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THE JACOBSON SEMIRADICAL OVER A CERTAIN SEMIRING

HUDA MOHAMMED J. AL-THANI

Abstract. The concept of the semiradical class of semirings was introduced in [3]. The purpose

of this paper is to study one such semiradicals, the Jacobson semiradicals, over certain semirings.

We generalize the concept of the Jacobson radical of a ring to a semiring. Some properties of

the Jacobson semiradical JS(R) of the semiring R parallel those of ring theory. In Section

1 we describe some preliminary definitions. In Section 2 we define regular strongly austere

semimodulse. Theorem 1 characterizes a regular strongly austere semimodule in terms of a

regular modular maximal subtractive left ideal. We define JS(R) and derive some properties of

this structure. In Section 3 we show that the JS(R) of a semiring has many representations as the

intersection of left ideals. One of the more important of these is that JS(R) is the intersection of

all left weakly primitive subtractive ideals. Proposition 6 characterizes a semiweekly primitive

semiring in terms of a weakly primitive semiring. The interrelationships of strongly austere,

weakly primitive and semiweekly primitive semirings are examined in Theorem 3. In Section

4, Proposition 7 shows that the JS(R) of a semiring with identity is the intersection of all

regular maximal modular subtractive left ideals. Corollary 3 shows that JS(R) is the unique

largest superfluous left ideal of R. Proposition 8 shows that the class of Jacobson semiradical of

semirings is closed under direct sum. We conclude with Section 5, a consideration of a certain

restricted class of semirings. We show that the Jacobson semiradical for the semirings belonging

to this class constitutes a semiradical class. Finally, Example 1 shows that a semiradical class

need not be a radical class.

1. Introduction

Recall ([1], [2], [3], [4] & [6]) the following:

1.1. Let α : M → N be a homomorphism of semimodules. The subsemimodule Im(α)

of N is defined as

Im(α) = {n ∈ N : n + α(m′) = α(m) for some m, m′ ∈ M}.

Then α is i-regular if α(m) = Im(α); α is k-regular if for any m, m′ ∈ M , α(m) = α(m′)

implies m + k = m′ + k′ for some k, k′ ∈ Ker α; and α is regular if it is both i-regular

and k-regular.
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1.2. Let µ be a class of semimodules and M a left semimodule. The reject of µ in M

and the strong reject of µ in M are defined as RejM (µ) = ∩{Ker h|h : M → U for some

U ∈ µ and h is a homomorphism}, and SRejM (µ) = ∩{Ker h|h : M → U for some U ∈ µ

and h is a regular homomorphism}, respectively.

1.3. Let M be a left R-semimodule. An element m ∈ M is regular if the homormorphism

θ : R → M defined by r 7→ rm is a regular homomorphism.

1.4. If M is a left R-semimodule then its left annihilator is LR(M) = {r ∈ R : rm = 0

for every element m ∈ M} and its left strong annihilator is SLR(M) = {r ∈ R : rm = 0

for every regular element m ∈ M}.

1.5. A non-empty subset N of a left semimodule M is subtractive if and only if for all

m, m′ ∈ M , m + m′ ∈ N and m ∈ N imply that m′ ∈ N .

1.6. A left R-semimodule M is austere if {0} and M are the only two subtractive

subsemimodules of M and strongly austere if M is austere and SLR(M) 6= R.

1.7. An ideal I of a semiring R determines an equivalence relation ≡I on I, the Bourne

relation, defined as r ≡I r′ if and only if there exist elements a, a′ ∈ I satisfying

r + a = r′ + a′. If r ∈ R then we write r/I instead of r/ ≡I . The factor semiring R/ ≡I

is denoted by R/I.

1.8. A left ideal I in a semiring R is modular if there exists e ∈ R such that r/I = re/I

for every r ∈ R and e/I 6= 0.

1.9. A semiring R is the semisubdirect product of the family of semiring {Ri; i ∈ I} if

for each i ∈ I, there exists a surjective k-regular semiring homomorphism Πi : R → Ri,

such that
⋂

i∈I Ker Πi = 0.

1.10. A class ρ of semirings is a radical class whenever the following three conditions

are satisfied:

(a) ρ is homomorphically closed; i.e. if R′ is a hormomorphic image of a ρ-semiring R,

then R′ is also a ρ-semiring

(b) Every semiring R contains a ρ-ideal ρ(R) which in turn contains every other ρ-ideal

of R

(c) The factor semiring R/ρ(R) does not contain any nonzero ρ-ideal; i.e. ρ(R/ρ(R))

= 0.

