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ON THE PRODUCT OF SELF-ADJOINT STURM-LIOUVILLE

DIFFERENTIAL OPERATORS IN DIRECT SUM SPACES

SOBHY EL-SAYED IBRAHIM

Abstract. In this paper, the second-order symmetric Sturm-Liouville differential expressions

τ1, τ2, . . . , τn, with real coefficients on any finite number of intervals are studied in the setting of

the direct sum of the L2
w

-spaces of functions defined on each of the separate intervals. It is shown

that the characterization of singular self-adjoint boundary conditions involves the sesquilinear

form associated with the product of Sturm-Liouville differential expressions and elements of the

maximal domain of the product operators, it is an exact parallel of that in the regular case. This

characterization is an extension of those obtained in [6], [7], [8], [9], [12], [14] and [15].

1. Introduction

In [7] Everitt and Zettl studied the boundary value problem for Sturm-Liouville dif-
ferential expressions

τr[y] = −(pry
′)′ + qry on Ir = (ar, br), −∞ ≤ ar < br ≤ ∞; r = 1, 2, (1.1)

with real-valued Lebesgue measurable functions pr, qr, wr from Ir into R satisfying the
following basic conditions :

p−1
r , qr, wr ∈ Lloc(Ir), wr > 0, a.e., r = 1, 2, (1.2)

on two intervals in the setting of the direct sum of the L2-spaces of functions defined on
each of the separate intervals, and in [9] S. E. Ibrahim extended this problem for any
finite number of intervals. In the one interval case, the characterization of the singular
self-adjoint boundary conditions for Sturm-Liouville problems is identical to that in the
regular case provided that y and py′ are replaced by certain Wronskians involving y and
two linearly independent solutions of τ [y] = 0 has been proved by Krall and Zettl in [12].

The relationship between the deficiency index of a symmetric differential expression
(1.1) and its powers τ2, τ3, . . . has recently been studied by Chaudhuri and Everitt [1] and
the relationship between the number of linearly independent L2(0,∞) solutions of the
equations τj [y] = 0 and of the product equations (τ1τ2 · · · τn)y = 0 has been investigated
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by Everitt [6]. These results are extension of those recently obtained in [5, 16, 17, 18] for
the special case τj = τ for j = 1, . . . , n, and τ is a real second-order symmetric differential
expression.

Our objective in this paper is to show in the direct sum of the L2
w-spaces of functions

defined on each of the separate intervals that, the characterization of singular self-adjoint
boundary conditions is identical to that in the regular case provided that y and its quasi-
derivatives are replaced by sesquilinear forms associated with the product of Sturm-
Liouville differential expressions, involving y and elements of the maximal domain of the
product operators. This characterization is an extentsion of those by Everitt and Zettl [6]
and [7, 8, 9, 12, 13, 14, 15] to the case of product Sturm-Liouville differential expressions
τ1, τ2, . . . , τn on any finite number of intervals Ir = (ar, br), r = 1, 2, . . . , N . Here the
interior singularities occur only at the ends of the intervals. The operators involved are
closed symmetric with Property (C) given below and direct sum of product operators
∏n

j=1[T0(τjr)], r = 1, 2, . . . , N ,

T0(τ1τ2 · · · τn) =
n

∏

j=1

T0(τj) =
N

⊕

r=1

(

n
∏

j=1

[T0(τjr)]
)

.

In the regular case, these conditions can be interpreted as linear combinations of the
values of the unknown function y and its quasi-derivatives at the end-points ar and br,
r = 1, 2, . . . , N .

In the singular case, these conditions are given in terms of sesquilinear forms involving
y and linearly independent solutions of the product equation (τ1τ2 · · · τn)y = 0 which
given by Everitt and Zettl in [6].

2. Preliminaries

We begin with a brief summary of adjoin pairs of operators and products operators,
a full treatment may be found in [2, Chapter III], [5], [6], [7], [9], [10] and [11].

The domain and range of a linear operator T acting in a Hilbert space H will be
denoted by D(T ) and R(T ) respectively and N(T ) will denote its null space. The nullity
of T , written nul(T ), is the dimension of N(T ) and the deficiency of T , written def(T ),
is the co-dimension of R(T ) in H ; thus if T is densely defined and R(T ) is closed, then
def(T ) = nul(T ∗). The Fredholm domain of T is (in the notation of [2]) the open subset
△3(T ) of C consisting of those values λ ∈ C which are such that (T − λI) is a Fredhom
operator, where I is the identity operator on H . Thus, λ ∈ △3(T ) if and only if (T −λI)
has closed range and finite nullity and deficiency.

A closed operator A in a Hilbert space H has Property (C), if it has closed range and
λ = 0 is not an eigenvalue; i.e., there is some postive number r such that ‖Ax‖ ≥ r‖x‖
for all x ∈ D(A).

Note that, Property (C) is equivalent to λ = 0 being a regular type point of A. This
in turn is equivalent to the existence of A−1 as a bounded operator on the range of A

(which need not be all of H).
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Given two operators A and B, both acting in a Hilbert space H , we wish to consider

the product operator AB. This is defined as follows:

D(AB) = {x ∈ D(B) | Bx ∈ D(A)} and (AB)x = A(Bx) for all x ∈ D(AB).

