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ON THE SLANT HELICES ACCORDING TO BISHOP FRAME

OF THE TIMELIKE CURVE IN LORENTZIAN SPACE

BAHADDIN BUKCU AND MURAT KEMAL KARACAN

Abstract. T.Ikawa obtained the following differential equation

DT DT DT T −K DT T, K =κ
2
−τ

2

for the cırcular helix which corresponds the case that the curvature κ and torsion τ of timelike curve α on the

Lorentzian manifold M1 are constant [5]. In this paper, we have defined a slant helix according to Bishop frame

of the timelike curve. Furthermore, we have given some necessary and sufficent conditions for the slant helix and

T.Ikawa’s result is generalized to the case of the general slant helix.

1. Preliminaries

Let M be an 3-dimensional smooth manifold equipped with a metric 〈,〉L , where the met-

ric 〈,〉L means a symmetric non-degenerate (0; 2)-tensor field on M with constant signature. A

tangent space TP (M) at a point P ∈ M is furnished with the canonical inner product. If the sig-

nature of the metric 〈,〉L is i , then we call M an indefinite-Riemannian manifold of signature i

and denoted by Mi . If 〈,〉L is positive definite, then M is a Riemannian manifold. Especially if

i = 1, then M is called a Lorentzian manifold. A tangent vector x of Mi is said to be spacelike,

if 〈x, x〉L > 0 or x = 0, timelike, if 〈x, x〉L < 0 and null or lightlike if 〈x, x〉L = 0 and x 6= 0 [3, 4].

A curve in an indefinite-Riemannian manifold Mi is a smooth mapping α : I → Mi , where

I is an open interval in the real line R1. As an open submanifold of R1, I has a coordinate

system consisting of the identity map u of I . The velocity vector of α at s ∈ I

α
′(s)=

dα(u)

du

∣

∣

∣

s
∈ Tα(s)(Mi ).

A curve α(s) is said to be regular if α′(s) is not equal to zero for any s. If α(s) is a spacelike or

timelike curve, we can reparameterize it such that 〈α′(s),α′(s)〉L = 1 and 〈α′(s),α′(s)〉L = −1,

respectively. In this case α(s) is said to be unit speed or arc length parametrization [3, 4].

Let R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R} be a 3-dimensional vector space, and let x = (x1, x2, x3)

and y = (y1, y2, y3) be two vectors in I R3. The Lorentz scalar product of x and y is defined by

〈x, y〉L =−x1 y1 + x2 y2 + x3 y3,
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E 3
1 = (R3,〈x, y〉L) is called 3-dimensional Lorentzian space, Minkowski 3-Space or 3- dimen-

sional Semi-Euclidean space.For any x, y ∈ E 3
1 , Lorentzian vectoral product of x and y is de-

fined by

x ∧L y = (x2 y3 − x3 y2, x1 y3 − x3 y1, x1 y2 − x2 y1)[2].

Let α(s) be a timelike curve in M1. Denote by {T, N ,B} the moving Frenet frame along the

curve α. Then T, N and B are the tangent, the principal normal and binormal vectors of the

curve α respectively. If α is a timelike curve, then this set of orthogonal unit vectors, known

as the Frenet-Serret frame, has the following properties

α
′(s) = T

DT T = κN

DT N = κT +τB

DT B = −τN ,

where D denotes the covariant differentiation in M1 and {T, N ,B} are mutually orthogonal vec-

tors satisfying the following equations

〈T,T 〉L =−1, 〈N , N〉L = 1, 〈B,B〉L = 1 [8].

In a Lorentzian manifold M1, a curve is described by the Frenet formula. For example, if

all curvatures of a curve are identically zero, then the curve is a geodesic. If only the curvature

κ is a non-zero constant and the torsion τ is identically zero, then the curve is called a circle.

If the curvature κ and the torsion τ are non-zero constants, then the curve is called helix. If

the curvature κ and the torsion τ are not constant but κ

τ
is constant, then the curve is called a

general helix [3, 4].

2. Introduction

The Bishop frame or parallel transport frame is an alternative approach to defining a mov-

ing frame that is well defined even when the timelike curve has vanishing second derivative.