1.11. A class ρ̄ of semiring is said to be a semiradicals class whenever the following three

conditions are satisfied:

(a′) ρ̄ is k-homomorphic closed; i.e. if R′ is an k-homomorphic image of a ρ̄-semiring R,

then R′ is also a ρ̄-semiring.

(b′) Every semiring R contains a ρ̄-subtractive ideal ρ̄(R) which in turn contains every

other ρ̄-subtractive ideal of R.
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(c′) The factor semiring R/ρ̄(R) does not contain any non-zero ρ̄-subtractive ideals;

i.e. ρ̄(R/ρ̄(R)) = 0.

Remark 1. For potential applications, we note that semimodules over semirings are

important in studying the properties of the semiring, and the latter arise in diverse areas

of applied mathematics, including optimization theory, automata theory, mathematical

modeling and parallel computation systems (c.f. [4], pp. iv, 138).

2. The Definition of the Jacobson Semiradical JS(R)

Definition 1. A left R-semimodule M is regular if for every m ∈ M , m is regular.

A left ideal I in a semiring R is regular if the left R-semimodule R/I is regular.

Remark 2. Note that if M is a module, then M is regular. Similarly, if R is a ring,

then every left ideal is regular.

Theorem 1. A left R-semimodule M over a semiring R is regular and strongly aus-

tere if and only if M is isomorphic to R/I for some regular modular maximal subtractive

left ideal I.

Proof. Let M be a regular strongly austere semimodule. Since every m ∈ M is

regular. Rm is subtractive. Hence Rm = M . Define θ : R → Rm as θ(r) = rm. Since

M is regular, θ is a k-regular surjective homomorphism. Consider φ : R/Ker θ → Rm,

where φ(r/Ker θ) = rm. Clearly φ is an isomorphism, and since M is austere, Ker θ is a

maximal subtractive left ideal. Because M is regular, Ker θ is a regular modular maximal

subtractive left ideal. Conversely, let I be a regular modular maximal subtractive left

ideal of R such that M ≃ R/I. Clearly M is austere, and since I is modular, LR(M) 6= R.

Thus M is a regular strongly austere semimodule.

Definition 2. For a semiring R the Jacobson semiradical JS(R) is the annihilator

of R in χ; i.e., JS(R) = LR(χ) where χ is the class of all regular strongly austere left

R-semimodules.

Proposition 1. For a semiring R, JS(R) is a subtractive ideal.

Lemma 1. Let R and R′ be semirings and let φ : R → R′ be a surjective k-regular

homomorphism. Then every regular strongly austere R′-semimodules is a regular strongly

austere R-semimodule.

Proof. Let M be a regular strongly austere R′-semimodule. Define φ : R×M → M

by the rule rm = φ(r)m. Clearly M is an R-semimodule. Let K be a subtractive

R-semimodule. Since φ is surjective, R′K = φ(R)K = RK ⊂ K and thus K is a

subtractive R′-subsemimodule. Therefore M is an austere R-semimodule. Now M is a

regular strongly austere R′-semimodules, so 0 6= m ∈ M is regular. If r1m = r2m, then

φ(r1)m = φ(r2)m. Because m is regular, φ(r1) + r′1 = φ(r2) + r′2, where r′1m = r′2m = 0
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and r′1, r′2 ∈ R′. Since φ is onto, r′1 = φ(r3), r′2 = φ(r4). Hence φ(r1 + r3) = φ(r2 + r4).

And φ is k-regular, so r1+r3+k1 = r2+r4+k2, where r1, r2, r3, r4 ∈ R and k1, k2 ∈ Ker φ.
Clearly (r3+k1)m = φ(r3+k1)m = φ(r3)m+φ(k1)m = φ(r3)m+0 = φ(r3)m = r′1m = 0.

Similarly (r4 +k2)m = 0. Now if r1m+b = r2m, then φ(r1)m+b = φ(r2)m. Since m is a

regular element, we have b = r′2m. Now φ is onto, so r′2 = φ(r3). Thus b = φ(r3)m = r3m.
Therefore M is a regular strongly austere R-semimodule.