It may happen in general that D(AB) contains only the null element of H . However,
in the case of many differential operators the domains of the product will be dense in H .

The next result gives conditions under which the deficiency of a product is the sum
of the deficiencies of the factors.

Lemma 2.1.(cf. [6 Theorem A] and [17]) Let A and B be closed operators with

dense domains in a Hilbert space H. Suppose that λ = 0 is a regular type point for

both operators and defA and defB are finite. Then AB is a closed operator with dense

domain, has λ = 0 as a regular type point and

defAB = defA + defB.

Evidently Lemma 2.1 extends to the product of any finite number of operators
A1, A2, . . . , An.

Let the interval Ir, r = 1, 2, . . . , N have end-points ar, br(−∞ ≤ ar < br ≤ ∞), and
let wr : Ir → R be a non-negative weight function with wr ∈ L1

loc(Ir) and wr(x) > 0 (for
almost all x ∈ Ir). Then Hr = L2

wr

(Ir) denotes the Hilbert function space of equivalence
classes of Lebesgue measurable functions such that

∫

I
wr|f |2 < ∞; the inner-product is

defined by:

(f, g)r :=

∫

I

wr(x)f(x)g(x)dx(f, g ∈ L2
wr

(Ir)), r = 1, 2, . . . , N. (2.1)

We shall consider the Sturm-Liouville differential equation of the form:

τr[u] = −(pru
′)′ + qru = λwru on Ir, r = 1, 2, . . . , N (2.2)

where the real-valued Lebesque measurable functions pr, qr and wr from Ir into R sat-
isfying the conditions (1.2) which are taken to hold throughout this paper. Under this
assumptions, τr is interpreted as a quasi-differential expressions, u being a solution of
(2.2) if u and pru

′ are in ACloc(ar, br), the space of functions which are absolutely contin-
uous on compact subsets of (ar, br), and (2.1) is satisfied almost everywhere on (ar, br).
Also, pru

′ = u[1] is called the quasi-derivative of u.

The equation (2.2) is said to be regular at the left end-point ar ∈ R, if for all
X ∈ (ar, br),

ar ∈ R; p−1
r , qr, wr ∈ L1(ar, X), r = 1, 2, . . . , N.

Otherwise (2.2) is said to be singular at ar. If (2.2) is regular at both end-points ar and
br, then it is said to be regular; in this case we have,

ar, br ∈ R; p−1
r , qr, wr ∈ L1(ar, br), r = 1, 2, . . . , N.
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We shall be concerned with the second-order symmetric differential expressions (τr =

τ+
r ) on Ir and when both end-points ar and br may be either regular or singular end-

points of (2.2). Note that, in view of (1.2), an end-point of Ir is regular for (2.2), if and

only if it is regular for the equation,

τ+
r [v] = λwrv (λ ∈ C) on Ir, r = 1, 2, . . . , N, (2.3)

where τ+
r is the formal, or Lagrangian adjoint of τr given by:

τ+
r [v] = −(prv

′)′ + qrv on Ir, r = 1, 2, . . . , N. (2.4)

The maximal domain D(τr) is defined by,

D(τr) := {f : f, prf
′ ∈ ACloc(Ir) and w−1

r τr[f ] ∈ L2
w(ar, br), r = 1, . . . , N},

is a subspace of L2
wr

(ar, br). The maximal operator T (τr) is defined by,

T (τr)u := w−1
r τr[u] (u ∈ D(τr)), r = 1, 2, . . . , N.

It is well known that D(τr) is dense in L2
w(ar, br); see [2], [9], [11], [12] and [19].

In the regular problem the minimal operator T0(τr) is the restriction of w−1
r τr[u] to

the subspace:

D0(τr) := {u : u ∈ D(τr), u[s−1](ar) = u[s−l](br) = 0, s = 1, 2}, (2.5)

The subspace D0(τr) is dense and closed in L2
wr

(ar, br); see [2], [15] and [19].

In the singular problem we first introduce the operator T ′
0(τr); T ′

0(τr) being the re-

striction of w−1
pr

τr[.] to the subspace:

D′
0(τr) := {u : u ∈ D(τr), suppu ⊂ (ar, br), r = 1, 2, . . . , N}. (2.6)

This operator is densely-defined and closable in L2
w(ar, br); and we defined the minimal

operator T0(τr), to be its closure (see [2], [15] and [19, Section 5]). We denote the domain

of T0(τr) by D0(τr). It can be shown that:

u ∈ D0(τr) ⇒ u[s−1](ar) = 0, (s = 1, 2; r = 1, 2, . . . , N),

whenever we assume ar to be regular end-point and br to be singular end-point.

For f , g ∈ D(τr) and α, β ∈ Ir , Green’s formula is given by:

∫ β

α

{τr[f ]g − fτr[g]}dx = [f, g]r(β) − [f, g]r(α), (2.7)

where,

[f, g]r(.) := fg[1] − f [1]g, f, g ∈ D(τr), r = 1, 2, . . . , N. (2.8)
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For f, g ∈ D(τr), the limits limα→a+ [f, g]r(α) and limβ→b− [f, g]r(β) exist and are

finite. These are denoted by [f, g]r(ar) and [f, g]r(br), respectively.

