ON Hom(-, -) AS DIFFERENCE ALGEBRAS

SUN SHIN AHN, HEE SIK KIM AND HYUN DEOK LEE

Abstract. In this paper, we investigate some properties of Hom(-, -) as difference algebras. Also we define the orthogonal subsets of difference algebras and study their properties.

1. Introduction

In [1], Hausdorff introduced the ordered group, which is a general algebraic system combing a partial ordered set and a group. In [2], Imai and Iséki introduced a new notion, called a *BCK-algebra*. The inverse of the group operation and the set difference operation have many common properties. In [4], Meng combined these properties with a partial ordered set, and constructed the notion of the difference algebra. We know that the class of *BCI*-algebras is a proper subclass of difference algebras; the class of ordered groups is also a proper subclass of difference algebras. It is worth to study difference algebras. Recently, Roh et al. ([6]) introduced the concept of the quotient difference via ideal and investigated some interesting properties. In [7], they also introduced the concept of nil subsets by using nilpotent elements, and investigated some related properties. In this paper, we investigate some properties of Hom(-, -) as difference algebras. Also we define the orthogonal subsets of difference algebras and study their properties.

2. Preliminaries

Definition 2.1.([4]) An algebra $(X; *, \leq, 0)$ with a binary operation "*", a nullary operation "0" and a partial binary relation " \leq " on X is called a *difference algebra* if it satisfies, for all $x, y, z \in X$:

(D1) $(X; \leq)$ is a poset,

(D2) $x \le y$ implies $x * z \le y * z$, (D3) $(x * y) * z \le (x * z) * y$,

- (D4) $0 \le x * x$,
- (D5) $x \le y$ if and only if $x * y \le 0$.

Received September 3, 2004; revised December 1, 2004. 2000 Mathematics Subject Classification. 06F35.

Key words and phrases. (medial, nil) difference algebra, normal, kernel intersection property, Hom(-, -).

57

Roh et al. ([6]) gave examples which the conditions (D1), (D2), (D3), (D4) and (D5) are independent each other.

Example 2.2.([4]) Let \mathbb{R} denote the set of all real numbers. If we specify ordinary substraction as the operation *, natural order as \leq , zero as the nullary operation 0, then $(\mathbb{R}; *, \leq, 0)$ is a difference algebra.

Example 2.3.([4]) Suppose that (X; *, 0) is a *BCI*-algebra and \leq is the *BCI*-order. Then $(X; *, \leq, 0)$ is a difference algebra.

Remark. In above examples, we know that the class of *BCI*-algebras is a proper subclass of the difference algebras; the class of ordered groups is also a proper subclass of difference algebras.

Example 2.4. ([6]) Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	0	3	3
1	1	0	3	2
2	2	3	0	1
3	3	3	0	0

Define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0. Then $(X; *, \leq, 0)$ is a difference algebra.

Example 2.5.([6]) Let $(X; *, \leq, 0)$ be a difference algebra with the following table:

*	0	1	2	3	4
0	0	0	0	3	3
1	1	0	0	3	3
2	2	2	0	3	3
3	3	3	3	0	0
4	4	3	3	1	0

Define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0. Then $(X; *, \leq, 0)$ is a difference algebra.

Now we give some elementary and fundamental properties of difference algebras.

Theorem 2.6.([4]) In any difference algebra X, the following hold: for any $x, y, z \in X$,

- $\begin{array}{ll} (1) & (x*y)*z = (x*z)*y, \\ (2) & x*x = 0, \\ (3) & x*y \leq z \ implies \ x*z \leq y, \\ (4) & (x*(x*y))*y = 0, \\ (5) & x \leq y \ implies \ z*y \leq z*x, \\ (6) & x*(x*(x*y)) = x*y, \\ (7) & x*0 = x, \\ (8) & 0*(x*y) = (0*x)*(0*y), \\ (9) & (x*y)*(x*z) \leq z*y. \end{array}$
 - In what follows, the letter X denotes a difference algebra unless otherwise specified.

Definition 2.7.([6]) A non-empty subset S of X is called a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$.

- **Definition 2.8.**([6]) A non-empty subset A of X is called an *ideal* of X if (I1) $0 \in A$, (I2) $x * y \in A$ and $y \in A$ imply $x \in A$,
- (12) $x \leq y$ and $y \in A$ imply $x \in A$. (13) $x \leq y$ and $y \in A$ imply $x \in A$.
- (15) $x \leq y$ and $y \in A$ imply $x \in A$.