We can parallel transport an orthonormal frame along a timelike curve simply by parallel

transporting each component of the frame. The parallel transport frame is based on the ob-

servation that, while T (s) for a given curve model is unique, we may choose any convenient

arbitrary basis (N1(s), N2(s)) for the remainder of the frame, so long as it is in the normal plane

perpendicular to T (s) at each point. If the derivatives of (N1(s), N2(s)t) depend only on T (s)

and not on each other we can make N1(s) and N2(s) vary smoothly throughout the path re-

gardless of the curvature [1]. Therefore, we have the alternative frame equations





T ′

N ′
1

N ′
2



=





0 k1 k2

k1 0 0

k2 0 0









T

N1

N2



 (2.1)

where

〈T,T 〉L =−1, 〈N1, N1〉L = 1, 〈N2, N2〉L = 1.
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One can show that

κ(s) =
√

k2
1 +k2

2 ,

θ(s) = arctan(
k2

k1
),

τ(s) =
dθ(s)

d s

[2], so that k1 and k2 effectively correspond to a cartesian coordinate system for the polar

coordinates κ, θ with θ =
∫

τ(s)d s. The orientation of the parallel transport frame includes

the arbitrary choice of integration constant θ0, which disappears from τ (and hence from the

Frenet frame) due to the differentiation [1].

3. The slant helices according to bishop frame of the timelike curve

Definition 3.1. A curve α with κ 6= 0 E 3 is called a slant helix if the principal normal line of

α make a constant angle with a fixed direction [7].

Definition 3.2. A regular timelike curve α : I → E 3
1 is called a slant helix provided the

spacelike unit vector N1 of the curve α has constant angle θ with some fixed spacelike unit

vector u; that is, 〈N1(s),u〉 = cosθ for all s ∈ I .

The condition is not altered by reparametrization, so without loss of generality we may

assume that slant helices have unit speed. The slant helices can be identified by a simple

condition on natural curvatures.

Theorem 3.1. Let α : I → E 3
1 be a unit speed timelike curve with non-zero natural curva-

tures. Then α is a slant helix if and only if
k1

k2
is constant.

Proof. Let α is a slant helix in E 3
1 and < N1,u >= const .. Then α is a slant helix; from the

definition we have

〈N1,u〉 = const .,

where the spacelike vector u is a unit vector, called the axis of the slant helix. By differentiation

we get

〈N
′

1,u〉 = 〈k1T,u〉 = k1〈T,u〉 = 0.

Hence

〈T,u〉 = 0.

Again differentiating from the last equality, we can write as follows

〈T
′

,u〉 = 〈k1N1 +k2N2,u〉

= k1〈N1,u〉+k2〈N2,u〉

= k1 cosθ+k2 sinθ = 0.
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Therefore we obtain
k1

k2
=− tanθ

as desired.

Suppose that k1

k2
=− tanθ. Then we can write u ∈ Sp{N1, N2}, i.e.,

u = N1 cosθ+N2 sinθ.

Differentiating the last equality.

u
′

= (k1 cosθ+k2 sinθ)T = 0.

So the spacelike vector u is a constant vector. Thus, the proof is done.

Theorem 3.2. Let α : I →E 3
1 be a unit speed timelike curve.Then α is a slant helix iff

det(N
′

1, N
′′

1 , N
′′′

1 ) = 0.

Proof. (⇒:) Suppose that k1

k2
be constant. We have equalities as

N
′

1 = k1T

N
′′

1 = k
′

1T +k1(k1N1 +k2N2) = k
′

1T +k2
1 N1 +k1k2N2

N
′′′

1 = k
′′

1T +k
′

1(k1N1 +k2N2)+2k1k
′

1N1 +k2
1 (k1T )+k

′

1k2N2 +k1k
′

2N2 +k1k2(k2T )