Proposition 2. Let R and R′ be semirings and let φ : R → R′ be a surjective

k-regular homomorphism. Then φ(JS(R)) ⊆ JS(R′) with equality if Ker φ ⊆ JS(R).

Proof. Let χ be the class of all regular strongly austere R′-semimodules. By Lemma
1 every regular strongly austere R′-semimodule is a strongly austere R-semimodule. If

r ∈ JS(R), then rM = 0 for all M ∈ χ. But rM = φ(r)M = 0. Hence φ(r) ∈ JS(R′).
Thus φ(JS(R)) ⊂ JS(R′).

Corollary 1. Let I be a subtractive ideal of a semiring R.

(1) JS(R/I) ⊇ (JS(R) + I)/I.

(2) If I ⊆ JS(R), then JS((R)/I) = JS(R)/I. In particular JS(R/J(R)) = 0.
(3) If JS(R/I) = 0, then JS(R) ⊆ I.

(4) I = JS(R) if and only if I ⊆ JS(R) and JS(R/I) = 0.

Proof. For (1) and (2), apply Proposition 2 with Π : R → R/I being the homo-

morphism. Statement (3) is a direct consequence of (1), and (4) follows from (2) and
(3).

3. Characterizations of the Jacobson Semradical JS(R)

In this section we define a weakly primitive ideal. We characterize it in terms of the
annihilator of a regular strongly austere left R-semimodule, and we obtain some more of

its properties. Theorem 2 characterizes the Jacobson semiradical JS(R) in terms of the
intersection of weakly primitive ideals.

Definition 3. A left semimodule M is faithful if its left annihilator is 0.

Definition 4. A semiring R is left weakly primitive if there exists a faithful regular

strongly austere left R-semimodule. An ideal P of a semiring R is left weakly primitive

if the quotient R/P is a left weakly primitive semiring.

Proposition 3. A subtractive ideal P of a semiring is R weakly primitive if and only

if P is a left annihilator of a regular strongly austere left R-semimodule.

Proof. If P is a left weakly primitive ideal, let M be a regular strongly austere faithful
left R/P -semimodule. M is an R-semimodule with rm (r ∈ R, m ∈ M) defined to be

(r/P )m. Then RM = (R/P )M 6= 0 and every R-subtractive subsemimodule of M is an
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R/P subtractive subsemimodule of M , and hence M is a strongly austere R-semimodule.
Clearly M is a regular R-semimodule. If r ∈ R, then rM = 0 if and only if (r/P )M = 0.
But (r/P )M = 0 if and only if r ∈ P , since M is a faithful R/P -semimodule. Therefore
P is the left annihilator of the regular strongly austere R-semimodule M . Conversely,
suppose that P is the left annihilator of a regular strongly austere left R-semimodule M .
M is a regular strongly austere R/P -semimodule with (r/P )m = rm for r ∈ R, m ∈ M .
Furthermore, if (r/P )M = 0 then rM = 0. Hence r ∈ LR(M) = P and r/P = 0 in
R/P . Consequently, M is a faithful R/P -semimodule. Therefore R/P is a left weakly
primitive semiring, and thus P is a left weakly primitive ideal of R.

Corollary 2. Every regular modular maximal subtractive left ideal of R contains a

weakly primitive subtractive ideal and every primitive subtractive ideal is the intersection

of the regular modular maximal subtractive left ideals containing it.

Proof. Let K be a regular modular maximal subtractive left ideal of R. By Theorem
1, R/K is a regular strongly austere R-semimodule. Hence the annihilator of R/K is
a weakly primitive subtractive ideal contained in K. Now let P be a weakly primitive
subtractive ideal of R and let M be a regular strongly austere left R-semimodule whose
annihilator is P . Given a non zero m ∈ M , let LR(m) = {r ∈ R : rm = 0}. Clearly
LR(m) is a subtractive left ideal. Since M is regular and strongly austere, M = Rm ∼=
R/LR(m) and LR(m) is a regular modular maximal subtractive left ideal of R. Since

P =
⋂

06=m∈M

LR(m),

the result follows.

Definition 5. A left R-semimodule M is said to be semi-regular and strongly austere

if M is a direct sum of regular strongly austere subsemimodules.