For f, g ∈ ACloc(ar, br), let

Wr(f, g) = fpg′ − gpf ′. (2.9)

Choose two solutions θ and φ of τr[u] = 0 satisfying,

Wr(θ, φ)(x) = 1 for all x ∈ Ir , r = 1, 2, . . . , N. (2.10)

Clearly such θ and φ exist, i.e., they can be determined by the initial conditions:

θ(c) = 1, (prθ
′)(c) = 1, φ(c) = 0, (prφ

′)(c) = 1 for all c in Ir.

Note that, the sesquilinear form [f, g]r, in (2.8) can be written as:

[f, g]r = fprg
′ − gprf

′

= (g, prg
′)

(

0 −1

1 0

) (

f

prf ′

)

. (2.11)

From (2.9) and (2.10), we get

(

0 −1
1 0

)

= −
(

0 −1
1 0

) (

θ φ

prθ
′ prφ

′

) (

0 −1
1 0

) (

θ prθ
′

φ prφ
′

) (

0 −1
1 0

)

,

and hence the sesquilinear form in (2.8) can also be written as:

[f, g]r = (Wr(g, θ), Wr(g, φ))

(

0 −1

1 0

) (

Wr(f, θ)

Wr(f, φ)

)

= Wr(g, φ)Wr(f, φ) − Wr(g, θ)Wr(f, φ)

= def

(

Wr(f, θ) Wr(f, φ)

Wr(g, θ) Wr(g, φ)

)

, r = 1, 2, . . . , N ; (2.12)

see [9] and [12].

Lemma 2.2. If for some λ0 ∈ C, there are two linearly independent solutions of

τr[u] = λ0wru in L2
w(ar, br). Then all solutions of τr[u] = λwru are in L2

w(ar, br) for all

λ ∈ C; see [2, Chapter 3] for more details.

Theorem 2.3.(cf. [2, Theorem 3.10.1]) Let f ∈ L1
loc(ar, br) and suppose that the

conditions (1.2) are satisfied. Then given any complex numbers cτ,0 and cτ,1 and any

x0 ∈ (ar, br) there exist a unique solution of τr[φ] = f in (ar, br) which satisfies φr(x0) =

cτ,0, φ
[1]
r (x0) = cτ,1, r = 1, . . . , N .

A simple consequence of Theorem 2.3 is that the solution of (2.1) form a 2-

dimemsional vector space over C. If (α0, α1) and (β0, β1) are linearly independent
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vectors in C2 then the solutions φr,1(., λ), φr,2(., λ) of the equation (2.2) which sat-

isfy φr,1(x0, λ) = αr,0, φ
[1]
r,1(x0, λ) = αr,1, φr,2(x0, λ) = βr,0, φ

[1]
r,2(x0, λ) = βr,1 for some

x0 ∈ (ar, br), r = 1, 2, . . . , N form a basis for the space of soultions of the equation (2.2).

Note that, an important distinction between a regular end-point and a singular end-

point is the fact that at a regular end-point x0, all inital value problems φr(x0, λ) = cr,0,

φ
[1]
r (x0, λ) = cr,1, cr,0, cr,1 ∈ C have a unique solutions. This is not true when x0 is

singular end-point (see [2], [10] and [13]).

Assume that ar and br are singular end-points. For any αr and βr in the open

interval (ar, br) and any λ ∈ C, the conditions (1.2) imply that any solution φr of the

equation (2.2) is in L2
wr

(αr, βr); (see [10], [12] and [20]). However, it is possible that

such a φr does not belong to L2
wr

(ar, br). If φr is in L2
wr

(ar, βr) for some βr ∈ (ar, br),

then this is true for all βr in (ar, br). If all solutions of (2.2) are in L2
wr

(ar, br) for some

βr in (ar, br), then we say that τr[.] is in the limit-circle case at ar, or simply that ar

is LC. Otherwise, τr[.] is in the limit-point case at ar or ar is LP . Similarly, br is LC

means that all solutions of (2.2) are in L2
wr

(αr, br), ar < αr < br, r = 1, 2, . . . , N . This

classificantion is independent of λ in (2.2); (see [9], [12], [13] and [15]). Otherwise bτ is

LP . The limit-point, limit-circle terminology are used for historical reasons.

The classification of the self-adjoint extensions of T0(τr) depends, in an essential

way, on the deficiency index of T0(τr). We briefly recall the definition of this notion for

abstract symmetric operators in a seperable Hilbert space.

A linear operator Ar from a Hilbert space Hr into Hr is said to be symmetric if its

domain D(Ar) is dense in Hr and (Arf, g) = (f, Arg) for all f, g ∈ D(Ar), r = 1, 2, . . . , N .

Any such operator has associated with it a pair (d+
r , d−r ), where each of d+

r , d−r is a non-

negative or +∞. The extended integers are called the deficiency indices of Ar and we

have the following:

For λ ∈ C, the set of complex numbers, let Rλ denote the range of T0(τr) − λI,

Nλ,r = R⊥
λ,r and let

N+
r = Ni,r, N−

r = N−i,r, i =
√
−1, r = 1, . . . , N ; (2.13)

d+
r = dimension of N+

r and d−r = dimension of N−
r . The spaces N+

r , N−
r are called the

deficiency spaces of T0(τr) and d+
r , d−r are called the deficiency indices of T0(τr). These

are related to the equation (2.2) as follows:

Nλ,r = {f ∈ D[T ∗
0 (τr)] | [T ∗

0 (τr)]f = [T (τr)]f = w−1
r τr[f ] = λf, r = 1, . . . , N}.