N
′′′

1 = (k
′′

1 +k3
1 +k1k2

2)T + (3k1k
′

1)N1 + (2k
′

1k2 +k1k
′

2)N2

So we get

det(N
′

1, N
′′

1 , N
′′′

1 ) = k2
1







1 0 0

∗ k1 k2

⋆ 3k1k
′

1 2k
′

1k2 +k1k
′

2







det(N
′

1, N
′′

1 , N
′′′

1 ) = k2
1(2k

′

1k1k2 +k2
1k

′

2 −3k1k
′

1k2)

= k3
1(k

′

2k1 −k2k
′

1)

= k3
1(k

′

1k2 −k1k
′

2)

= k3
1

[k
′

1k2 −k1k
′

2

k2
2

]

k2
2

= k3
1k2

2

(k1

k2

)′

Since α is a slant helix,
k1

k2
is constant. Hence, we have

det(N
′

1, N
′′

1 N
′′′

1 ) = 0, k2 6= 0.
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(⇐:) Suppose that det(N
′

1, N
′′

1 N
′′′

1 ) = 0. Then it is clear that the
k1

k2
= const . since (

k1

k2
)
′

is zero.

Theorem 3.3 Let α : I → E 3
1 be a unit speed timelike curve. Then α is a slant helix iff

det(N
′

2, N
′′

2 , N
′′′

2 ) = 0.

Proof. (⇒:) Suppose that k1

k2
be constant. From eq. (2.1) one can find

N
′

2 = k2T

and

N
′′

2 = k
′

2T +k2T
′

= k
′

2T +k2(k1N1 +k2N2) = (k
′

2)T + (k1k2)N1 + (k2
2)N2

N
′′′

2 = (k
′′

2T +k
′

2T
′

)+ (k
′

1k2N1 +k1k
′

2N1 +k1k2N
′

1)+ (2k2k
′

2N2 +k2
2 N

′

2)

= k
′′

2T +k
′

2(k1N1 +k2N2)+k
′

1k2N1 +k1k
′

2N1 +k1k2(k1T )+2k2k
′

2N2 +k2
2 (k2T )

= k
′′

2T +k1k
′

2N1 +k2k
′

2N2 +k
′

1k2N1 +k1k
′

2N1 +k2
1 k2T +2k2k

′

2N2 +k3
2T

= (k
′′

2 +k2
1 k2 +k3

2)T + (2k1k
′

2 +k
′

1k2)N1 + (3k2k
′

2)N2.

Moreover, we have

det(N
′

2, N
′′

2 N
′′′

2 ) = k2
2







1 0 0

∆ k1 k2

◭ 2k1k
′

2 +k
′

1k2 3k2k
′

2







= k2
2(3k1k2k

′

2 −2k1k
′

2k2 −k
′

1k2k2)

= −k3
2(k

′

1k2 −k1k
′

2)

= −k3
2

[k
′

1k2 −k1k
′

2

k2
2

]

k2
2

= −k5
2Bi g (

k1

k2

)′

.

Since α is a slant helix curve k1

k2
is constant. Hence, we have

det(N
′

2, N
′′

2 N
′′′

2 ) = 0, k2 6= 0

(⇐:) Suppose that det(N
′

2, N
′′

2 N
′′′

2 ) = 0. Then it is clear that the k1

k2
= const . since( k1

k2
)
′

is zero.

Next we consider general slant helices in the Lorentzian manifold M1 . Then we have equal-

ities


















α
′

(s) = T

DT T = k1N1 +k2N2

DT N1 = k1T

DT N2 = k2T

(3.1)
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for any s ∈ I , where N1 and N2 are vector fields and k1 and k2 are functions of parameter s.

Theorem 3.4. Let α : I →E 3
1 be a unit speed timelike curve on M1 is a general slant helix iff

DT (DT DT N1) = ADT N1 +3k
′

1DT T. (3.2)

where

A =κ
2
+

k
′′

1

k1
, k2

1 +k2
2 =κ

2.

