to be elliptic in the sense of Shapiro-Lopatinskij ellipticity

of the boundary conditions T with respect to the operator A if A itself is elliptic in the usual

sense and (4.1) is a family of isomorphisms.

Elliptic BVPs in the sense of Definition 5 have been studied by numerous authors. Let us

mention the classical papers of Lopatinskij [33], Agmon, Douglis and Nirenberg [1, 2], Seeley

[52], Schechter [40], Solonnikov [56, 57], or the monograph of Lions and Magenes [32].

4.2. Pseudo-differential boundary value problems with the transmission property

In contrast to the case of ellipticity on an open smooth manifold and the comparatively

simple structure of parametrices, cf. [13], it is not so easy to foresee the shape of a pseudo-

differential algebra of boundary value problems, containing the parametrices of elliptic BVPs

for differential operators. We outline here elements of the work of Boutet de Monvel [7].

More insight and useful generalisations have been developed in the monographs of Rempel

and Schulze [35] and Grubb [23]. Later on, in connection with the development of the edge

pseudo-differential calculus in [38] and [42] it turned out that BVPs are specific edge prob-

lems, see also the article of Schulze and Seiler [47]. This is also the motivation of the headline

of the present Section 4. Later on, in subsequent parts of this exposition we will return many

times to this aspect. The first novelty, as we saw in the preceding subsection, is the presence

of a second principal symbolic component. Besides the interior symbol σψ(·), we have here

the boundary symbol σ∂(·) which determines the ellipticity of the respective BVPs. Similar

phenomena occur in ellipticity of BVPs on a manifold with edge or higher singularities. Then,

according to the higher stratification of the underlying singular manifold, we have a corre-

sponding larger number of principal symbolic components. If M is a manifold with smooth

boundary the stratification consists of

int M and ∂M = X ,
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The strata are open smooth manifolds of different dimensions, and we have a disjoint union

M = int M ∪ ∂M .

Let M̃ be an open smooth manifold, and let M ,→ M̃ be an embedding as a smooth submani-

fold with boundary. Then it makes sense to consider an Ã ∈ Lµ

cl(M̃) with its interior principal

symbol σψ(Ã) ∈C∞(T ∗M̃ \ 0),

σψ(A) :=σψ(Ã)|T ∗(int M)\0 for A := Ã|int M ,

and to interpret ∂M ⊂ M̃ as an additional input which generates a second principal symbolic

component σ∂(A). Locally near a point x ∈ ∂M we can identify M̃ with Rn , ∂M with Rn−1, and

M with R
n
+. Then, as in Subsection 4.1, for a differential operator A =∑

|α|≤µ aα(x)Dα
x we set

σψ(A)(x,ξ) =
∑

|α|=µ
aα(x)ξα, (4.2)

σ∂(A)(y,η) :=σψ(A)(y,0,η,D t ) : H s(R+) → H s−µ(R+), (4.3)

for x = (y, t ) ∈ Rn+, y ∈ Rn−1, t ∈ R+. While the interior symbol is (positively) homogeneous in

the standard sense, namely,

σψ(A)(x,δξ) = δµσψ(A)(x,ξ),

δ ∈R+, the boundary symbol is twisted homogeneous in the sense

σ∂(A)(y,δη) = δµκδσ∂(A)(y,η)κ−1
δ ,

δ ∈R+. Here (κδu)(t ) := δ1/2u(δt ) determines a group action on the spaces H s(R+), s ∈R.

As we see the boundary symbol (4.3) takes values in differential operators on R+.

Remark 17. Let A be elliptic, i.e., σψ(A)(x,ξ) ̸= 0 for ξ ̸= 0. Then the operators (4.3) are elliptic

on R+ for η ̸= 0, where

σψ(A)−1(y,0,η,D t ) =: σ∂(A)(−1)(y,η) (4.4)

is a pseudo-differential parametrix over R+.

In the case of a pseudo-differential operator on R+ it is not a priori clear how we define

an action in the opposite direction of (4.3), namely, H s−µ(R+) → H s(R+). We adopt here the

truncation operator convention. To this end we observe that

a(y, t ,η,τ) := ∑
|α|≤µ

aα(y, t )(η,τ)α (4.5)
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belongs to Sµ

cl(Rt ×Rτ) for every fixed (y,η). For any such symbol we define

op+(a)(y,η) := r+op(a)(y,η)e+ : C∞
0 (R+) →C∞(R+) (4.6)

with e+ being the operator of extension by zero to the opposite half-line, i.e.,

e+u =
{

u for t > 0

0 for t ≤ 0
,

and r+ f := f |R+ , the restriction of distributions to R+. Moreover,

op(a)(y,η)v(t ) :=
∫ ∫

e i (t−t ′)τa(y, t ,η,τ)v(t ′)d t ′d̄τ

for d̄τ = (2π)−1dτ. This notation is valid for arbitrary symbols a(y, t ,η,τ) ∈ Sµ

cl(R
n−1 ×R×

Rn
η,τ), and we obtain a family of continuous maps (4.6). The same is true of a−1

0 (y,η,τ) :=
a−1(y,0,η,τ) ∈ S−µ

cl (Rτ) for every fixed y and η ̸= 0, as it appears in (4.4) for (4.5), coming from

an elliptic operator A. However these symbols in τ are very specific. We have in this case for

η ̸= 0

a−1(y,0,η,τ) ̸= 0

for all τ ∈R. Moreover, we see in this case for a0(y,η,τ) := a(y,0,η,τ)

op+(a0)(y,η)op+(a−1
0 )(y,η) = op+(a0a−1

0 )(y,η) = 1 (4.7)

since

op+(a0)op+(a−1
0 ) = r+op(a0)e+r+op(a−1

0 )e+ = r+op(a0)op(a−1
0 )e+

which is a consequence of the locality of op(a0) as a differential operator, i.e., suppop(a0) f ⊆
supp f , applied to f := e+r+op(a−1

0 )e+u. This conclusion is valid for any u ∈ H s−µ(R+) for

s −µ > −1/2, since then e+u ∈ S ′(R) and suppe+r+op(a−1
0 )e+u ⊆ R+ with op(a−1

0 )e+u being

applied in the distributional sense, cf. [45] and [13].