Thus, N+
r , N−

r consist of the solutions of the equation (2.2) which lie in the space

Hr = L2
wr

(Ir) for λ = +i and λ = −i, respectively. Hence d+
r , d−r are the number of

linearly independent solutions of the equation (2.2) which are in the space Hr for λ = +i

and λ = −i, respectively. It is clear for a symmetric differential operator T0(τr) that:

0 ≤ d+
r = d−r ≤ 2, r = 1, 2, . . . , N. (2.14)
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We denote the common value by dr and call dr the deficiency index of τr on Ir. From
the above discussion we see that there are only three possibilities for dr as: dr = 0, 1, 2,
r = 1, 2, . . . , N .

Note that, in the literature the maximal and minimal deficiency cases are often re-
ferred to as the limit-circle and limit-point cases. Strictly these latter terms are only
suitable for the now classical second order differential expressions; in this case the ter-
minology was originally introduced by Hermann Weyl. The term limit-point does give
an acceptable description of the minimal deficiency case for real, and hence even-order,
symmetric expressions.

Now, we recall the following results:
For any λ ∈ C \ R and for a symmetric differential operator T0(τr), we have from the

general theory that,

D(τr) = D0(τr) + N+
r + N−

r , r = 1, 2, . . . , N, (2.15)

where D0(τr), N+
r and N−

r are linearly independent subspaces and the sum is direct
(which we indicate with the symbol +); see [2], [7], [9], [11] and [15].

Any self-adjoint extension Sr of the symmetric differential operator T0(τr), satisfies

T0(τr) ⊂ Sr = S∗
r ⊂ T ∗

0 (τr), r = 1, 2, . . . , N,

and hence is completely determined by specifying its domain D(Sr),

D0(τr) ⊂ D(Sr) ⊂ D(τr), r = 1, 2, . . . , N.

can be proved by using formula (2.13); (see [1], [2], [7], [9] and [10]).

Theorem 2.4. The operator T0(τr) is a closed symmetric operator from Hr into Hr

and

T ∗
0 (τr) = T (τr) and T ∗(τr) = T0(τr), D0(τr) = domain of T ∗(τr), r = 1, . . . , N.

(2.16)

Proof. See [9], [12], [14] and [15, Section 17.4].
Some of the basic facts are summarized in:

Theorem 2.5.(cf. [12, Proposition 1])
(a) D0(τr) = {f ∈ D(τr) : [f, g]r(br) − [f, g]r(ar) = 0 for all f, g ∈ D(τr)}.
(b) If τr[.] is in the limit point case at an end-point c, then [f, g]r(c) = 0 for all f, g ∈

D(τr), c = ar or c = br, r = 1, 2, . . . , N .

(c) If an end-point c is regular, then for any solution u, u and u[1] are continuous at c.

(d) If ar and br are both regular end-points then for any αr, βr, γr and δr in C, there

exists a function f in D(τr) such that

f(ar) = αr, f [1](ar) = βr,

f(br) = γr, f [1](br) = δr, r = 1, 2 . . . , N.
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(e) If ar is regular and br is singular, then a function f from D(τr) is in D0(τr) if and

only if the following conditions are satisfied:

(i) f(ar) = 0, f [1](ar) = 0,

(ii) [f, g]r(br) = 0 for all f, g ∈ D(τr).

The analogous results hold when ar is singular and br is regular; also see [8], [10] and

[12].

Lemma 2.6.(cf. [9] and [12, Lemma 2]) Given αr, βr, γr and δr in C, then there

exists a Ψ ∈ [D(τr) \ D0(τr)] such that

Wr(Ψ, θ)(ar) = αr, Wr(Ψ, φ)(ar) = βr,

Wr(Ψ, θ)(br) = γr, Wr(Ψ, φ)(br) = δr, r = 1, 2, . . . , N,

where θ and φ are solutions of τ [u] = 0 satisfying (2.10). Furthermore, Ψ can be taken

to be a linear combination of θ and φ near each end-points.

Let H be the direct sum

H =

N
⊕

r=1

Hr =

N
⊕

r=1

L2
wr

(ar, br). (2.17)

The elements of H will be denoted by f
∼

= {f1, . . . , fN} with f1 ∈ H1, . . . , fN ∈ HN .

Remark 2.7. When Ii ∩ Ij = ∅, i 6= j, i, j = 1, 2, . . . , N , the direct sum space
⊕N

r=1(Ir) can be natural identified with the space L2
wr

(∪N
r=1Ir), where w = wr on the

interval Ir, r = 1, . . . , N . This remark is of particular significance when ∪N
r=1Ir may be

taken as a single interval, see [8].