Example 2.9.([6]) Let X be the set of all real numbers and F(X) be the set of all real-valued functions on X. Suppose that \leq is the pointwise order:

$$f \leq g$$
 if and if for all $x \in X, f(x) \leq g(x)$.

The operation * is defined by the formula

$$(f * g)(x) := f(x) - g(x)$$
 for all $x \in X$.

The nullary operation 0 is the constant function 0. Then $(F(X); *, \leq, 0)$ is a difference algebra. Let $P(X) := \{f \in F(X) | f(x) \geq 0\}$ for all $x \in R$. Then P(X) is an ideal of F(X), but it is not a subalgebra of F(X). Thus we know that an ideal of a difference algebra may not be a subalgebra.

Definition 2.10.([7]) An ideal A of X is said to be *closed* if (I4) $0 * x \in A$ for all $x \in A$.

We know that every closed ideal in a difference algebra is a subalgebra but converse is not true (See [6]).

3. Hom(-, -) as Difference Algebras

Let $X := (X; *_X, \leq, 0_X)$ and $Y := (Y; *_Y, \leq', 0_Y)$ be difference algebras. A mapping f from a poset $(X; \leq)$ into a poset $(Y; \leq')$ is called a *Harris map* ([5]) if for any incomparable elements $x, y \in X$, either f(x) = f(y) or f(x) and f(y) are incomparable. We

denote the fact that x and y are incomparable by x||y. A mapping $f: X \to Y$ is called a (difference) homomorphism if

- (Hi) $f(x *_X y) = f(x) *_Y f(y)$ for any $x, y \in X$,
- (Hii) f is a Harris map.

Note that $f(0_X) = 0_Y$, since x * x = 0. Let $Ker(f) := \{x \in X | f(x) = 0_Y\}$ be the kernel of f. If a mapping $f : X \to Y$ satisfies (Hi), then it is order preserving, i.e., $x \leq y$ implies $0_Y = f(x * y) = f(x) * f(y)$, i.e., $f(x) \leq f(y)$. Define the trivial homomorphism 0 as 0(x) = 0 for all $x \in X$.

Example 3.1. In Example 2.5, if we define a map $\varphi : X \to X$ by $\varphi(0) = \varphi(1) = \varphi(2) = 0$, $\varphi(3) = \varphi(4) = 3$, then it is easy to verify that φ is a homomorphism.

Let hom(X, Y) denotes the set of all homomorphisms between difference algebras Xand Y. For any $f, g \in hom(X, Y)$, define a mapping $f * g : X \to Y$ by (f * g)(x) :=f(x) * g(x) for any $x \in X$. A subset A of hom(X, Y) is said to have a *kernel intersection* property if $Ker(f * g) = Ker(f) \cap Ker(g)$ for any $f, g \in A$. Denote by Hom(X, Y) the set of all homomorphisms having the kernel intersection property.

Example 3.2. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then $(X; *, \leq, 0)$ is a difference algebra. By routine calculations, there are 16 homomorphisms from X to itself. Among them we can find that $Hom(X, X) = \{f_1, f_2, f_3, f_4\}$, where $f_1(0) = f_1(1) = f_1(2) = f_1(3) = 0$; $f_2(0) = f_2(1) = 0, f_2(2) = f_2(3) = 1$; $f_3(0) = f_3(1) = 0, f_3(2) = f_3(3) = 2$; $f_4(0) = f_4(1) = 0, f_4(2) = f_4(3) = 3$.

Definition 3.3. A difference algebra X is said to be *medial* if for any $x, y, z, w \in X$,

$$(x * y) * (z * w) = (x * z) * (y * w).$$

Example 3.4. Every lattice ordered group (or po-group) G is a difference algebra. Since for any $x, y, z, w \in G$, (x - y) - (z - w) = (x - z) - (y - w), $(G; -, \leq, 0)$ is a medial difference algebra.

Lemma 3.5. Let X be a difference algebra and let Y be a medial difference algebra. Then $f * g \in Hom(X,Y)$ for any $f, g \in Hom(X,Y)$. **Proof.** For any $x, y \in X$, we have

$$\begin{aligned} (f*g)(x*y) &= f(x*y)*g(x*y) \\ &= (f(x)*f(y))*(g(x)*g(y)) \\ &= (f(x)*g(x))*(f(y)*g(y)) \quad [\because Y : \text{medial}] \\ &= (f*g)(x)*(f*g)(y). \end{aligned}$$

This means that f * g satisfies (Hi).