Definition 6. An a(t ,τ) ∈ Sµ

cl(R×R), µ ∈Z, is said to have the transmission property at t = 0 if

the coefficients a±
j (t ) ∈C∞(R) in asymptotic expansions

a(t ,τ) ∼
∞∑

j=0
a±

j (t )(iτ)µ− j as τ→±∞

(i =p−1 is used for technical reasons) satisfy the conditions

Dk
t a+

j (0) = Dk
t a−

j (0) for all j ,k ∈N.

In a similar manner we define the transmission property of a symbol a(t ,τ) ∈ Sµ

cl(R+×R).
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In particular, if a(τ) ∈ Sµ

cl(R) is a symbol with constant coefficients (i.e., independent of t )

then the transmission property means

a+
j = a−

j for all j ∈N.

Remark 18. Every a(t ,τ) ∈ Sµ

cl(R×R) has an asymptotic expansion for coefficients a±
j (t ) ∈

C∞(R+) that are completely independent, and Theorem 16 shows that for every choice of

constants a+
j and a−

j , j ∈N, there exists a symbol with thee coefficients. So we see that gener-

ically the transmission property is violated. Both the cases with and without the transmission

property are important for several applications.

Theorem 16. Let a(τ) ∈ Sµ

cl(R) have the transmission property. Then the truncated operator

op+(a) induces continuous maps

op+(a) : H s(R+) → H s−µ(R+)

for all s ∈R, s >−1/2.

Let us now return to (4.4). We then obtain a continuous operator

σ∂(A)−1(y,η) : H s−µ(R+) → H s(R+) (4.8)

for every s ∈ R, s −µ > −1/2. Moreover (4.7) tells us that (4.8) is a right inverse inverse of

σ∂(A)(y,η). Thus σ∂(A)(y,η) : H s(R+) → H s−µ(R+) is a surjective operator for η ̸= 0.

In higher dimensions for symbols over Ω×R, Ω⊆ Rq open, the transmission property is

defined as follows.

Definition 7. A symbol a(y, t ,η,τ) ∈ Sµ

cl(Ω×R×Rn
η,τ) for n = q + 1, µ ∈ Z, is said to have the

transmission property at t = 0 if it satisfies the conditions

Dk
t Dα

ξ {a(µ− j )(y,0,0,1)− (−1)µ− j−|α|a(µ− j )(y,0,0,−1)} = 0 (4.9)

for all y ∈Ω, ξ= (η,τ), for all k ∈N, α ∈Nq , j ∈N (recall that a(µ− j ) denotes the homogeneous

component of a of order µ− j ). Let

Sµ
tr(Ω×R×Rn) (4.10)

be the space of all symbols of that kind. Moreover, set

Sµ
tr(Ω×R±×Rn) := {a|Ω×R±×Rn : a ∈ Sµ

tr(Ω×R×Rn)}.
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Let us now apply spaces of operator-valued symbols

Sµ(Ω×Rq ; H , H̃),

cf. [13, Definition 3.5], here for the case H := H s(R+), H̃ := H s−µ(R+), or the Fréchet space

S (R+) in place of H or H̃ , endowed with the group action κ= {κδ}δ∈R+ defined by (κδu)(t ) :=
δ1/2u(δt ).

Proposition 5. Let Ω ⊂ Rq be an open set, and assume that a(y, t ,η,τ) ∈ Sµ
tr(Ω×R+ ×Rn) is

independent of t for t > c for some constant c > 0. Then we have

op+(a)(y,η) ∈ Sµ(Ω×Rn−1; H s(R+), H s−µ(R+))

for every real s >−1/2, and

op+(a)(y,η) ∈ Sµ(Ω×Rn−1;S (R+),S (R+)).

The operator-valued symbol op+(a) is classical when a is independent of t .

The technicalities to prove Proposition 5 may be found in [45].

On a manifold M with smooth boundary we have the double 2M , obtained by gluing to-

gether two copies of M along the common boundary. Consider Lµ

cl(2M), the space of classical

pseudo-differential operators on 2M of order µ ∈R. An Ã ∈ Lµ

cl(2M) for µ ∈Z is said to have the

transmission property at ∂M if modulo an operator in L−∞(2M) it has close to the boundary

in local coordinates (y, t ) ∈Ω×R the form

Ã = Op(ã)

for a symbol ã(y, t ,η,τ) ∈ Sµ
tr(Ω×R×Rn). The space of all elements of Lµ

cl(2M) with the trans-

mission property at ∂M will be denoted by Lµ
tr(2M), and we set

Lµ
tr(M) := {A = r+ Ãe+ : Ã ∈ Lµ

tr(2M)}.

Here, similarly as before, e+ means extension from int M by zero to 2M , and r+ restriction of

distributions from 2M to int M .

From the definition it follows that modulo a smoothing operator (i.e., an operator with

kernel in C∞(M ×M)) close to the boundary any A ∈ Lµ
tr(M) can be written as Opy (op+(a)) for

an a ∈ Sµ
tr(Ω×R×Rn

y,t ). This gives us the following

Proposition 6. Let M be a compact manifold with smooth boundary. Then every A ∈ Lµ
tr(M)

induces continuous operators

A : H s(int M) → H s−µ(int M)

for every real s >−1
2 , and

A : C∞(M) →C∞(M).
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If M is not compact, we have a similar result referring to comp/loc-spaces, or to operators

C∞
0 (M) →C∞(M).

For a pseudo-differential calculus of boundary value problems, here with the transmis-

sion property, it is essential to compose operators within the structure including a control of

symbols. Similarly as for differential operators, cf. (4.2), (4.3), also A ∈ Lµ
tr(M) has a principal

symbolic structure

σ(A) := (σψ(A),σ∂(A)),

consisting of interior and boundary symbol, where σψ(A)(x,ξ) is the standard homogeneous

principal symbol of A of order µ, while σ∂(A)(y,η) is the boundary symbol, is defined as the

operator function

σ∂(A)(y,η) := op+(a(µ)|t=0)(y,η) : H s(R+) → H s−µ(R+) (4.11)

for η ̸= 0. It turns out that compositions generate remainders, so-called Green operators. The

notation comes from Green’s function in solution formulas to elliptic boundary value prob-

lems. More precisely, if we construct the solution of an elliptic BVP A by computing the in-

verse A −1which is a special parametrix of A , then Green operators appear in a natural way.

We saw such Green contributions already in [13, formula (4.4)], namely, G := Opy (g ) for the

operator function g (η), here with constant coefficients. In general, Green symbols g (y,η) are

defined as follows.