Proposition 4. JS(R) is the annihilator of a semi-regular and strongly austere

R-semimodule and JS(R) ⊆ I if I is the annihilator of a regular strongly austere R-

semimodule.

Proof. Let {Mi : i ∈ A} be a full set of representatives of the isomorphism classes
of a regular strongly austere R-semimodule. Then by Proposition 3, {LR(Mi); i ∈ A} is
the set of all weakly primitive ideals of R. Also,

LR

(

⊕

Mi

i∈A

)

=
⋂

i∈A

LR(Mi) = JS(R),

proving the first assertion. The second statement is obvious.

Definition 6. Let I be a left ideal of R. Define (I : R) = {r ∈ R | rR ⊂ I}.

Proposition 5. Let I be a left ideal. Then (I : R) is an ideal of R. If I is modular

and subtractive, then (I : R) is the largest ideal of R that is contained in I.
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Now we come to an important characterization of JS(R). In order to simplify the

statement of several results, we adopt the following convention: if the class µ of those

subsets of a semiring R that satisfy a property is empty then
⋂

I∈µ I is defined to be R.

Theorem 2. If R is a semiring, then there is a subtractive ideal JS(R) of R such

that

(1) JS(R) is the intersection of all of the left strong annihilators of regular, strongly

austere left R-semimodules.

(2) JS(R) is the intersection of all of the left weakly primitive subtractive ideals.

(3) JS(R) = ∩(I : R) where I runs over all the regular modular maximal subtractive left

ideals of R.

Proof. Let JS(R) be the intersection of all of the left annihilators of regular, strongly

austere left R-semimodules. If R has no regular, strongly austere left R-semimodules,

then JS(R) = R by the convention adopted above. JS(R) is a subtractive ideal. We now

show that statements (1), (2) and (3) are true for all subtractive left ideals. First observe

that R itself cannot be the annihilator of a regular strongly austere left R-semimodule

M because otherwise LR(M) = R. This fact, together with Theorem 1 and Proposition

3, implies that the following conditions are equivalent:

• JS(R) = R.

• R has no regular strongly austere left R-semimodules.

• R has no left weakly primitive subtractive ideals.

• R has no regular modular maximal subtractive left R-ideals.

Therefore by the convention adopted above (l), (2) and (3) are true if JS(R) = R. Now

assume JS(R) 6= R. Statement (1) is trivial. Statement (2) is an immediate consequence

of Proposition 3. For (3), let I be a regular modular maximal subtractive left ideal. Then

r ∈ (I : R) iff rR/I = I iff r ∈ LR(R/I).

Definition 7. A semiring R is semiweakly primitive if JS(R) = 0. The semiring R

is a Jacobson semiring if JS(R) = R.

Proposition 6. A semiring R is semiweakly primitive if and only if R is a semisub-

direct product of weakly primitive semirings.

Proof. Let {Pi; i ∈ I} be the set of all weakly primitive subtractive ideals of R,

let Ri = R/Pi and let Πi : R → Ri be the natural homomorphism with Ker Πi = Pi.

Since
⋂

i∈I Pi = 0, R is a semisubdirect product of Ri, i ∈ I. Conversely, assume that

R is a semisubdirect product of Ri, i ∈ I, where each Ri is a weakly primitive semiring.

By definition, for each i ∈ I, there exists a surjective k-regular semiring homomorphism

Πi : R → Ri with Ker Πi
i∈I

= 0. Thus each Ker Πi is a weakly primitive ideal and hence

R is semiweakly primitive.
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Definition 8. A semiring R is strongly austere if R2 6= 0 and R has no proper

subtractive ideals.

Theorem 3. Let R be a semiring:

(1) If R is weakly primitive, then R is semiweakly primitive.

(2) If R is a strongly austere left R-semimodule and semiweakly primitive, then R is

weakly primitive.

(3) If R is strongly austere, then R is either a weakly primitive semiweakly primitive or

a Jacobson semiring.

Proof. (1): R has a faithful regular strongly austere left R-semimodule M , so
JS(R) ⊆ LR(M) = 0. (2): Since R is strongly austere; R 6= 0. Since JS(R) 6= R, there

exists a regular, strongly austere left R-semimodule M . The left annihilator LR(M) is

a subtractive ideal of R by Proposition 2.2 in [2] and LR(M) 6= R (since RM 6= 0).