Assume that f * g is not a Harris map, where f, g are Harris maps. Then there are incomparable elements $x, y \in X$ such that (f * g)(x) and (f * g)(y) are not equal and not incomparable. This means that either (f * g)(x) < (f * g)(y) or (f * g)(y) <(f * g)(x). Without loss of generality, we let (f * g)(x) < (f * g)(y). Since Y is medial, 0 = (f * g)(x) * (f * g)(y) = (f(x) * g(x)) * (f(y) * g(y)) = (f(x) * f(y)) * (g(x) * g(y)) =f(x * y) * g(x * y) = (f * g)(x * y) and hence $x * y \in Ker(f * g) = Ker(f) \cap Ker(g)$. Hence 0 = f(x * y) = f(x) * f(y), 0 = g(x * y) = g(x) * g(y), i.e., $f(x) \le f(y), g(x) \le g(y)$. Since f, g are Harris maps and x and y are incomparable, we obtain f(x) = f(y) and g(x) = g(y). Thus, (f * g)(x) = f(x) * g(x) = f(y) * g(y) = (f * g)(y), a contradiction. This proves that f * g satisfies (Hii). Hence $f * g \in Hom(X, Y)$.

Theorem 3.6. Let X be a difference algebra and let Y be a medial difference algebra. Then (Hom(X, Y); *, 0) is also a medial difference algebra.

Proof. Straightforward.

A difference algebra X is called a Γ -difference algebra if whenever x * y = y * x, x = y for every $x, y \in X$.

Theorem 3.7. If X is a difference algebra and Y is a medial Γ -difference algebra, then Hom(X,Y) is a medial Γ -difference algebra.

Proof. Assume that f * g = g * f for $f, g \in Hom(X, Y)$. Then f(x) * g(x) = (f * g)(x) = (g * f)(x) = g(x) * f(x) for any $x \in X$. Since Y is a Γ -difference algebra, we have f(x) = g(x) for any $x \in X$. Hence f = g. Thus Hom(X, Y) is a medial Γ -difference algebra.

For any elements x, y in a difference algebra X, let us write $x * y^n$ for

$$(\cdots ((x * y) * y) * \cdots) * y$$

where y occurs n times. We say that an element x in a difference algebra X is a nilpotent element if $0 * x^n = 0$ for some positive integer n. If every element x of X is nilpotent, then X is called a *nil difference algebra* ([7]).

Example 3.8. The difference algebra in Example 3.2 is nil.

Theorem 3.9. Let X be a difference algebra and let Y be a medial difference algebra. If Y is nil, then Hom(X, Y) is nil.

Proof. Let $f \in Hom(X, Y)$ and let $x \in X$. Since Y is nil, there exists $n \in \mathbb{Z}^+$ such that $0 * f(x)^n = 0$. Hence

$$0(x) = 0 * f(x)^{n}$$

= $(\cdots ((0(x) * f(x)) * f(x)) * \cdots) * f(x)$ [f(x) occurs n times]
= $(\cdots ((0 * f) * f) * \cdots) * f)(x)$ [f occurs n times]
= $(0 * f^{n})(x)$.

Thus $0 * f^n = 0$. The proof is complete.

Let X be a difference algebra and let Y be a medial difference algebra. Let M and Θ be subsets of X and Hom(X,Y), respectively. We define orthogonal subsets M^{\perp} and Θ^{\perp} of M and Θ respectively by

$$M^{\perp} := \{ f \in Hom(X, Y) | f(x) = 0 \text{ for all } x \in M \}$$

and

$$\Theta^{\perp} := \{ x \in X | f(x) = 0 \text{ for all } f \in \Theta \}.$$

Proposition 3.10. Let X be a difference algebra and let Y be a medial difference algebra. Then we have the following:

- (1) $\{0\}^{\perp} = Hom(X, Y)$, where 0 is the zero element of X.
- (2) $X^{\perp} = \{0\}$, where 0 is the zero homomorphism.
- (3) If $M_1 \subseteq M_2 \subseteq X$, then $M_2^{\perp} \subseteq M_1^{\perp}$.
- (4) $M \subseteq (M^{\perp})^{\perp}$, where $M \subseteq X$. (5) $M^{\perp} = ((M^{\perp})^{\perp})^{\perp}$, where $M \subseteq X$.
- (6) $\{0\}^{\perp} = X$, where 0 is the zero homomorphism.
- (7) $Hom(X,Y)^{\perp} = \{0\}$, where 0 is the zero element of X.
- (8) If $N_1 \subseteq N_2 \subseteq Hom(X,Y)$, then $N_2^{\perp} \subseteq N_1^{\perp}$.
- (9) $N \subseteq (N^{\perp})^{\perp}$, where $N \subseteq Hom(X, Y)$.
- (10) $N^{\perp} = ((N^{\perp})^{\perp})^{\perp}$, where $N \subseteq Hom(X, Y)$.