Proof. Suppose that α is a general slant helix. Then, from (3.1), we have

DT (DT N1) = DT (k1T ) = k
′

1T +k1DT T

= k
′

1T +k1(k1N1 +k2N2)

DT (DT N1) = k
′

1T +k2
1 N1 +k1k2N2 (3.3)

and

DT (DT DT N1) = k
′′

1 T +k
′

1DT T +2k1k
′

1N1 +k2
1DT N1 +k

′

1k2N2 +k1k
′

2N2 +k1k2(k2T )

DT (DT DT N1) = k
′′

1 T +k
′

1DT T +2k1k
′

1N1 +k2
1DT N1 +k

′

1k2N2 +k1k
′

2N2 +k1k2
2 T

DT (DT DT N1) = (k
′′

1 +k1k2
2)T +k2

1DT N1 +2k1k
′

1N1 + (k
′

1k2 +k1k
′

2)N2 +k
′

1DT T (3.4)

Now, since α is a general slant helix, we have

k1

k2
= constant

and this upon the derivation gives rise to

k
′

1k2 = k1k
′

2.

If we substitute the values

T =
1

k1
DT N1 (3.5)

and

(k1k2)
′

= 2k
′

1k2,

in (3.4) we obtain

DT (DT DT N1) = (k
′′

1 +k1k2
2 )

( 1

k1
DT N1

)

+k2
1DT N1 + (2k1k

′

1N1 +2k
′

1k2N2)+k
′

1DT T

=

(k
′′

1

k1
+k2

2

)

DT N1 +k2
1 DT N1 + (2k1k

′

1N1 +2k
′

1k2N2)+k
′

1DT T
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=

(k
′′

1

k1
+κ

2
)

DT N1 +2k
′

1(k1N1 +k2N2)+k
′

1DT T

=

(k
′′

1

k1
+κ

2
)

DT N1 +2k
′

1DT T +k
′

1DT T

DT (DT DT N1) =
(k

′′

1

k1
+κ

2
)

DT N1 +3k
′

1DT T.

DT (DT DT N1)−
(

κ
2
+

k
′′

1

k1

)

DT N1 = 3k
′

1DT T.

So we get as desired.

Conversely let us assume that (3.1) holds. We show that the timelike curve α is a general

slant helix. Differentiating covariantly (3.5) we obtain

DT T = DT

( 1

k1
DT N1

)

DT T = −
k

′

1

k2
1

DT N1 +
1

k1
DT DT N1

and so,

DT DT T =

(

−
k

′

1

k2
1

)′

DT N1 −
k

′

1

k2
1

DT DT N1 −
k

′

1

k2
1

DT DT N1 +
1

k1
DT DT DT N1 (3.6)

If we use (3.1) in (3.6), we get

DT DT T =

(

−
k

′

1

k2
1

)′

DT N1 −
2k

′

1

k2
1

DT DT N1 +
1

k1
ADT N1 +

3k
′

1

k1
DT T

=

[(

−
k

′

1

k2
1

)′

+
A

k1

]

DT N1 −
2k

′

1

k2
1

DT DT N1 +
3k

′

1

k1
DT T

DT DT T =

[(

−
k

′

1

k2
1

)′

+
A

k1

]

DT N1−
2k

′

1

k2
1

(k
′

1T+k2
1 N1+k1k2N2)+

(3k
′

1

k1
k1N1+

3k
′

1

k1
k2N2

)

=

[(

−
k

′

1

k2
1

)′

+
A

k1

]

DT N1−2
(k

′

1

k1

)2
T −2k

′

1N1−
2k

′

1k2

k1
N2+3k

′

1N1+
3k

′

1k2

k1
N2.

Substituting (3.3) and (3.4) in this last equality we have

DT DT T =

[(

−
k

′

1

k2
1

)′

+
A

k1

]

DT N1 −2
(k

′

1

k1

)2
T +k

′

1N1 +
k

′

1k2

k1
N2. (3.7)

On the other hand we can write DT (DT T ) as follows

DT (DT T ) = k1DT N1 +k2
2T +k

′

1N1 +k
′

2N2 (3.8)
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From comparision the (3.7) and (3.8) we obtain the equalities below

k
′

1k2

k1
= k

′

2

and so
k

′

1

k2
=

k
′

2

k2
. (3.9)

Integrating (3.9), we get
k1

k2
= const .

Thus α is a general slant helix. Hence, the proof is done.
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