We now established by [7], [9] and [11] some further notation

D0(τ) =

N
⊕

r=1

D0(τr), D0(τ) =

N
⊕

r=1

D(τr) (2.18)

T0(τ)f = {T0(τ1)f1, . . . , T0(τN )fN}, f1 ∈ D0(T1), . . . , fN ∈ D0(τN ). (2.19)

Also,

T (τ)f = {T (τ1)f1, . . . , T (τN)fN}, f1 ∈ D(τ1), . . . , fN ∈ D(τN ). (2.20)

The inner-product and sesquilinear form defined in (2.1) and (2.8) are:

(f
˜
, g
˜
) =

N
∑

r=1

(fr, gr),

[f
˜
, g
˜
] =

N
∑

r=1

{[fr, gr]r(br) − [fr, gr]r(ar), f
˜
, g
˜
∈ D(τ), (2.21)

where f
˜

= {f1, . . . , fN}, g
˜

= {g1, . . . , gN}.
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Note that T0(τr) =
⊕N

r=1 T0(τr) is closed symmetric operator in H .

3. The Product Operators in Direct Sum Spaces

The proof of general theorem will be based on the results in this section. We
start by listing some properties and results of Sturm-Liouville differential expressions
τ1, τ2, . . . , τn, each of order two. For proofs the reader is referred to [6], [9], [10], [16], [17]
and [18].

{

(τ1 + τ2)
+ = τ+

1 + τ+
2

(τ1τ2)
+ = τ+

2 τ+
1 , (λτ)+ = λτ+ for λ a complex number

}

. (3.1)

A consequence of Properties (3.1) is that if τ+ = τ then P (τ)+ = P (τ+) for P

any polynomial with complex coefficients. Also we note that the leading coefficients
of a product is the product of the leading coefficients. Hence the product of regular
differential expressions is regular. The next Lemma shows under conditions that the
deficiency indices of a product is the sum of the deficiences of the factors.

Lemma 3.1.(cf. [6, Theorem 1]) Suppose τj is a regular differential expression on the

interval [a, b] such that the minimal operator T0(τj) has Property (C) for j = 1, 2, . . . , n.

Then

(i) The product operator
∏n

j=1[T0(τj)] is closed, have dense domain, Property (C), and

def
[

n
∏

j=1

T0(τj)
]

=
n

∑

j=1

def [T0(τj)]; (3.2)

also

(ii) [T0(τ1τ2 · · · τn)] ⊆ ∏n

j=1[T0(τj)].

In part (ii) the containment may be proper, i.e., the operators T0(τ1τ2 · · · τn) and
∏n

j=1[T0(τj)] are not equal in general.
Note that, for symmetric differential operator T0(τj) which satisfies Property (C) and

by (2.14), then (3.2) is constant on [0, 2n]. In the problem with one singular end-point
this constant is in [n, 2n], while in the regular problem it is equal 2n; see [2].

Lemma 3.2.(cf. [6, Theorem 2]) Let τ1, τ2, . . . , τn be regular differential expressions

on [a, b]. Suppose that T0(τj) satisfies Property (C) for j = 1, 2, . . . , n. Then

T0(τ1τ2 · · · τn) =
n

∏

j=1

T0(τj) (3.3)

if and only if the following partial separation condition is satisfied: {f ∈ L2
w(a, b), f [s−1] ∈

ACloc[a, b), where s is the order of product expression (τ1τ2 · · · τn) and (τ1τ2 · · · τn)+f ∈
L2

w(a, b) together imply that:

(

k
∏

j=1

(τ+
j )

)

f ∈ L2
w(a, b), k = 1, . . . , n − 1}. (3.4)
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Therefore (3.3) and (3.4) are equivalent.

We shall say that the product (τ1τ2 · · · τn) is a partially separated expressions in
L2

w(a, b) whenever Property (3.4) holds.

Lemma 3.3.[cf. [6] and [10, Lemma 3.3] Let τj be a regular differential expression on

[a, b] for j = 1, . . . , n. If all solutions of the differential equation (τj)u = 0 and (τ+
j )v = 0

on [a, b] are in L2
w(a, b) for j = 1, . . . , n; then all solutions of (τ1τ2 · · · τn)u = 0 and

(τ1τ2 · · · τn)+v = 0 are in L2
w(a, b).

The special case of Lemma 3.3 when τj = τ for j = 1, 2, . . . , n and τ is symmetric
was established in [17]. In this case it is easy to see that the converse also holds. If all
solutions of τnu = 0 are in L2

w(a, b) then all solutions of τu = 0 must be in L2
w(a, b). In

general, if all solutions of (τ1τ2 · · · τn)u = 0 are in L2
w(a, b) then all solutions of τnu = 0

are in L2
w(a, b) since these also solutions of (τ1τ2 · · · τn)u = 0. If all solutions of the

adjoints equation (τ1τ2 · · · τn)+v = 0 are also in L2
w(a, b) then it follows similarly that all

solutions of τ+
1 v = 0 are in L2

w(a, b). So in particular for n = 2 we have established the
following Corollary.

Corollary 3.4. Suppose τ1, τ2 and τ1τ2 are all regular symmetric expressions on

[a, b). Then the product is in maximal deficiency case at b if and only if both τ1, τ2 are in

the maximal deficiency case at b (i.e., if τ1 and τ2 are in the classical limit-circle case at

b, then the fourth-order expression τ1τ2 is in the limit-circle case at b (i.e., d+ = d− = 4),
we refer to [6, Corollary 2] for more details.