Proof. (1), (2), (6) and (7) follows easily from definitions of M^{\perp} and Θ^{\perp} . (4) and (9) are easy.

(3) Assume that $M_1 \subseteq M_2 \subseteq X$. Let $f \in M_2^{\perp}$. Then f(x) = 0 for all $x \in M_2$. This implies f(x) = 0 for all $x \in M_1$, because $M_1 \subseteq M_2$. Hence $f \in M_1^{\perp}$ and $M_2^{\perp} \subseteq M_1^{\perp}$. For (5) apply (9) to M^{\perp} for $M^{\perp} \subseteq ((M^{\perp})^{\perp})^{\perp}$ and apply (3) to (4) for $((M^{\perp})^{\perp})^{\perp} \subseteq M^{\perp}$. (8) and (10) are similar to the cases of (3) and (5) respectively.

Theorem 3.11. Let X be a difference algebra and let Y be a medial difference algebra. Let M and Θ be subsets of X and Hom(X,Y) respectively. Then M^{\perp} and Θ^{\perp} are subalgebras of Hom(X, Y) and X respectively.

Proof. Straightforward.

A non-empty subset N of X is said to be *normal* of X if $(x * a) * (y * b) \in N$ for any $x * y, a * b \in N$. Since x * 0 = x, every normal subset of X is a subalgebra of X, but the converse need not be true in general.

Example 3.12. In Example 2.9, let $S := \{f \in F(X) | f(0) = 0\}$. Then S is a normal subalgebra of a difference algebra $(F(X); *, \leq, 0)$.

Example 3.13. In Example 2.4, let $N := \{0,3\}$. Then N is a closed ideal of X. But N is not normal, since 2 * 1 = 3, $3 * 2 = 0 \in N$ but $(2 * 3) * (1 * 2) = 1 * 3 = 2 \notin N$.

Example 3.14. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0. Then $(X; *, \leq, 0)$ is a difference algebra and $N := \{0, 3\}$ is a normal subalgebra of X.

Example 3.15. In Example 2.5, if we let $I := \{0, 3\}$, then I is a subalgebra, but not normal, since 3 * 2 = 3, $4 * 2 = 3 \in I$, but $(4 * 3) * (2 * 2) = 1 * 0 = 1 \notin I$.

Theorem 3.16. Let X be a difference algebra, let Y be a medial difference algebra, $M \subseteq X$ and $\Theta \subseteq Hom(X,Y)$. Then M^{\perp} and Θ^{\perp} are normal subalgebras of Hom(X,Y)and X, respectively.

Proof. Let $f * g, h * k \in M^{\perp}$. Then for any $x \in M$, we have (f * g)(x) = f(x) * g(x) = 0and (h * k)(x) = h(x) * k(x) = 0. Since Y is medial, (f * h)(x) * (g * k)(x) = (f(x) * h(x)) * (g(x) * k(x)) = (f(x) * g(x)) * (h(x) * k(x)) = 0. Therefore $(f * h) * (g * k) \in M^{\perp}$. Thus M^{\perp} is a normal subalgebra of Hom(X, Y).

If $x * y, a * b \in \Theta^{\perp}$, then f(x * y) = 0 and f(a * b) = 0 for all $f \in \Theta$. Hence we have

$$\begin{aligned} f((x*a)*(y*b)) &= f(x*a)*f(y*b) \\ &= (f(x)*f(a))*(f(y)*f(b)) \\ &= (f(x)*f(y))*(f(a)*f(b)) \quad [\because Y : \text{medial}] \\ &= f(x*y)*f(a*b) = 0*0 = 0. \end{aligned}$$

Therefore $(x * a) * (y * b) \in \Theta^{\perp}$. Thus Θ^{\perp} is a normal subalgebra of X.

Theorem 3.17. Let X, Y and Z be difference algebras. If Z is medial, then to each homomorphism $f: X \to Y$ there corresponds a unique homomorphism

$$f^*: Hom(Y, Z) \to Hom(X, Z)$$
 (*)

that satisfies $f^*(g)(x) = (g \circ f)(x)$ for all $x \in X$ and all $g \in Hom(Y, Z)$.