Definition 8.

(i) An operator-valued symbol

g (y,η) ∈ Sµ

cl(Ω×Rq ;L2(R+),L2(R+))

is called a Green symbol of order µ ∈ R and type 0 if g (y,η) and its pointwise L2(R+)-

adjoint g∗(y,η) constitute elements

g (y,η), g∗(y,η) ∈ Sµ

cl(Ω×Rq ;L2(R+),S (R+)), (4.12)

S (R+) =S (R)|R+ .

(ii) An operator-valued symbol

g (y,η) ∈ Sµ

cl(Ω×Rq ; H s(R+),L2(R+)) (4.13)

for d ∈ N, s −d > −1/2, is called a Green symbol of order µ ∈ R and type d if there are

Green symbols g j (y,η) of order µ− j and type 0, j = 0, . . . ,d , such that

g (y,η) =
d∑

j=0
g j (y,η)

d j

d t j
. (4.14)
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Remark 19. Observe that a g ∈L (L2(R+)) which induces continuous operators g , g∗ : L2(R+)

→ S (R+) has a kernel kg (t , t ′) ∈ S (R+)⊗̂πS (R+) = S (R×R)|
R+×R+ , i.e., g u(t ) = ∫ ∞

0 kg (t , t ′)
u(t ′)d t ′ for all u ∈ L2(R+). This implies that a g as in Definition 8 (i) defines a symbol (4.13) for

every s >−1/2.

Let R
µ,d
G (Ω×Rq ) denote the space of all Green symbols of order µ and type d , and form

G := Opy (g ), called a (local) Green operator with such a symbol. On a manifold M with

smooth boundary we define the space B−∞,d
G (M) as the set of all operators of the form

d∑
j=0

C j
d j

d t j
for arbitrary C j with kernels in C∞(M ×M).

Here d/d t means the derivative in normal direction to ∂M . Now the space of Green oper-

ators Bµ,d
G (M) on M of order µ and type d is the set of all G ∈ L−∞(int M) that are up to a

C ∈ B−∞,d
G (M) locally near the boundary of the form Opy (g ) for some g ∈R

µ,d
G (Ω×Rq ). Green

operators G can be constructed from local terms by using charts on M near ∂M , a subordinate

partition of unity, etc. We set σψ(G) = 0 and

σ∂(G)(y,η) := g(µ)(y,η),

where g(µ)(y,η) is the (twisted homogeneous) principal symbol of g (y,η), as a classical operator-

valued symbol of order µ.

Definition 9. The space Bµ,d (M) is defined as the set of all A +G for any A ∈ Lµ
tr(M) and

G ∈ Bµ,d
G (M). We set

σψ(A+G) :=σψ(A), σ∂(A+G) :=σ∂(A)+σ∂(G).

The operators in Bµ,d (M) constitute an ingredient of the space of BVPs on M with the

transmission property at ∂M .

Theorem 17. Let A ∈ Bµ,d (M), B ∈ Bν,e (M); then we have AB ∈ Bµ+ν, f (M) for f = max{ν+d ,e},

and

σψ(AB) =σψ(A)σψ(B), σ∂(AB) =σ∂(A)σ∂(B).

If A or B is a Green operator so is AB.

Ellipticity of an element in A ∈ Bµ,d (M) is determined not only by σψ(A) but also σ∂(A).

An operator A is called σψ-elliptic if σψ(A) ̸= 0 on T ∗M \0 (with 0 indicationg the zero section)

The boundary symbol σ∂(A) is operator-valued, it defines a family of continuous operators

σ∂(A)(y,η) : H s(R+) → H s−µ(R+) (4.15)
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for any fixed s > d −1/2, and (y,η) ∈ T ∗(∂M) \ 0, and an analogue of the invertibility of σψ(A)

for boundary symbols would be the invertibility of (4.15). However, the invertibility of (4.15)

under the condition of σψ-ellipticity of A is only true in exceptional cases. In general we have

the following

Lemma 5. Let A ∈ Bµ,d (M) be σψ-elliptic. Then (4.15) is a family of Fredholm operators for all

s > max{µ,d} >−1/2, and

dimkerσ∂(A)(y,η), dimcokerσ∂(A)(y,η)

are independent of s.

The way of organising a bijective boundary symbol in connection with A ∈ Bµ,d (M) is to

pass to a 2×2 operator block matrix

A =
(

A+G K

T Q

)
(4.16)

with a Green operator G , a so-called trace operator T, a potential operator K , and a pseudo-

differential operator Q on ∂M . The structure of those operators is close to the one of Green

operators. Therefore, we simply enlarge Definition 8 as follows.

Definition 10. An operator-valued symbol

g (y,η) :=(gl ,m(y,η))l ,m=1,2∈Sµ

cl(Ω×Rq ; H s(R+)⊕C j− ,L2(R+)⊕C j+) (4.17)

for some j−, j+ ∈ N and d ∈ N, s −d > −1
2 , is called a Green symbol of order µ ∈ R and type

d if g1,1(y,η) ∈ R
µ,d
G (Ω×Rq ), cf. Definition 8, g1,2(y,η) ∈ Sµ

cl(Ω×Rq ;C j− ,S (R+)), g2,1(y,η) ∈
Sµ

cl(Ω×Rq ; H s(R+),C j+), where the i -th component of g2,1(y,η) is of the form

g2,1(y,η)i =
d∑

b=0
ti ,b(y,η)

d b

d t b

for symbols ti ,b(y,η) := k∗
i ,b(y,η), ki ,b(y,η) ∈ Sµ

cl(Ω×Rq ;C,S (R+)), i = 0, . . . , j+, while g2,2(y,η) ∈
Sµ

cl(Ω×Rq ;C j− ,C j+).

The group actions in the spaces on the right of (4.17) are defined asκδ⊕idC j± for (κδu)(δt )

= δ1/2u(δt ), δ ∈R+.

On a manifold M with smooth boundary we define the space B−∞
potential(M) as the set of all

operators with kernel in C∞(M×∂M). Moreover, we define the space Bµ

potential(M) of potential

operators K : C∞(∂M) →C∞(M) that are modulo an element of B−∞
potential(M) locally near the

boundary of the form Opy (g1,2) for some g1,2 as in Definition 10 (for j− = 0).
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Moreover, we define the space B−∞,d
trace (M) as the set of all operators of the form

d∑
j=0

D j
d j

d t j
for arbitrary D j with kernels in C∞(∂M ×M).

