A NOTE ON THE GENERALIZED NEUTRAL ORTHOGONAL GROUP IN DIMENSION FOUR

RYAD GHANAM

Abstract

We study the main properties of the generalized neutral orthogonal group $O(2,2)$ and its Lie algebra $o(2,2)$. We also give an explicit isomorphism between the Lie algebras $s u(1,1) \oplus s u(1,1)$ and $o(2,2)$. We use this isomorphism to classify the subalgebras of $o(2,2)$.

1. Introduction

In this paper we study the generalized orthogonal group $O(2,2)$ of a neutral metric in dimension four. In Section 2 we state and prove several theorem regarding the group $O(2,2)$. In Section 3 we study the Lie algebra of the group $O(2,2)$ which denoted by $o(2,2)$. We also show the relationship between the Lie algebras $s u(1,1) \oplus s u(1,1)$ and $o(2,2)$ by constructing an explicit isomorphism between them. In Section 4 we use that isomorphism to obtain a classification of the Lie algebras of $o(2,2)$. We use this isomorphism to classify the subalgebras of $o(2,2)$.

As regards notation, elements of $s u(1,1) \oplus s u(1,1)$ will be thought of as 2×2 block diagonal matrices. We shall denote the matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ by I, K, L, J, respectively. Also $S O_{o}(2,1)$ will denote the connected component of the identity in $S O(2,1)$.

2. The generalized orthogonal group $O(2,2)$

Let g be the inner product on \mathbb{R}^{4} of the form $g=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$. If $u=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4}\end{array}\right)$
Received and revised September 1, 2004.
2000 Mathematics Subject Classification. 70G65.
Key words and phrases. .
and $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right)$ are two vectors in \mathbb{R}^{4}, then $g(u, v)$ is given by

$$
g(u, v)=u^{t} g u=u_{1} v_{1}+u_{2} v_{2}-u_{3} v_{3}-u_{4} v_{4} .
$$

We define the following set Ω :

$$
\Omega=\left\{f: \mathbb{R}^{4} \mapsto \mathbb{R}^{4} \mid g(f(u), f(v))=g(u, v)\right\}
$$

This means that Ω is the set of all linear transformations on \mathbb{R}^{4} that preserve length.
Theorem 2.1. If f is in Ω, then f^{-1}, the inverse of f, is in Ω.
Proof. Let f be in Ω such that A is the matrix representation of f. Then A^{-1} is the matrix representation of f^{-1}, i.e

$$
\begin{equation*}
f^{-1}(u)=A^{-1} u \tag{1}
\end{equation*}
$$

for all $u \in \mathbb{R}^{4}$. Since f is in Ω we have

$$
\begin{equation*}
g(u, v)=g\left(A\left(A^{-1} u\right), A\left(A^{-1} v\right)=g\left(A^{-1} u, A^{-1} v\right)\right. \tag{2}
\end{equation*}
$$

and so f^{-1} is in Ω.

Theorem 2.2. If f and h are in Ω, then $f \circ g$ is in Ω.
Proof. For any u and v in \mathbb{R}^{4}, we have the following:

$$
\begin{equation*}
g((f \circ h)(u),(f \circ h)(v))=g(f(h(u)), f(h(v)))=g(h(u), h(v))=g(u, v) \tag{3}
\end{equation*}
$$

Theorem 2.3. Ω is a group, where the group mutiplication is the composition of functions.

Theorem 2.4. If $f \in \Omega$ and A is the matrix of f, then $A g A^{t}=g$, where A^{t} is the transpose of A.