In connection with the application of Theorem 3.1 to get information about the de-

ficiency indices of symmetric differential expressions, we note that the product of sym-

metric expressions is not symmetric in general. However, any power of a symmetric

expression is symmetric and so called symmetric such as τ1τ2τ1, τ1τ2τ3τ2τ1, etc., of

symmetric expressions are symmetric.

In the case of product operators in direct sum spaces, we summarize a few additional
properties of T0(τ) in the form of a lemma:

Lemma 3.5. Let τ1, τ2, . . . , τn be regular differential expressions on [a, b]. Suppose

that T0(τj) satisfies Property (C) for j = 1, 2, . . . , n. Then:

(a) [
∏n

j=1 T ∗
0 (τj)] =

⊕N

r=1[
∏n

j=1 T ∗
0 (τjr)] =

⊕N

r=1[
∏n

j=1 T (τjr)].
In particular,

D
[

n
∏

j=1

T ∗
0 (τj)

]

=

N
⊕

r=1

D
[

n
∏

j=1

T ∗
0 (τjr)

]

=

N
⊕

r=1

D
[

n
∏

j=1

T (τjr)
]

.

(b) nul[
∏n

j=1 T0(τj)] =
∑N

r=1 nul[
∏n

j=1 T0(τjr)] =
∑N

r=1

(

∑n

j=1 nul[T0(τjr)]
)

.

(c) The deficiency index of
∏n

j=1 T0(τj) is given by:

def
[

n
∏

j=1

T0(τj)
]

=

N
∑

r=1

def
[

n
∏

j=1

T0(τjr)
]

=

N
∑

r=1

(

n
∑

j=1

def [T0(τjr)]
)

.
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The sesquilinear (bilinear) form [f, g] can be written similar to that in (2.8) and (2.11)

as follows: For f, g ∈ D(τ1τ2 · · · τn),

[f, g](x) =
N

∑

r=1

(

n
∑

k=1

(−1)(k−1)(f [k−1]
r gr

[2n−k] − f [2n−k]
r gr

[k−1])r(x)
)

=

N
∑

r=1

(

(gr, gr
[1], . . . , gr

[2n−1])rJ2n×2n(fr, f
[1]
r , . . . , f [2n−1]

r )⊤r (x)
)

=

N
∑

r=1

([gr, φr,1], . . . , [gr, φr,2n])rJ2n×2n([fr, φr,1], . . . , [fr, φr,2n])⊤r (x), (3.5)

⊤ for transposed matrix, where f
[2n−k]
r , k = 1, . . . , 2n; r = 1, . . . , N , are the quasi

derivatives of fr, J2n×2n = ((−1)iδr,2n+1−j)(1 ≤ i, j ≤ 2n) and φr,1, φr,2, . . . , φr,2n are

linearly independent solutions of the equation [
∏n

j=1(τjr)]u = 0, r = 1, . . . , N . We refer

to [9], [12] and [13] for more details.

Lemma 3.6. Let τ1, τ2, . . . , τn be regular differential expressions on [a, b]. Suppose

that T0(τj) satisfies Property (C) for j = 1, 2, . . . , n. Then

T0(τ1τ2 · · · τn) =

n
∏

j=1

T0(τj) =

N
⊕

r=1

(

n
∏

j=1

[T0(τjr)]
)

. (3.6)

Proof. The proof follows from (2.18), (2.20), (3.3), Lemma 3.2 and Lemma 3.5.

Note that, if
∏n

j=1 Sjr, r = 1, . . . , N are self-adjoint extensions of
∏n

j=1 T0(τjr), then

by Lemma 3.6,

S =

n
∏

j=1

Sj =

N
⊕

r=1

[

n
∏

j=1

Sjr

]

(3.7)

is a self-adjoint extension of T0(τ1τ2 · · · τn); see also [3] and [10].

The next result is a straightforward extension of Theorem 4 in [15, Section 18.1]; see

also [2], [8] and [9].

Theorem 3.7. If the operator S =
⊕N

r=1(
∏n

j=1 Sjr) with D(S) is a self-adjoint

extension of the minimal operator T0(τ1τ2 · · · τn) =
⊕N

r=1(
∏N

j=1[T0(τjr)] with def[T0(τ1τ2

· · · τn)] = d ∈ [0, 2nN ], then there exist Ψ1, . . . , Ψd in D(S) ⊂ D[T (τ1τ2 · · · τn)] satisfying

the following conditions:

(i) Ψ1, . . . , Ψd are linearly independent modulo D[T0(τ1τ2 · · · τn)].

(ii) [Ψj, Ψk]ba = 0, j, k = 1, . . . , d. (3.8)

(iii) D(S) consists precisely of those y in D[T (τ1τ2 · · · τn)] which satisfy,

[y, Ψj]
b
a = 0, j = 1, . . . , d. (3.9)
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Conversely, given Ψ1, . . . , Ψd in D[T (τ1τ2 · · · τn)] which satisfy (i) and (ii), the set

D(S) defined by (iii) is a self-adjoint domain.