Here d/d t means again the derivative in normal direction to ∂M . Now the space of trace op-

erators Bµ,d
trace(M) on M of order µ and type d is the set of all operators T : C∞(M) →C∞(∂M)

that are up to an element of B−∞,d
trace (M) locally near the boundary of the form Opy (g2,1) for

some g2,1 as in Definition 10 (for j+ = 0).

Let Bµ,d
G (M ; j−, j+) be the space of all operators(

G K

T Q

)
(4.18)

where G ∈ Bµ,d
G (M), moreover, K is a row vector of potential operators and T a column vec-

tor of trace perators, with j− and j+ components, respectively, and Q is a j+× j−-matrix of

operators in Lµ

cl(∂M).

Definition 11. Let Bµ,d (M ; j−, j+) denote the set of all operator block matrices A of the form

(4.16) for arbitrary A ∈ Bµ,d (M), where the remaining entries are as in (4.18).

Similarly as for upper left corners we have a pair σ(A ) = (σψ(A ),σ∂(A )) of principal

symbols, where σψ(A )(x,ξ) :=σψ(A)(x,ξ), is the interior symbol, while the boundary symbol

σ∂(A )(y,η) is a family of block matrix operators

σ∂(A )(y,η) =
(
σ∂(A+G) σ∂(K )

σ∂(T ) σ∂(Q)

)
(y,η) :

H s(R+)

⊕
C j−

→
H s−µ(R+)

⊕
C j+

, (4.19)

s −d >−1/2.

For operators in Bµ,d (M ; j−, j+) we have a similar composition result as Theorem 17,

where we assume that rows and columns in the middle fit together.

Definition 12. An operator A ∈ Bµ,d (M ; j−, j+) is called (σψ,σ∂)-elliptic, if its upper left cor-

ner is σψ-elliptic and if (4.19) is a family of isomorphisms for all (y,η) ∈ T ∗(∂M) \ 0, and

s > max{d ,µ}− 1
2 .

Theorem 18. For an operator A ∈ Bµ,d (M ; j−, j+) the following properties are equivalent:

(i) A is (σψ,σ∂)-elliptic,
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(ii) the operator A induces a Fredholm operator

A :

H s(M)

⊕
H s(∂M ,C j−)

→
H s−µ(M)

⊕
H s−µ(∂M ,C j+)

(4.20)

for every s > max{d ,µ}−1/2.

Theorem 19. A (σψ,σ∂)-elliptic operator A ∈ Bµ,d (M ; j−, j+) has a parametrix

R ∈ B−µ,dR (M ; j+, j−) in the sense that

RA −I ∈ B−∞,dL
G (M ; j−, j−), A R−I ∈ B−∞,dR

G (M ; j+, j+)

for dL = max{d ,µ}, dR = max{d −µ,0}.

5. Examples and additional comments on boundary value problems

5.1. Stratifications and higher symbols for the Laplacian

A good example of boundary value problems is the mixed elliptic boundary value prob-

lems for elliptic differential operators in a domain M in Rn with smooth boundary ∂M = X .

Here we focus on the Zaremba problem for the Laplace operator where X is subdivided into

sub manifolds X± with common smooth boundary Y of codimension 1, X = X− ∪ X+ and

Y = X− ∩ X+. On int X− we pose Dirichlet, on int X+ Neumann conditions. This problem

has been investigated for a very long time, see Zaremba [61] and the subsequent develop-

ment. For applications it is also interesting to admit domains with non-smooth boundary,

e.g., polyhedral domains, and also interfaces with singularities.

Mixed elliptic problems can be studied from the point of view of pseudo-differential anal-

ysis with symbolic structures reflecting not only the operators in the domain and the bound-

ary conditions but also the role of the interface Y which is here interpreted as an edge em-

bedded on the boundary X . With the Zaramba problem we associate a stratification

s(M) = (s0(M), s1(M), s2(M)) (5.1)

of M , where M = s0(M)∪s1(M)∪s2(M) for the strata s2(M) := Z , s1(M) := Y \Z , s0(M) := M \Y .

Those are smooth manifolds of different dimension. According to the general philosophy of

pseudo-differential operators A on such spaces, especially, differential operators, we observe

a principal symbolic hierarchy

σ(A) := (σ0(A),σ1(A),σ2(A)) (5.2)
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that determines the ellipticity. Generalities on operators on stratified spaces M of some sin-

gularity order k ∈N are developed in [46], [48]. Here k = 0 indicates smoothness, k = 1 conical

or edge singularities, k = 2 corners of second order, etc.. The components of (5.2) are as-

sociated with the strata in (5.1). In particular, σ0(A) is the standard homogeneous principal

symbol of A over s0(M), moreover, σ1(A) is the boundary symbol, in the present case refer-

ring to intY±, and σ2(A) is the edge symbol. For instance, if A is the Laplacian
∑n

j=1
∂2

∂x2
j

in

Rn+ = {x = (x1, . . . , xn) ∈Rn : xn > 0}, we have σ0(A) =−|ξ|2 with ξ being the covariable of x,

σ1(A)(η) =−|η|2 + ∂2

∂x2
n

(5.3)

where η is the covariable of y = (x1, . . . , xn−1) ∈ Rn−1 when we represent the operator in local

coordinates x = (y, xn) close to the boundary, with xn ∈ R+ being the local variable normal

to the boundary. We see that (5.3) is operator valued, and we take it as a family of operators

H s(R+) → H s−2(R+) parametrised by η ̸= 0 (and s ∈ R not too small, see the explanations in

[47] with respect to the interface). Finally, if we locally represent Z as the hyperplane defined

by xn−1 = 0, xn = 0 in x = (z, xn−1, xn) ∈Rn+ with ζ ∈Rn−2 being the covariable of z ∈Rn−2, then

the symbol σ2(A)(ζ) is the family of operators

σ2(A)(ζ) =−|ζ|2 + ∂2

∂x2
n−1

+ ∂2

∂x2
n

(5.4)

operating as H s(R2+) → H s−2(R2+), parametrised by ζ ̸= 0 (and s ∈R again not too small), where

R2
+ = {(xn−1, xn) ∈R2 : xn−1 ∈R, xn > 0}.