Proof. Let $f: \mathbb{R}^{4} \mapsto \mathbb{R}^{4}$ be a linear transformation in Ω, then for any $u \in \mathbb{R}^{4}$, we have $f(u)=A u$, where A is the matrix representation of f. Now, for $u \neq 0$, we have the following:

$$
\begin{equation*}
g(f(u), f(u))=g(u, u) \tag{4}
\end{equation*}
$$

and so

$$
\begin{equation*}
(f(u))^{t} g f(u)=u^{t} g u \tag{5}
\end{equation*}
$$

Now, we replace $f(u)$ by $A u$ to obtain:

$$
\begin{equation*}
(A u)^{t} g(A u)=u^{t} g u \tag{6}
\end{equation*}
$$

and so

$$
\begin{equation*}
u^{t} A^{t} g A u=u^{t} g u \tag{7}
\end{equation*}
$$

hence

$$
\begin{equation*}
u^{t}\left(A^{t} g A-g\right) u=0 . \tag{8}
\end{equation*}
$$

Since equation (8) is true for all non-zero vectors u, then we must have

$$
\begin{equation*}
A^{t} g A-g=0 \tag{9}
\end{equation*}
$$

and so

$$
\begin{equation*}
A^{t} g A=g \tag{10}
\end{equation*}
$$

Let $M_{4}(\mathbb{R})$ be the set of all 4×4 matirces with real entries, we define the generalized neutral orthogonal group $O(2,2)$ to be

$$
O(2,2)=\left\{A \in M_{4}(\mathbb{R}) \mid A^{t} g A=g\right\}
$$

Theorem 2.5. If $A \in O(2,2)$, then $\operatorname{det}(A)= \pm 1$.
Proof. Since $A^{t} g A=g$, we take the the deteminant of both sides to obtain:

$$
\begin{equation*}
\operatorname{det}\left(A^{t} g A\right)=\operatorname{det}(g) \tag{11}
\end{equation*}
$$

and so

$$
\begin{equation*}
\operatorname{det}\left(A^{t}\right) \operatorname{det}(g) \operatorname{det}(A)=\operatorname{det}(g) \tag{12}
\end{equation*}
$$

since $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$, we have:

$$
\begin{equation*}
\operatorname{det}(A)^{2}=1 \tag{13}
\end{equation*}
$$

and so

$$
\begin{equation*}
\operatorname{det}(A)= \pm 1 \tag{14}
\end{equation*}
$$

Theorem 2.6. If $A \in O(2,2)$, then $A^{t} \in O(2,2)$.
Proof. Since $A^{t} g A=g$, then

$$
\begin{equation*}
\left(A^{t} g A\right)^{-1}=g^{-1} \tag{15}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(g A^{t}\right)^{-1} A^{-1}=g^{-1} \tag{16}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left(A^{t}\right)^{-1} g^{-1} A^{-1}=g^{-1} \tag{17}
\end{equation*}
$$

but since the inverse commutes with the transpose we have:

$$
\begin{equation*}
\left(A^{-1}\right)^{t} g^{-1} A^{-1}=g^{-1} \tag{18}
\end{equation*}
$$

since $g=g^{-1}=g^{t}$, we have

$$
\begin{equation*}
\left(A^{-1}\right)^{t} g\left(\left(A^{-1}\right)^{t}\right)^{t}=g \tag{19}
\end{equation*}
$$

We conclude that $\left(A^{-1}\right)^{t} \in O(2,2)$, and so $\left(\left(A^{-1}\right)^{t}\right)^{-1}=A^{t} \in O(2,2)$.

Theorem 2.7. If $\alpha \in \mathbb{C}$ is an eigenvalue of $A \in O(2,2)$, then:

1. $\alpha \neq 0$
2. α^{-1} is an eigenvalue of A, A^{t} and A^{-1}.

Proof. If $\alpha \in \mathbb{C}^{4}$ and since $\operatorname{det}(A) \neq 0$, then $\alpha \neq 0$. There exits a non-zero vector $v \in \mathbb{R}^{4}$ such that

$$
\begin{equation*}
A v=\alpha v \tag{20}
\end{equation*}
$$

and so

$$
\begin{equation*}
A^{-1} A v=A^{-1}(\alpha v) \tag{21}
\end{equation*}
$$

hence

$$
\begin{equation*}
v=\alpha A^{-1} v \tag{22}
\end{equation*}
$$

We divide both sides of equation (22) by α to obtain

$$
\begin{equation*}
\alpha^{-1} v=A^{-1} v \tag{23}
\end{equation*}
$$

This proves that α^{-1} is an eigenvalue of A^{-1}. Now, we want to show that α^{-1} is an eigenvalue of A^{t}. Since $A g A^{t}=g$, we have:

$$
\begin{equation*}
g A^{t}=A^{-1} g \tag{24}
\end{equation*}
$$

and so

$$
\begin{equation*}
g A^{t} g^{-1}=A^{-1} \tag{25}
\end{equation*}
$$

hence

$$
\begin{equation*}
g A^{t} g^{-1} x=A^{-1} x \tag{26}
\end{equation*}
$$

and so

$$
\begin{equation*}
g A^{t} g^{-1} x=\alpha^{-1} x \tag{27}
\end{equation*}
$$

and so

$$
\begin{equation*}
A^{t} g^{-1} x=g^{-1} \alpha^{-1} x \tag{28}
\end{equation*}
$$

hence

$$
\begin{equation*}
A^{t}\left(g^{-1} x\right)=\alpha^{-1}\left(g^{-1} x\right) \tag{29}
\end{equation*}
$$

This proves that α^{-1} is an eigenvalue of A^{t}.
Theorem 2.8. If $\alpha \in \mathbb{C}$ is an eigenvalue of $A \in O(2,2)$ and with a corresponding non-null eigenvector, then $|\alpha|=1$.

Proof. Let x be the corresponding non-null eigenvector with $g(x, x) \neq 0$, then

$$
g(x, x)=g(A x, A x)=g(\alpha x, \alpha x)=\alpha \bar{\alpha} g(x, x)=|\alpha|^{2} g(x, x)
$$

hence

$$
\begin{equation*}
|\alpha|^{2}=1 \tag{30}
\end{equation*}
$$

and so $|\alpha|=1$.
3. The isomorphism between $s u(1,1) \oplus s u(1,1)$ and $o(2,2)$

Let g be an inner product on \mathbb{R}^{4} of the form $g=\operatorname{diag}(1,1,-1,-1)$. Then $A \in O(2,2)$ if and only if $A^{T} g A=g$ where A^{T} is the transpose of A.

Theorem 3.1. M belongs to the Lie algebra $o(2,2)$ if it satisfies $g M+(g M)^{T}=0$.
Proof. Let $\alpha:(a, b) \rightarrow O(2,2)$ be a smooth curve in $O(2,2)$ such that $0 \in(a, b)$ and $\alpha(0)=I$, where I is the 4×4 identity matrix. Then

$$
\begin{equation*}
(\alpha(t))^{T} g \alpha(t)=g \tag{31}
\end{equation*}
$$

Now, we differentiate both sides of equation (31) with respect to t to obtain

$$
\begin{equation*}
\left((\alpha(t))^{T}\right)^{\prime} g \alpha(t)+(\alpha(t))^{T} g \alpha^{\prime}(t)=0 \tag{32}
\end{equation*}
$$

It is not difficult to show that the derivative commutes with the transpose, and so

$$
\begin{equation*}
\left((\alpha(t))^{\prime}\right)^{T} g \alpha(t)+(\alpha(t))^{T} g \alpha^{\prime}(t)=0 \tag{33}
\end{equation*}
$$

Taking $t=0$ and substituting $\alpha(0)=\alpha(0)^{T}=I$ imply

$$
\begin{equation*}
\left((\alpha(0))^{\prime}\right)^{T} g+g \alpha^{\prime}(0)=0 \tag{34}
\end{equation*}
$$

Let $\alpha(0)^{\prime}=M$ to obtain

$$
\begin{equation*}
M^{T} g+g M=0 \tag{35}
\end{equation*}
$$

Hence

$$
\begin{equation*}
(g M)^{T}+g M=0 . \tag{36}
\end{equation*}
$$

Lemma 3.1. A 2×2 matrix M belongs to the Lie algebra of $S U(1,1)$ if and only if $g M$ is skew-Hermitian and trace M is zero, where $g=\operatorname{diag}(1,-1)$.