Proof. The proof is entirely similar to that in [10], [12] and [15, Theorem 18.1.4] and
therefore omitted.

Remark 3.8. It is well known from Natmark [15] that no boundary condition is
needed at a limit-point end-point in order to get a self-adjoint realization of

∏n

j=1(τj)u =
0. If both end-points are LP , then no boundary conditions are necessary and hence the
minimal (maximal) operator associated with

∏n

j=1(τj) in L2
w(a, b) is itself self-adjoint

and has no proper self-adjoint extensions (restrictions). On the other hand, a boundary
condition is needed for each limit-circle end-point.

The self-adjoint extensions are determined by boundary conditions imposed at the
end-points of the interval I. The type of these boundary conditions depends on the
nature of the problem in the interval I.

Theorem 3.9. Let
∏n

j=1 τj be regular symmetric differential expression on the inter-

val [a, b]. Then the boundary conditions determine the domain of self-adjoint extension

S =
⊕N

r=1(
∏n

j=1 Sjr) of T0(τ1τ2 · · · τn) is the set of functions y ∈ D[T (τ1τ2 · · · τn)] which

are such that
N

∑

r=1

M rY (ar) +
N

∑

r=1

N rY (br) = 0, (3.10)

where,

M r = (αr
jk)1≤j,k≤2n, N r = (βr

jk)1≤j,k≤2n; r = 1, 2, . . . , N, (3.11)

are 2n × 2n matrices over C, Y (.) = (y, y[1], . . . , y[2n−1])⊤(.), ⊤ for transposed matrix,

and αr
jk, βr

jk are complex numbers satisfying,

M rJ(M r)∗ = N rJ(N r)∗, J2n×2n = (−1)iδi,2n+1−j(1 ≤ i, j ≤ 2n). (3.12)

Conversely, if S is self-adjoint extension of T0(τ1τ2 · · · τn), then there exist 2n × 2n

matrices M r and N r over C such that the conditions (3.10) and (3.12) are satisfied and

D(S) is the set of functions y ∈ D[T (τ1τ2 · · · τn)] satisfying (3.10).

Proof. Let the boundary conditions (3.10) and (3.12) be given. By Theorem 2.5,
there are functions Ψ1,r, . . . , Ψ2n,r in D[T (τ1τ2 · · · τn)] which satisfy the conditions

Ψ
[2n−k]

jr (ar) = (−1)kαr
jk,

Ψ
[2n−k]

jr (br) = (−1)(k−1)βr
jk, j, k = 1, . . . , 2n, r = 1, 2, . . . , N. (3.13)

Given (3.13), it is not difficult to show that (3.12) and (3.10) can be restated in the
forms (3.8) and (3.9) respectively. It then follows from Theorem 3.7 that the domain
determined by (3.10) and (3.12) is the domain of self-adjoint extension of T0(τ1τ2 · · · τn).

Conversely, if S is self-adjoint extension of T0(τ1τ2 · · · τn), then by Theorem 3.7,
D(S) is determined by the functions Ψ1,r, . . . , Ψ2n,r in D[T (τ1τ2 · · · τn)] satisfying (3.8)
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and (3.9). If αr
jk and βr

jk, 1 ≤ j, k ≤ 2n are then defined by (3.13), it is clear that D(S)

is determined by (3.10) and (3.12); see [9], [10] and [12] for more details.

In the following cases, the self-adjoint extension S of T0(τ1τ2 · · · τn) is determined
by boundary conditions in terms of certain Wronskians (sesquilinear forms) involving y

and 2nN linearly independent solutions of the equation (
∏n

j=1 τj)u = 0 at the singular
end-points.

Case (i). Assume both end-points ar and br are singular LC. By (3.5), (3.8) and
Lemma 2.6, if we put,

[Ψj , φk,r](ar) = (−1)kαr
jk,

[Ψjr , φk,r](br) = (−1)(k−1)βr
jk, j, k = 1, . . . , 2n; r = 1, 2, . . . , N, (3.14)

then the boundary conditions of the function y ∈ D[T (τ1τ2 · · · τn)] have the same form

(3.10), where M r, N r satisfy (3.11) and (3.12), and Y (.) = ([y, φ1,r], . . . , [y, φ2n,r])
⊤(.).

Case (ii). (a) Assume the left end-point ar is regular and the right end-point br is

singular LC. Then the boundary conditions of the functions y ∈ D[T (τ1τ2 · · · τn)] in this
case are given by (3.10), where

Y (ar) = (y, y[1], . . . , y[2n−1])⊤(ar) and

Y (br) = ([y, φ1,r], . . . , [y, φ2n,r])
⊤(br), r = 1, 2, . . . , N, (3.15)

and the matrices M r and N r satisfy (3.11).

(b) If the left end-point ar is singular LC and the right end-point br is regular, then
let,

Y (ar) = ([y, φ1,r], . . . , [y, φ2n,r])
⊤(ar) and Y (br) = (y, y[1], . . . , y[2n−1])⊤(br),

and the rest is the same as in (a).