The idea of the analysis of elliptic boundary value problems is to add conditions (such as

Dirichlet or Neumann conditions) over s1(M) and to understand the nature of parametrices.

As soon as we have no jump of the boundary conditions and impose the Shapiro-Lopatinskij

condition then we are in the framework of “smooth" elliptic boundary value problems. The

boundary operators also have a symbolic structure, and there is a well-known pseudo- dif-

ferential calculus of boundary value problems, cf. Boutet de Monvel [7] and the material of

Section 4, that contains the elliptic elements themselves together with their parametrices. In

this case it is adequate to consider 2×2 block matrices (4.16) with A in the upper left corner,

in general, together with so-called Green operators. Moreover, T represents the boundary

(or trace) condition while an additional potential operator K appears, and Q is a pseudo-

differential operator on the boundary. The boundary symbolic map σ1 then also applies to

the other entries in (4.16).

In the Subsection 5.2, we analyze the first order pseudo-differential operator R that is ob-

tained by reducing the Neumann boundary condition to the boundary. The operator R, often
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referred to as the Dirichlet-to-Neumann operator, has been widely studied by many authors.

Here we look at X+ and realize R by a specific edge quantization as an element of the edge

pseudo-differential calculus with Y as the edge, operating in weighted edge spaces.

Moreover, as we have seen in Chang, Habal, and Schulze [10], the Dirichlet-to-Neumann

operator R has no the transmission property with respect to any interface on X . Therefore,

we cannot expect that the truncated operator r+Re+ induces continuous maps H s(int X+) →
H s−1(int X+) (say, for s >−1/2). Hence, this also provides us a good example of BVPs with no

transmission property

5.2. The Dirichlet-to-Neumann operator for the Zaremba problem

Let M be the closure of a smooth bounded domain in Rn with smooth boundary ∂M = X .

We reduce boundary problems in M to the boundary, first in terms of operators in Boutet de

Monvel’s algebra [7] and then by using tools from the calculus of BVPs on a manifold with con-

ical or edge singularities. The ‘standard’ idea is as follows. Let Ai = t(A Ti ), i = 0,1, denote

the row matrix operators representing two elliptic BVPs for an elliptic operator A with trace

(or boundary) operators representing boundary conditions satisfying the Shapiro-Lopatinskij

condition. Assume that A is a second order elliptic differential operator in Rn with smooth

coefficients, in the simplest case the Laplacian and T0u := u|X and T1u := ∂νu|X are Dirichlet

and Neumann conditions, respectively, with ∂ν being the derivative normal to the boundary.

For convenience we start with the assumption that A0 is invertible, say, as an operator

A0 : C∞(M) →
C∞(M)

⊕
C∞(X )

(as for the Laplacian and in numerous other cases), and by

P0 = (P0 K0)

we denote its inverse. In particular, we have AP0 = 1, AK0 = 0. Roughly speaking, P0 is Green’s

operator and K0 is the Poisson kernel of this boundary value problem. This yields

A1P0 =
(

1 0

T1P0 T1K0

)
(5.5)

where T1K0 is often called the Dirichlet-to-Neumann operator.

To illustrate phenomena we consider the case A = ∆. However, the ideas here can be

applied to more general elliptic operators A. We have

R := T1K0 ∈ L1
cl(X ), σψ(R)(η) = c|η| (5.6)
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for a constant c; here σψ(·) denotes the homogeneous principal symbol of the respective op-

erator an η the covariable on X (the absolute value refers to a Riemannian metric on the

boundary). The operator R is elliptic, as we see from (5.6). In general the ellipticity of op-

erators obtained by reducing an elliptic BVP to the boundary follows from the ellipticity of

both factors in (5.5). Explicit computations for other concrete BVPs reduced to the boundary

may be found in [24, page 26].

In more complicated situations below, i.e., when we replace A1 by a mixed boundary

problem with jumps of the conditions along an interface Y of codimension 1 on the bound-

ary, the intention will be (similarly as in the smooth case) to express parametrices within a

controlled operator algebra with symbolic structure. In the simplest case there is no jump

at all, i.e., we have a reduction of A1 to the boundary by means of A0 in the form (5.5). The

idea is then to construct a parametrix A (−1)
1 =: P1 of A1 in terms of the known parametrix (or

inverse) P0 of A0 and a parametrix R(−1) of R. First we obtain a parametrix of (5.5) as

(A1P0)(−1) =
(

1 0

T1P0 T1K0

)(−1)

=
(

1 0

−R(−1)T1P0 R(−1)

)
.

Then P1 itself follows in the form

P1 =P0(A1P0)(−1) = (P0 K0)

(
1 0

−R(−1)T1P0 R(−1)

)
= (P0 −K0R(−1)T1P0 K0R(−1)) =: (P1 K1). (5.7)

In the consideration below we interpret A0 and A1 as continuous operators

A0 =
(

A

T0

)
: H s(int M) →

H s−2(int M)

⊕
H s−1/2(X )

,

and

A1 =
(

A

T1

)
: H s(int M) →

H s−2(int M)

⊕
H s−3/2(X )

,

first for s > 3/2. By results in [7] or [35], we know that the operators P i = (Pi Ki ) belong to

Boutet de Monvel’s calculus of pseudo-differential BVPs with the transmission property at the

boundary, more precisely, Pi = F +Gi with F = r+F̃ e+ being the truncation of a fundamental

solution (or a parametrix) F̃ of ∆ in Rn to int M . Here e+ is the operator of extension by zero

from int M to Rn and r+ the operator of restriction of distributions to int M . Moreover, Gi is

a Green operator and Ki a potential operator in Boutet de Monvel’s calculus. The advantage

of this viewpoint is that we have the principal symbolic structure of such operators, more
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precisely, the pair σ = (σ0,σ1) of symbols where σ0 is the standard homogeneous principal

symbol of operators over M (smooth up to the boundary) while σ1 represents the so-called

principal boundary symbol. Moreover, we can freely compose operators in Boutet de Mon-

vel’s algebra; this was done in (5.5) as well as in (5.7), and the symbols are (componentwise)

multiplicative. Concerning Ti and the other operators in lower left corners, those are trace

operators in Boutet de Monvel’s calculus, and they have boundary symbols as well. Paramet-

rices P i of Ai belong to the inverted symbolic components, i.e., σ(Ai )−1 =σ(P i ), i = 0,1, as

a componentwise relation.