But M is austere, so LR(M) = 0 and thus M is a regular, strongly austere faithful
R-semimodule. Therefore R is weakly primitive. (3): If R is strongly austere then the

subtractive ideal JS(R) is either R or zero. In the former case R is a Jacobson semiring

and in the latter case R is semiweakly primitive and weakly primitive by (2).

4. The Jacobson Semiradical JS(R) over Semirings with Identity

Throughout this section R will be a semiring with identity 1. Proposition 7 shows
that JS(R) is the intersection of all regular maximal subtractive left ideals. Theorem 4

shows that JS(R) is the unique largest superfluous left ideal of R.

Proposition 7. For any semiring R the following properties hold:

(1) JS(R) is the intersection of all of the rejects of regular strongly austere left R-

semimodules.

(2) JS(R) is the intersection of all of the strong rejects of regular strongly austere left

R-semimodules.

(3) JS(R) is the intersection of all of the regular maximal subtractive left ideals of R.

Proof. We obtain (l) by using Corollary 2.4 in [1]. Similarly, (2) follows from
Proposition 3.4 in [2], and comes from (1).

Definition 9. A left R-semimodule M is regular with respect to the subsemimodule

K if M/K is regular. A left ideal H is strongly regular if H is regular and the semimodule

R/H is regular with respect to every subtractive maximal subsemimodule.

Definition 10. A left ideal I of R is superfluous if I +K is subtractive for all regular

maximal subtractive left ideals K and if I+H = R implies H = R for all strongly regular

subtractive left ideals H of R.
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Theorem 4. Let R be a semiring such that JS(R) 6= R. For any left ideal I of R,

the following conditions are equivalent:

(1) I ⊆ JS(R).

(2) I is superfluous.

(3) For any finitely generated left R-semimodule M which is regular with respect to every

maximal subsemimodule, IM = M implies that M = 0.

Proof. (1) =⇒ (3): Assume that M 6= 0. Since M is finitely generated, it fol-

lows that M has a maximal subsemimodule K, in which case M/K is regular. Clearly
R(M/K) 6= 0. Therefore M/K is regular and strongly austere. Hence JS(R)M/K = 0,

i.e. JS(R)M ⊆ K. Thus IM ⊆ JS(R)M ⊆ K 6= M as required. (3) =⇒ (2): Sup-

pose that I + H = R and H is a strongly regular subtractive left ideal of R. Setting

M = R/H , it follows that M is a finitely generated R-semimodule which is regular with
respect to every maximal subsemimodule and IM = (I + H)/H = M . Hence, by hy-

pothesis M = 0. Since H is subtractive. H = R. Therefore I is superfluous. (2) =⇒ (1):

If I is not contained in K for some regular maximal subtractive left ideal K of R, then

I +K = R and hence K = R contradiction. Thus I is contained in every strongly regular

maximal subtractive left ideal K of R and therefore I ⊆ JS(R).

Corollary 3. If R is a semiring such that JS(R) 6= R, then JS(R) is the unique

largest superfluous left ideal of R.

Proof. Use Theorem 4.

We now show that the class of Jacobson semiradical semirings is closed under direct

sum.

Proposition 8. Let {Ri : i ∈ I} be a family of semirings. Then

JS
(

⊕

i∈I

Ri

)

=
⊕

i∈I

JS(Ri).

Proof. Let R =
⊕

i∈I Ri. If M is a left Ri-semimodule, then M is a left R-
semimodule with

∑n
i=1 rim = rim. It is clear that if M is a regular strongly austere

left Ri-semimodule then M is a regular strongly austere left R-semimodule. If r ∈

JS(R), then rM = 0 for all regular strongly austere left Ri-semimodules M . Thus r ∈
⊕

i∈I JS(Ri). Conversely if M is a left R-semimodule, then M is a left Ri-semimodule
with rim =

∑n
j=1 rjm such that ri = rj if j = i and rj = 0 for j 6= i. It is clear that if

M is a regular strongly austere left R-semimodule then M is a regular strongly austere

left Ri-semimodule. If r ∈
⊕

i∈I JS(Ri), then rM = 0 for all regular strongly austere

R-semimodule M . Thus r ∈ JS(R).
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5. The Jacobson Semiradical over a Restricted Class

In this section we shall examine the semiradicals JS(R) over a restricted class ρ of
semirings. If we restrict our class of semirings to the class of rings, we see that JS(R)
coincides with classic Jacobson radical. So we call JS(R) over the class ρ the Jacobson

semiradical over that class.
Let ρ be the class of semirings R for which every subtractive ideal I of R satisfies the

following conditions:

(1) If i ≡
LR(r/K)

i′ then i ≡
LR(r/K)∩I

i′ where K is a regular modular maximal subtractive

left ideal R, i, i′ ∈ I and r ∈ R.