Proof. Similar to the proof of Theorem 3.1.
We now define a map $h: S U(1,1) \mapsto O(2,1)$

$$
\left[\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right] \mapsto\left[\begin{array}{ccc}
\operatorname{Re}\left(a^{2}-b^{2}\right) & \operatorname{Im}\left(a^{2}+b^{2}\right) & 2 \operatorname{Im} a b \\
-\operatorname{Im}\left(a^{2}-b^{2}\right) & \operatorname{Re}\left(a^{2}+b^{2}\right) & 2 \operatorname{Re} a b \\
2 \operatorname{Im} \bar{a} b & 2 \operatorname{Re} \bar{a} b & |a|^{2}+|b|^{2}
\end{array}\right]
$$

where a and b are in \mathbb{C} with $|a|^{2}-|b|^{2}=1$. A lengthy but routine calculation proves that h is a homomorphism. If we choose $i K, i J$ and L as a basis for $s u(1,1)$, then the map h induces a Lie algebra homomorphism

$$
h_{*}: s u(1,1) \mapsto o(2,1)
$$

given by

$$
\left[\begin{array}{cc}
x i & a+b i \\
a-b i & -x i
\end{array}\right] \mapsto\left[\begin{array}{ccc}
0 & 2 x & 2 b \\
-2 x & 0 & 2 a \\
2 b & 2 a & 0
\end{array}\right]
$$

One can easily verify that h_{*} is an isomorphism.
Corollary 3.2. h is a covering map with kernel $\left\{ \pm I_{2}\right\}$. Hence

$$
S U(1,1) / \mathbb{Z}_{2} \approx S O_{o}(2,1)
$$

Using the adjoint representation we can find a simple Jordan normal form for a given element M in $o(2,1)$ and hence by applying $\left(h_{*}\right)^{-1}$ a simple form for any element in $s u(1,1)$. The eigenvalues of $M \in o(2,1)$ are of the form:

1. $\lambda=0, \quad \lambda= \pm \alpha, \quad \alpha>0$
2. $\lambda=0, \quad \lambda= \pm \beta i, \quad \beta>0$
3. $\lambda=0$ with multiplicity 3 (nilpotent).

The corresponding Jordan forms are

$$
\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & -\alpha & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & \beta & 0 \\
-\beta & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { and }\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

respectively. Now let g be a 3×3 real symmetric matrix relative to which M is skewadjoint, i.e.,

$$
\begin{equation*}
g M+(g M)^{t}=0 \tag{37}
\end{equation*}
$$

We reduce g to a simple form by means of a transformation that leaves the forms of M given above invariant thereby obtaining simultaneous normal forms for g and M. In fact we find that in all three cases g can be reduced to the form

$$
g=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

In $s u(1,1)$ the corresponding three forms for a Lie algebra element are $\alpha i J, \beta i K$ and $i K+L$, respectively, and the hermitian form can be brought into the form of the matrix K. Now we consider the group $\mathrm{O}(2,2)$ with the inner product g of the form $\left[\begin{array}{cc}I_{2} & 0 \\ 0 & -I_{2}\end{array}\right]$. We define a map $f: S U(1,1) \times S U(1,1) \longrightarrow S O_{o}(2,2)$ by

$$
\left(\left[\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right],\left[\begin{array}{cc}
c & d \\
\bar{d} & \bar{c}
\end{array}\right]\right) \mapsto\left[\begin{array}{cccc}
\operatorname{Re}(a \bar{c}+b d) & -\operatorname{Im}(a \bar{c}-b d) & -\operatorname{Im}(a d-b \bar{c}) & \operatorname{Re}(a d+b \bar{c}) \\
\operatorname{Im}(a \bar{c}+b d) & \operatorname{Re}(a \bar{c}-b d) & \operatorname{Re}(a d-b \bar{c}) & \operatorname{Im}(a d+b \bar{c}) \\
\operatorname{Im}(a \bar{d}+b c) & \operatorname{Re}(a \bar{d}-b c) & \operatorname{Re}(a c-b \bar{d}) & \operatorname{Im}(a c+b \bar{d}) \\
\operatorname{Re}(a \bar{d}+b c) & -\operatorname{Im}(a \bar{d}-b c)-\operatorname{Im}(a c-b \bar{d}) & \operatorname{Re}(a c+b \bar{d})
\end{array}\right]
$$