In the construction of R = T1K0, the reduction of the Neumann condition to the boundary

by means of the solution of the Dirichlet problem, it is not essential that P0 is the inverse of

A0. We are mainly interested in Fredholm operators between the chosen Sobolev spaces, and

it suffices to employ P0 as a parametrix of A0. By interchanging the role of A0 and A1 for a

parametrix P1 of the Neumann problem we obtain A0P1 =
(

1 0

T0P1 T0K1

)
modulo a smooth-

ing operator in Boutet de Monvel’s calculus. Let us ignore such remainders in the following

compositions. Then the composition (A0P1)(A1P0) =
(

1 0

T0P1 T0K1

)(
1 0

T1P0 T1K0

)
is the iden-

tity modulo a smoothing operator, which implies that R(−1) := T0K1 ∈ L−1
cl (X ) is a parametrix

of R = T1K0 ∈ L1
cl(X ). Let us now replace A1 by the Zaremba problem

Am :=


A

D−
N+

 : C∞(M) →

C∞(M)

⊕
C∞(X−)

⊕
C∞(X+)

, (5.8)

for D−u := (T0u)|int X− , N+u := (T1u)|int X+ where X := ∂M is subdivided into submanifolds X+,

X− with common boundary Y = X+∩ X−, in the simplest case assumed to be smooth. Then

by virtue of (5.5) together with A0P0 = idH s−2(G) we obtain

D−K0 = 1 on int X−,

N+K0 = R on int X+.
(5.9)

Thus the reduction of the mixed condition gives rise to R on the manifold X+ with boundary

∂X+ =: Y and the identity on X−. The relation (5.9) shows that in the reduction of the mixed

conditions T := t(D− N+) to the boundary the resulting operator on the boundary has a jump;

it is equal to the Dirichlet-to-Neumann operator R on X+ and to the identity on X−. Apart

from the identity one of the main tasks is to solve a boundary value problem for R on X+
with Y = ∂X+ as the boundary. However, R fails to have the transmission property at the
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boundary, it has in fact, the anti-transmission property, cf. [50] and it is hard to imagine that

Boutet de Monvel’s calculus extends to this case. This problem has been studied by many

mathematicians, cf. Vishik, Eskin [60] or Eskin [18], see also [24], [36], and [47]. In the present

paper we develop an approach that is based on a Mellin quantisation, already indicated in

Dines, Liu, and Schulze [15]. Here we employ this method for the construction of a parametrix

of (5.8) within a variant of edge calculus where Y plays the role of an edge. For the complete

solution of this problem, we refer to the paper [10].

5.3. The Dirichlet-to-Neumann operator for the ∂̄-Neumann problem

Let Ω be a bounded domain in Cn+1 with C ∞ boundary, i.e., there exists a real-valued

function ρ ∈ C∞(Ω̄) such that

∂Ω= {z ∈Cn+1 : ρ(z) = 0}

with dρ(z) ̸= 0, ∀z ∈ ∂Ω.

One of the basic problem in several complex variables is to solve the inhomogeneous

Cauchy-Riemann equation

∂̄U = f in Ω (5.10)

with “good" bounds on Ω, where f is a given (0,1)-form f = ∑n+1
j=1 f j dω̄ j . Obvious, the right-

hand side of (5.10) has n+1 data but the left-hand side of (5.10) has only one function. There-

fore, the system (5.10) is over-determined when n ≥ 1. It follows that the equation (5.10) is

solvable only when f satisfies a consistence condition, i.e., ∂̄ f = 0. Moreover, solution for the

equation (5.10) is highly non-unique. Suppose U is a solution of (5.10), then U +F is also a

solution whenever F ∈ H (Ω) where H (Ω) is the set of all holomorphic functions defined on

Ω.

Denote A 2(Ω) = L2(Ω)∩H (Ω) the Bergman space. Then we can fine a “canonical solu-

tion" U by requiring that

U ⊥ H (Ω) in A 2(Ω)

which minuses the L2-norm among all solutions. In order to find the canonical solution, let

us consider a first-order differential operator D and ϕ,ψ ∈C ∞(Ω̄), then the formal adjoint D∗

of D can be defined as follows∫
Ω

(Dϕ)ψ̄dV =
∫
Ω
ϕ(D∗ψ)dV +

∫
∂Ω

ϕ(A♯ψ)dσ,

where A♯ is a 0th-order operator defined on ∂Ω. In our case D = ∂̄ is the Cauchy-Riemann

operator. Hence,

dom(∂̄∗) = {
ψ ∈ C ∞(Ω̄) : A♯ψ = 0 on ∂Ω

}
.
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Note that with U = ∂̄∗u, then for F ∈H (Ω)

〈∂̄∗u,F 〉 = 〈u, ∂̄F 〉 = 0.

This means that is we solve the equation

∂̄∂̄∗u = f , u ∈ dom(∂̄∗), (5.11)

then we solve (5.10) with a canonical solution.

In fact, problem (5.11) is equivalent to the case ∂̄ f = 0 of the system

äu = (
∂̄∂̄∗+ ∂̄∗∂̄

)
u = f ,

u ∈ dom(∂̄∗), ∂̄u ∈ dom(∂̄∗).
(5.12)

To see that, 0 = ∂̄ f = ∂̄
(
∂̄∂̄∗+ ∂̄∗∂̄

)
u = ∂̄∂̄∗∂̄u, and so

0 = 〈∂̄u, ∂̄∂̄∗∂̄u〉 = 〈∂̄∗∂̄u, ∂̄∗∂̄u〉 ⇒ ∂̄∗∂̄u = 0.

The system (5.12) is not over-determined. For general u ∈ B (0,q)(Ω), the system (5.12) is called

that “∂̄-Neumann problem". Here B (0,q)(Ω) is the collection of all (0, q) forms defined on

Ω. The formalism of the ∂̄-Neumann problem was introducing by D.C. Spencer in the early

1950’s. Under certain assumptions on Ω, J.J. Kohn [28] obtained the first result in 1963 and

1964:

∥u∥H s+1(Ω) ≤C
(∥ f ∥H s (Ω) +∥u∥L2(Ω)

)
, s ∈R.

Moreover, the estimate is sharp in L2. Unlike the elliptic case, the solution u does not gain

two in all directions. Therefore, the system (5.12) has great interests from the point of view of

partial differential equations.