(2) I(r/K) is subtractive for every regular modular maximal subtractive left ideal K of
R.

(3) If re/LI(i/H) = r′e/LI(i/H) then re/LR(i/H) = r′e/LR(i/H) where H is a regular

modular maximal subtractive left ideal of I, ei/H = i/H , and e, i ∈ I.

Proposition 9. Let R ∈ ρ. If I is a subtractive ideal of R, then JS(I) ⊆ JS(R)∩ I.

Proof. If M is a regular strongly austere R-semimodule then by Lemma 4 in [5] we
have either IM = 0 or M is an austere I-semimodule. In the latter case, if IM 6= 0
then M is a regular strongly austere I-semimodule. So in both cases JS(I)M = 0. Thus

JS(I) ⊆ JS(R) ∩ I.

Proposition 10. Let I be a subtractive ideal of R ∈ ρ. Then JS(I) = I ∩ JS(R).

Proof. By Proposition 9, JS(I) ⊆ I∩JS(R). Let M be a regular strongly austere I-

semimodule, so IM = M . Hence RM = RIM ⊆ IM = M , and M is an R-semimodule.
Moreover, M is a regular strongly austere left R-semimodule. Therefore JS(R)M = 0.
Hence I ∩ JS(R) ⊆ JS(I) and thus I ∩ JS(R) = JS(I).

Corollary 4. Let I be a subtractive ideal of R. Then

(1) If JS(R) = 0, then JS(I) = 0.

(2) JS(JS(R)) = JS(R).

Proof. (1) By Proposition 10 we have JS(I) = JS(R) ∩ I = 0 ∩ I = 0. (2) By
Proposition 9 JS(JS(R)) = JS(R) ∩ JS(R) = JS(R).

Theorem 5. The class JS = {JS(R) : R ∈ ρ} forms a semiradical class.

Proof. Let I be an ideal of the semiring R such that I ∈ JS and I is not contained

in JS(R). Since I ∈ JS, we have I = JS(R′) for some semiring R′ ∈ ρ. By Proposition
10 and Corollary 4, I = JS(JS(R′)) = JS(R) ∩ JS(R′). Hence I ⊆ JS(R). Thus every
semiring R contains a JS-ideal JS(R) that contains every other JS-ideal of R. By using

Proposition 2, JS is k-homomorphically closed, so by Corollary 1, JS(R/JSR)) = 0.
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The next example describes a semiradical class σ that cannot be a radical class.

Example 1. Let σ = ρ ∪ R, where R is the semiring consisting of

{(0̄, {0̄}), (0̄, Z/ < 2 >), (1̄, Z/ < 2 >)}

with 0̄, 1̄ ∈ Z/ < 2 > and with addition ⊕ and multiplication ⊗ defined by

(ā, Z/ < 2 >) ⊕ (b̄, Z/ < 2 >) = (ā + b̄, Z/ < 2 >)

and

(ā, Z/ < 2 >) ⊗ (b̄, Z/ < 2 >) = (āb̄, Z/ < 2 >).

Let R′ ∈ ρ be the semiring consisting of the two elements 0 and 1 with the two operations
given by the tables

⊕ 0 1

0 0 1

1 1 1

⊗ 0 1

0 0 0

1 0 1

It is easy to see that the class σ is a Jacobson semiradicals class. Clearly JS(R′) = 0

and JS(R) = {(0̄, {0̄}), (0̄, Z/ < 2 >)}. Let f : R → R′ be the semiring homomorphism
defined by f(0̄, {0̄}) = 0, f(1̄, Z/ < 2 >) = f(0̄,Z/ < 2 >) = 1. Clearly f is onto and

f{(0̄, {0̄}), (0̄, Z/ < 2 >)} = {0, 1}, whence f(JS(R)) is not contained in JS(R′). Thus

the class σ is semiradical but not radical.
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