Case (iii). Assume one end-point is LP end-point and the other is either regular or

singular LC end-point, then we have,

(a) Suppose ar is LP . Then the boundary conditions in this case on the functions
y ∈ D[T (τ1τ2 · · · τn)] are (3.10) with M r = 0; i.e.,

N
∑

r=1

N rY (br) = 0, (3.16)

where,

Y (br) = (y, y[1], . . . , y[2n−1])⊤(br), if br is regular,

Y (br) = ([y, φ1,r], . . . , [y, φ2n,r])
⊤(br) if br is singular and LC, r = 1, 2, . . . , N .

(b) if br is LP , then it suffices to reverse the roles of ar and br in (a).
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Case (iv). If both end-points ar and br, r = 1, 2, . . . , N are LP , then no boundary

conditions are necessary; see Remark 3.8 above.

4. Discussion

In this section, we show how Cases (i), (ii), (iii) and (iv) follow from the sesquilinear

form (3.5), Lemma 2.6 and Theorem 3.7. The Cases d = 0, nN , 2nN are considered

separately.

Example 1. d = 0. In this case, both end-points are LP end-points and the minimal

operator T0(τ1τ2 · · · τn) is itself self-adjoint and has no proper self-adjoint extensions.

Example 2. d = nN . In this case, one end-point must be LP and the other either

regular or LC end-point.

(2a) Assume a is LP and b is regular. In this case Condition (iii) becomes,

[y, Ψj]
b
a = [y, Ψj](b)

=
N

∑

r=1

(

n
∑

k=1

(−1)(k−1)[y[k−1]Ψ
[2n−k]

jr − y[2n−k]Ψ
[k−1]

jr ]
)

(br) = 0, j = 1, . . . , n.

(4.1)

If b is regular, then Ψjr(br), Ψ
[1]
jr (br), . . . , Ψ

[2n−1]
jr (br) can take an arbitrary values and so

(3.10) can be rewritten as:
N

∑

r=1

N rY (br) = 0, (4.2)

where N r = (βr
jk)1≤j≤n,1≤k≤2n and Y (br) = (y, y[1], . . . , y[2n−1])⊤(br), r = 1, . . . , N .

From Theorem 3.7 (i), we have that not all of βj,1, . . . , βj,2nN can be zero since this

would imply by Theorem 3.7 that Ψj ∈ D0(τ1τ2 · · · τn), j = 1, . . . , nN . Condition (ii)

becomes,

N rJ2n×2n(N r)∗ = 0, (4.3)

J2n×2n = (−1)iδi,2n+1−j (1 ≤ i, j ≤ 2n; r = 1, . . . , N).

Hence, the self-adjoint “boundary conditions” are of the form (4.2) with real βr
j,1, . . .,

βr
j,2n, not all zero j = 1, . . . , n.

We have similar result if a is regular and b is LP .

(2b) Assume a is LP and b is LC. In this case, Condition (iii) becomes (4.1), which

is equivalent to

N
∑

r=1

([Ψjr, φ1,r], . . . , [Ψjr, φ2n,r]J2n×2n([y, φ1,r], . . . , [y, φ2n,r])
⊤ = 0, (4.4)
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j = 1, . . . , n. Set

[Ψj, φk,r ](br) = (−1)(k−1)βr
jk, j = 1, . . . , n; k = 1, . . . , 2n, r = 1, . . . , N. (4.5)

Then, the “boundary conditions” (iii) can be expressed as:

N
∑

r=1

N rY (br) = 0, (4.6)

where N r = (βr
jk)1≤j≤n,1≤k≤2n and Y (br) = ([y, φ1,r], . . . , [y, φ2n,r])

⊤(br). Again by

Theorem 3.7 (i), βr
j,1, . . . , β

r
j,2n j = 1, . . . , n are real and not all zero. Similarly for the

case when a is LC and b is LP .

Remark 4.1. Assume that a is LP . Comparing (4.6) with (4.2), note that when

y[k−1](br) is replaced by [y, φk,r ](br), k = 1, . . . , 2n, r = 1, . . . , N , then the singular case

when b is LC is an exact parallel to the case when b is regular.

Example 3. d = 2nN . In this case, each end-point is either regular or LC. By

(3.10), (3.13) and proceeding as in Case (2) above, we find that the condition (iii) is

equivalent to the equations:

N
∑

r=1

(

2n
∑

k=1

αr
jk[y, φk,r ](ar) +

2n
∑

k=1

βr
jk[y, φk,r](br)

)

= 0, j = 1, . . . , 2n. (4.7)

Theorem 3.7 (i) guarantee the linear independence of 2nN equations in (4.7), and Con-
dition (ii) reduces to the following conditions:

N
∑

r=1

(

n
∑

s=1

αr
jkαr

k,2n−s+1 −
n

∑

s=1

αr
j,2n−s+1α

r
ks

)

=

N
∑

r=1

(

n
∑

s=1

βr
jsβ

r

k,2n−s+1 −
n

∑

s=1

βr
j,2n−s+1β

r

ks

)

, j, k = 1, . . . , 2n. (4.8)

We refer to [7], [8], [9] and [12] for more details.

Remark 4.2. It remains an open question as to characterize the singular non self-

adjoint boundary conditions provided that u and its quasi-derivatives are replaced by

certain Wronskains (sesquilinear form) associated with non-symmetric differential ex-
pressions involving u and elements of the maximal domain.
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