There are essentially three aspects to this problem:

•. Existence of solutions;

•. Find the solving operator N (and hence ∂̄∗N );

•. Sharp estimates for N and ∂̄∗N .

Let g be a smooth Hermitian metric on Cn+1. Then there is an open neighborhood V of

∂Ω such that if ρ denotes a signed geodesic distance in the metric g to ∂Ω, then

Ω+ =Ω∩V = {z ∈U : ρ(z) > 0};

▽ρ(z) ̸= 0 for all z ∈ ∂Ω∩V.
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We choose a smooth orthogonal basis for (0,1)-form on V , given by ω̄1, . . . ,ω̄n+1 with

ω̄n+1 =
p

2∂̄ρ.

We let Z̄1, . . . , Z̄n+1 be the dual basis of antiholomorphic vector fields on V . Then

Z1, . . . , Zn , Z̄1, . . . , Z̄n

are tangential to ∂Ω. If ∂
∂ρ is the vector field dual to the one form dρ, then

Zn+1 = 1p
2

∂

∂ρ
+ i T

is the complex normal.

Let {Z j , Z̄ j ,T } j=1,...,n be a basis of the complex tangent bundle of ∂Ω∩V . The vector fields

[Z j , Z̄k ] in terms of this basis is give by

[Z j , Z̄k ] = c j k

p
−1T +

n∑
ℓ=1

aℓ
j k Zℓ+

n∑
ℓ=1

bℓ
j k Z̄ℓ.

The Hermitian form (c j k ) is called the Levi form.

The domain Ω is called pseudoconvex if each point of Ω has a neighborhood on which

the vector field T can be chosen so that (c j k ) ≥ 0. If the Levi form (c j k ) > 0, then Ω is called

strongly pseudoconvex.

To simplify our discussion, we just assume that Ω is strongly pseudoconvex in this sub-

section. In this case, Ω has a foliation. By a result of Chern and Moser [14], Ω and ∂Ω can

be locally approximated by the “Siegel upper half-space" and the “Heisenberg group" respec-

tively in Cn+1. Readers can consult Stein’s book [58] for background of Heisenberg group and

its connection with analysis in several complex variables. The domain consists of all z ∈Cn+1,

n ≥ 1, so that

Ω =
{

(z1, . . . , zn , , zn+1) ∈Cn+1 : im(zn+1) >
n∑

j=1
|z j |2

}
.

Its boundary is the “paraboloid"

∂Ω =
{

(z1, . . . , zn , , zn+1) ∈Cn+1 : im(zn+1) =
n∑

j=1
|z j |2

}
.

In this case, the vector fields Z j can be written as

Z j = ∂

∂z j
+ i z̄ j

∂

∂t
, j = 1, . . . ,n
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and the complex normal Zn+1 is

Zn+1 = 1p
2

( ∂

∂ρ
+ i T

)
= 1p

2

( ∂

∂ρ
+ i

∂

∂t

)
where ρ = im(zn+1)−∑n

j=1 |z j |2 is the “height" function and T = ∂
∂t is the “missing direction".

Because the vector fields split into tangential and normal part, we may consider a (0,1)-

form u as follows:

u =
n+1∑
j=1

u j ω̄ j =
n∑

j=1
u j ω̄ j +un+1ω̄n+1.

Then the ∂̄-Neumann problem is the following boundary value problem:

äu = f in Ω

un+1 = 0 on ∂Ω

Z̄n+1(u j )− [S(u)] j ,n+1 = 0 on ∂Ω

for j = 1, . . . ,n. Here

[S(u)] j ,n+1 =
n∑

ℓ=1
s̄ℓj ,n+1u j , j = 1, . . . ,n

and the matrix S is defined by the equations

∂̄ω̄ℓ = ∑
j<k

s̄ℓj ,kω̄ j ∧ ω̄k .

Then the operator ä which is basically the complex Laplacian which can be written as

äu =



ä1 0 · · · 0 0

0 ä2 · · · 0 0

· · ·
0 0 · · · än 0

0 0 · · · 0 än+1

u

+(hn+1In+1 +S t )(Z̄n+1u)− (S̄(Zn+1u))+ε(Z , Z̄ )u +ε(u)

where hn+1 is a smooth function which comes from the volume element. ε(Z , Z̄ )u represents

terms of first derivatives of u along horizontal directions and ε(u) represents terms ofu mul-

tiplying by smooth functions. Here

äℓ = −1

2

n∑
j=1

(Z j Z̄ j + Z̄ j Z j )−Zn+1 Z̄n+1 +
( n∑

j=1
λ j −2λℓ

)
i T

for ℓ= 1,2, . . . ,n and

än+1 = −1

2

n∑
j=1

(Z j Z̄ j + Z̄ j Z j )−Zn+1 Z̄n+1 +
( n∑

j=1
λ j

)
i T
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We shall construct a solving operator N = (N1, . . . , Nn+1) for the ∂̄-Neumann problem so that

modulo smooth error u j = N j ( f j ) for j = 1,2, . . . ,n +1.

The “normal" component un+1 is the solution of a Dirichlet problem for an elliptic oper-

ator:

än+1un+1 = fn+1 in Ω

un+1 = 0 on ∂Ω

From previous discussion, the structure of this solution is well understood.

We note that a parametric for the (n+1)-component Nn+1 of the Neumann operator N is

given by

Nn+1(z, t ;ρ) = G
(
(w, s)−1 · (z, t );ρ−µ

)−G
(
(w, s)−1 · (z, t );ρ+µ

)
where G(z, t ;ρ) = 2n−1Γ(n)

πn+1 (2|z|2 + t 2 +ρ2)−n . Hence,

∥∥∥∂2Nn+1( f )

∂x j∂xℓ

∥∥∥
H s (Ω)

≤ Cp∥ f ∥H s (Ω), s ∈R,

for 1 ≤ j ,ℓ≤ 2n +2, i.e., Nn+1 gains 2 in all directions.

Now we are left with solving the following nonelliptic boundary problem: Given f on Ω,

find a function u on Ω̄ such that

∂2u

∂ρ2 + ∂2u

∂t 2 +∆ℓu = f in Ω(∂u

∂ρ
− i

∂u

∂t

)
(x, t ,0) =0

(5.13)

where

∆ℓ =
1

2

n∑
j=1

(Z j Z̄ j + Z̄ j Z j )+
( n∑

j=1
λ j −2λℓ

)
i T

for ℓ= 1, . . . ,n.