Proof. For each $g \in Hom(Y, Z)$ we define a mapping $\mu : X \to Z$ by $\mu(x) := g(f(x))$ for all $x \in X$. Since g and f are homomorphisms, μ is a homomorphism and $\mu \in Hom(X, Z)$. Define $f^* : Hom(Y, Z) \to Hom(X, Z)$ by $f^*(g) := g \circ f$, for any $g \in Hom(Y, Z)$.

To prove that f^* is a homomorphism, let $g, g' \in Hom(Y, Z)$. Then for any $x \in X$,

$$\begin{aligned} f^*(g*g')(x) &= ((g*g') \circ f)(x) = (g*g')(f(x)) \\ &= g(f(x)) * g'(f(x)) = f^*(g)(x) * f^*(g')(x) \\ &= (f^*(g) * f^*(g'))(x). \end{aligned}$$

Since x is arbitrary, it follows that $f^*(g * g') = f^*(g) * f^*(g')$. We claim that f^* is a Harris map. For any g_1 and g_2 of Hom(Y, Z) with $g_1(y)||g_2(y)$ for any $y \in Y$, we have

$$f^*(g_1)(x) = (g_1 \circ f)(x) = g_1(f(x))||g_2(f(x)) = (g_2 \circ f)(x) = f^*(g_2)(x)$$

for any $x \in X$. Therefore f^* is a homomorphism. The fact that (*) holds for all $x \in X$ obviously determines $f^*(g)$ uniquely. This completes the proof.

Theorem 3.18. Let X, Y and Z be difference algebras and let $f : X \to Y$ be a homomorphism. If Z is medial, then $Ker(f^*) = Im(f)^{\perp}$ and $Ker(f) = Im(f^*)^{\perp}$.

Proof. Let $\phi \in Ker(f^*)$. Then $f^*(\phi) = 0$ and hence $f^*(\phi)(x) = (\phi \circ f)(x) = 0$ for all $x \in X$. Hence $\phi \in Im(f)^{\perp}$ and $Ker(f^*) \subseteq Im(f)^{\perp}$. Similarly $Im(f)^{\perp} \subseteq Ker(f^*)$. Hence $Ker(f^*) = Im(f)^{\perp}$. Next for any $\mu \in Im(f^*)$ there exists a homomorphism $g: Y \to Z$ such that $f^*(g) = \mu$. Then for any $x \in Ker(f)$, $\mu(x) = f^*(g)(x) = (g \circ f)(x) = g(f(x)) = g(0) = 0$, which implies that $x \in Im(f^*)^{\perp}$ and that $Ker(f) \subseteq Im(f^*)^{\perp}$.

Conversely, let $x \in Im(f^*)^{\perp}$. Assume that $x \notin Ker(f)$, i.e., $f(x) \neq 0$. Choose a homomorphism $g: Y \to Z$ with $g(f(x)) \neq 0$. If we set $f^*(g) := \mu$, then $\mu \in Im(f^*)$ and hence $\mu(x) = f^*(g)(x) = (g \circ f)(x) \neq 0$. This means that $x \notin Im(f^*)^{\perp}$ which is a contradiction. Thus $x \in Ker(f)$ and $Im(f^*)^{\perp} \subseteq Ker(f)$. This completes the proof.

Acknowledgements

The authors are deeply grateful to the referee for the valuable suggestions.

References

- [1] F. Hausdorff, Grunzunge de Mengen lehhre, Leipzig, 1914.
- [2] Y. Imai and K. Iséki, On axiom systems of propositional calcui XIV, Proc. Japan Academy 42 (1966), 19-22.
- [3] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8(1980), 125-130.
- [4] J. Meng, Difference algebras, Selected papers on BCK- and BCI-algebras 1(1992), 33-39.
- [5] J. Neggers and H. S. Kim, Basic Posets, World Sci. Pub. Co., 1998.
- [6] E. H. Roh, Y. B. Jun, S. Y. Kim and W. H. Shim, On difference algebras, Kyungpook Math. J. 43(2003), 407-414.
- [7] E. H. Roh, Y. B. Jun, S. Y. Kim and W. H. Shim, On properties of nil subsets in difference algebras, Tamkang J. Math. 32(2001), 167-172.

Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. E-mail: sunshine@dongguk.edu

Department of Mathematics, Hanyang National University, Seoul 133-791, Korea. E-mail: heekim@hanyang.ac.kr

Department of Mathematics Education, Chongju University, Chongju, 360-764, Korea. E-mail: hdlee@chongju.ac.kr