where a, b, c and d are in \mathbb{C} with $|a|^{2}-|b|^{2}=1$ and $|c|^{2}-|d|^{2}=1$. Again, a long computation verifies that f is a homomorphism with kernel $\left\{I_{2} \times I_{2},-I_{2} \times-I_{2}\right\}$ and so f induces an isomorphism $f_{*}: s u(1,1) \oplus s u(1,1) \longrightarrow \mathrm{o}(2,2)$. An explicit form of f_{*} mapping generators to generators is as follows:

$$
\begin{aligned}
f_{*}\left[\begin{array}{cc}
i K & 0 \\
0 & 0
\end{array}\right] & =\left[\begin{array}{cc}
-J & 0 \\
0 & J
\end{array}\right] & f_{*}\left[\begin{array}{cc}
0 & 0 \\
0 & i K
\end{array}\right] & =\left[\begin{array}{cc}
J & 0 \\
0 & J
\end{array}\right] \\
f_{*}\left[\begin{array}{cc}
i J & 0 \\
0 & 0
\end{array}\right] & =\left[\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right], & f_{*}\left[\begin{array}{cc}
0 & 0 \\
0 & i J
\end{array}\right] & =\left[\begin{array}{cc}
0 & K \\
K & 0
\end{array}\right] \\
f_{*}\left[\begin{array}{cc}
L & 0 \\
0 & 0
\end{array}\right] & =\left[\begin{array}{cc}
0 & J \\
-J & 0
\end{array}\right], & f_{*}\left[\begin{array}{cc}
0 & 0 \\
0 & L
\end{array}\right] & =\left[\begin{array}{cc}
0 & L \\
L & 0
\end{array}\right]
\end{aligned}
$$

4. Classification of the Subalgebras of $o(2,2)$

To obtain the classification of the subalgebras of $o(2,2)$ we now have the apparently simple task of finding subalgebras in $s u(1,1) \oplus s u(1,1)$ and pushing forward with f_{*}.

Lemma 4.1. There is a two-dimensional Lie subalgebra denoted by A in su(1,1), which is unique up to isomorphism.

Proof. Note that $i J$ and $i K+L$ generate a 2-dimensional Lie subalgebra, since

$$
[i J, i K+L]=2(i K+L)
$$

As for uniqueness, if M and N generate a 2-dimensional Lie subalgebra, then we can put M in canonical form, and so we discuss the following cases.

Case 1. If $M=i J$, we may assume $N=\alpha i K+\beta L$, when $\alpha, \beta \in \mathbb{R}$. Now $[M, N]=$ $2 \beta i K+2 \alpha L$, and this has to be a constant multiple of N. It easily follows that $\alpha= \pm \beta$ and by change of basis we can reduce to $\alpha=\beta$. This is the subalgebra A.

Case 2. If $M=i K$, we may assume $N=\alpha i J+\beta L$, where $\alpha, \beta \in \mathbb{R}$, and so $[M, N]=$ $2 \beta i J-2 \alpha L$. This has to be a constant multiple of N, and so $2 \beta i J-2 \alpha L=c(\alpha i J+\beta L)$. This easily leads to a contradiction.