In order to solve the problem (5.13), we may assume the solution u is given by

u(x, t ;ρ) =G( f )+P (ub)

where G is the Green’s function for the Dirichlet problem and P is the Poisson operator. Here

ub is the “boundary value" of u which we need to determine.

On the other hand, u satisfies the ∂̄-Neumann boundary conditions, i.e., R Z̄n+1(u) = 0,

j = 1, . . . ,n where R is the restriction operator to ∂Ω. Therefore,

0 = R Z̄n+1(u) = R Z̄n+1G( f )+R Z̄n+1P (ub)
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i.e.,

ä+(ub) = R Z̄n+1P (ub) =−R Z̄n+1G( f ).

The operator ä+ is called the Dirichlet-to-Neumann operator associated to the ∂̄-Neumann

problem. This is a 1st order pseudo-differential operator defined on ∂Ω. Hence, in order to

solve the ∂̄-Neumann problems reduces to invert the operator ä+.

After detailed calculation, one can see that he principal symbol of the operator ä+ is

σ
(ä+

) = 1p
2

(
τ−∆

)− 1p
2

(
2λ j −

n∑
k=1

λk

) τ
∆

where τ=σ(−i T ) and

∆=
√√√√τ2 +2

n∑
j=1

|σ(Z j )|2.

Obviously, ä+ is elliptic when τ< 0 but doubly characteristic on half of the line bundle

Σ+ = {(z, t ;ξ,τ) : τ>∆}

on the cotangent bundle T ∗(∂Ω).

On the other hand, we may also construct the Dirichlet-to-Neumann operator ä− of the
∂̄-Neumann problem on

Ω̄− = {z ∈U : ρ(z) ≤ 0}.

The principal symbol of ä− is

σ
(ä−

)= 1p
2

(
τ+∆

)+ 1p
2

(
2λ j −

n∑
k=1

λk

) τ
∆

.

It is a 1st order pseudo-differential operator doubly characteristic on the half of the line bundle

Σ− = {(z, t ;ξ,τ) : τ<−∆}

but elliptic on the characteristics of ä+. An important phenomena is

ä+ ◦ä− = −äb +zero order terms

and
ä− ◦ä+ = −äb +zero order terms.

Here äb is the sub-Laplacian on (0,1)-forms defined on the boundary ∂Ω. More precisely,

äb =


ä′

1 0 · · · 0
0 ä′

2 · · · 0
· · ·
0 0 · · · ä′

n

+A

with

ä′
ℓ =−1

2

n∑
j=1

(
Z j Z̄ j + Z̄ j Z j

)+ i
( n∑

k=1
λk −2λℓ

)
T
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for ℓ= 1, . . . ,n and A = [Aαβ] of the form

Aαβ =
n∑

k=1
ak
αβZk +

n∑
k=1

bk
αβ Z̄k +cαβ.

In order to find a full parametrix for the ∂̄-Neumann problem, one needs to invert äb on ∂Ω.

When n > 1, the sub-Laplacian äb has an inverse K by a result of Folland-Stein [20] (see also Beals
and Greiner [5] and Berenstein-Chang-Tie [6]) and then the ∂̄-Neumann problem has a parametrix

N j = G +P (−Kä−R Z̄n+1G)+S−∞, j = 1, . . . ,n

where S−∞ is a smoothing operator.

When n = 1, we know that

ä(φ) = − 1

2

(
Z1 Z̄1 + Z̄1Z1

)
− i T (φ)+ε

(
Z1, Z̄1,φ

)
= −Z1 Z̄1(φ)+ε

(
Z1, Z̄1,φ

)
In this case, äb is not invertible since it is intimately connected with the non-solvability of the Lewy
equation. However, by a result of Greiner and Stein [22], one can construct an operator K̃, so that

K̃äb = äb K̃ = I −C b

where Cb is the Cauchy-Szegö projection.

Let us consider 0th-order pseudo-differential operators: E+ and E− with symbols in the class S0
1,0

such that the principal symbol of E+ equals to 1 on the set{
∆ < 1

4
τ
}

and whose principal symbol equals to 0 on the set{
∆ > 1

2
τ
}

The important fact is that

E+ ◦ C̄b = C̄b ◦E+ = 0, approximately,

and hence the projection C̄b is subordinate to projection E− = I −E+; moreover ä+ is elliptic away
from its characteristic variety. Thus there exists a pseudo-differential operator of order −1, QE− , so
that

QE− ◦ä+ = E− approximately.

It is then easy to see that −E+ ◦ K̄ä−+QE− is an approximate inverse to ä+, i.e.,(−E+ ◦ K̄ä−+QE−
)ä+ = −E+K̄ä−ä++QE−ä+ = −E+K̄ (−äb)+E−+T−1

= −E+(− I + C̄b
)+E−+T−1

=E++E−+T−1 −E+C̄b

= I −E+C̄b +T−1 = I +T−1.

Hence, the ∂̄-Neumann problem has a parametrix (see Chang-Nagel-Stein[11]):

N1 = G +P (−K +ä−R Z̄2G)+S−∞, j = 1, . . . ,n
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where S−∞ is a smoothing operator and

K + = −QE− +E+K̄ ◦ä− (5.14)

where QE− denotes the parametric for ä+ in the support of E− = I −E+, i.e.,

QE− ◦ä+ = E−+T−∞.

Finally, under the hypothesis that Ω is a smoothly bounded, strongly pseudoconvex domain, it
can be proved that the Neumann operator satisfies

•. N : H s (Ω) → H s+1(Ω);

•. P (Z , Z̄ )N : H s (Ω) → H s (Ω). Here P (Z , Z̄ ) is any quadratic monomial in tangential vector fields.

As a consequence of the above subelliptic estimates, one can show that the solving operator ∂̄∗N
of the canonical solution of the inhomogeneous Cauchy-Riemann equation satisfies the following es-
timates:

•. ∂̄∗N : H s (Ω) → H s+ 1
2 (Ω);

•. X ∂̄∗N : H s (Ω) → H s (Ω) for any tangential tangential vector fields X .

The above results had been generalized to many other situations, see for example, [8]. We will not
discuss this here.
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