Case 3. Similar to Case (2) starting from $M=i K+L$.
We obtained the classification by considering elements of $s u(1,1) \oplus s u(1,1)$ as 2×2 block diagonal matrices and letting the restriction of a subalgebra to each block have dimensions m and n, respectively. Of course the primary invariant of a subalgebra is its dimension which can vary from zero to six. We note also that the matrix $\left[\begin{array}{cc}K & 0 \\ 0 & I\end{array}\right]$ defines an automorphism of $o(2,2)$ which maps $\left[\begin{array}{cc}-J & 0 \\ 0 & J\end{array}\right]$ to $\left[\begin{array}{ll}J & 0 \\ 0 & J\end{array}\right],\left[\begin{array}{cc}0 & I \\ I & 0\end{array}\right]$ to $\left[\begin{array}{cc}0 & K \\ K & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & J \\ -J & 0\end{array}\right]$ to $\left[\begin{array}{cc}0 & L \\ L & 0\end{array}\right]$, respectively. It follows that the cases (m, n) and (n, m) give rise to isomorphic subalgebras in $o(2,2)$. The classification for one-dimensional algebras is obtained immediately and, allowing for change of basis, agrees with results obtained previously in [4]. For the remaining algebras, one simply checks for a given dimension d with $2 \leq d \leq 5$, all the possible subalgebras of $s u(1,1) \oplus s u(1,1)$ that can arise for particular values of m and n such that $m \geq n$ and $2 \leq m+n \leq 5$ and one realizes the corresponding subalgebra of $o(2,2)$ by applying f_{*}. Let us outline the method for threedimensional sualgebras. First of all $(3,0)$ corresponds to $s u(1,1) \oplus\{0\}$ and the algebra in $o(2,2)$ has generators $\left[\begin{array}{ll}0 & I \\ I & 0\end{array}\right],\left[\begin{array}{cc}-J & 0 \\ 0 & J\end{array}\right],\left[\begin{array}{cc}-J & 0 \\ 0 & J\end{array}\right]$. For the case $(3,1)$ we may assume that our generators are of the form $\left[\begin{array}{cc}i J & 0 \\ 0 & a N\end{array}\right],\left[\begin{array}{cc}i K & 0 \\ 0 & b N\end{array}\right]$ and $\left[\begin{array}{cc}L & 0 \\ 0 & c N\end{array}\right]$ where $a, b, c \in \mathbb{R}$ and the precise form of N is unknown. The Lie bracket of the first two must be twice the third, which implies that $c=0$. Likewise from the brackets of the first and third and second and third, respectively we deduce that $a=b=0$. and hence no such algebra of this kind is possible. Similarly one may argue that the case $(3,2)$ is impossible and that $(3,3)$ corresponds precisely to the diagonal subalgebra in $s u(1,1) \oplus s u(1,1)$. For the case $(2,1)$ we may assume that the generators have the form $\left[\begin{array}{cc}i J & 0 \\ 0 & a M\end{array}\right],\left[\begin{array}{cc}i K+L & 0 \\ 0 & b M\end{array}\right]$ and $\left[\begin{array}{cc}0 & 0 \\ 0 & M\end{array}\right]$ where $a, b \in \mathbb{R}$. We can now put M into canonical form and we obtain three classes of algebra in $o(2,2)$ depending on a parameter α. Similarly for the case $(2,2)$ we obtain a single class of Lie algebras in $o(2,2)$ that depends on a parameter α. Table 1 gives our list of the subalgebras of $o(2,2)$ in terms of a basis for each subalgebra. We state the dimension of the subalgebra and have numbered the subalgebras from 1 to 32
for future reference, though certain of these numbers pertain to classes of subalgebras depending on parameters α and β.

Table 1

Number	Basis for the Lie Subalgebra	Dimension
1	$\left[\begin{array}{cccc}0 & \alpha & 0 & 0 \\ -\alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta \\ 0 & 0 & -\beta & 0\end{array}\right]$	
2	$\left[\begin{array}{cccc}0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \beta \\ \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0\end{array}\right]$	
3		

Table 1 (Continue)

References

[1] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press 1978.
[2] R. Ghanam, The holonomy groups of four dimensional neutral metrics, Ph.D. dissertation, The University of Toledo, May, 2000.
[3] R. Ghanam and G. Thompson, The Holonomy Lie Algebras of neutral metrics in dimension four, J. Math. Phys. 42, (2001). 2266-2284.
[4] G. Thompson, Normal forms for elements of $o(p, q)$ and Hamiltonians with integrals linear in momenta, J. Austral. Math. Soc. Ser. B 33(1992), 486-507.

Department of Mathematics, University of Pittsburgh at Greensburg, 1150 Mt. Pleasant Rd., Greensburg, PA 15601, U.S.A.
E-mail: ghanam@pitt.edu

