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A GCD AND LCM-LIKE INEQUALITY FOR
MULTIPLICATIVE LATTICES

DANIEL D. ANDERSON, TAKASHI AOKI, SHUZO IZUMI, YASUO OHNO

AND MANABU OZAKI

Abstract. Let A1, . . . , An (n ≥ 2) be elements of an commutative multiplicative lattice. Let
G(k) (resp., L(k)) denote the product of all the joins (resp., meets) of k of the elements.
Then we show that

L(n)G(2)G(4) · · ·G(2⌊n/2⌋) ≤G(1)G(3) · · ·G(2⌈n/2⌉−1).

In particular this holds for the lattice of ideals of a commutative ring. We also consider
the relationship between

G(n)L(2)L(4) · · ·L(2⌊n/2⌋) and L(1)L(3) · · ·L(2⌈n/2⌉−1)

and show that any inequality relationships are possible.

1. Introduction

Let R be a commutative ring (not necessarily with identity). Then for two ideals A1 and

A2 of R we have

(A1 ∩ A2)(A1 + A2) ⊆ A1 A2. (†2)

For three ideals A1, A2, A3 of R it is easily verified that we have

(A1 ∩ A2 ∩ A3)(A1 + A2)(A1 + A3)(A2 + A3) ⊆ A1 A2 A3(A1 + A2 + A3). (†3)

The purpose of this paper is to give a general containment relation (†n) for n ideals A1, . . . , An

of R, n ≥ 2, generalizing the previous two relations (†2) and (†3).

The corresponding ideal formulation is as follows. Let R be a commutative ring and let

A1, . . . , An (n Ê 2) be ideals of R. For 1 É k É n put

G(k) :=G(k; A1, . . . , An) = ∏
1Éi1<···<ikÉn

(Ai1 +·· ·+ Aik ),
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L(k) := L(k; A1, . . . , An) = ∏
1Éi1<···<ikÉn

(Ai1 ∩·· ·∩ Aik )

(so G(1) = L(1) = A1 · · · An , G(n) = A1 +·· ·+ An , L(n) = A1 ∩·· ·∩ An).

Definition 1.1. The ring R satisfies (∗)n for ideals A1, . . . , An of R (n Ê 2) if

G(n)
∏

2É2kÉn
L(2k) = ∏

1É2k+1Én
L(2k +1), (∗)n

satisfies (∗∗)n for ideals A1, . . . , An of R (n Ê 2) if

L(n)
∏

2É2kÉn
G(2k) = ∏

1É2k+1Én
G(2k +1), (∗∗)n

and satisfies (†n) for ideals A1, . . . , An of R (n ≥ 2) if

L(n)
∏

2≤2k≤n
G(2k) ⊆ ∏

1≤2k+1≤n
G(2k +1). (†n)

Using the ceiling function and the floor function, we may express these as follows:

G(n)L(2)L(4) · · ·L(2⌊n/2⌋) = L(1)L(3) · · ·L(2⌈n/2⌉−1), (∗)n

L(n)G(2)G(4) · · ·G(2⌊n/2⌋) =G(1)G(3) · · ·G(2⌈n/2⌉−1), (∗∗)n

L(n)G(2)G(4) · · ·G(2⌊n/2⌋) ⊆G(1)G(3) · · ·G(2⌈n/2⌉−1). (†n)

Note that (∗)2 reduces to (A1 + A2)(A1 ∩ A2) = A1 A2 and (∗∗)2 reduces to (A1 ∩ A2)(A1 +
A2) = A1 A2 while as previously mentioned (†2) is (A1 ∩ A2)(A1 + A2) ⊆ A1 A2. We are taking

n Ê 2 as the properties (∗)1 and (∗∗)1 are simply A1 = A1 which is always true as is (†1) A1 ⊆ A1.

A commutative ring R is called a chained ring (resp., arithmetical ring) if the lattice of

ideals of R is a chain (resp., distributive). So an integral domain is a chained ring if and only

if it is a valuation domain. It is well known that R is an arithmetical ring if and only if RM

is a chained ring for each maximal ideal M of R. An integral domain is a Prüfer domain if

every nonzero finitely generated ideal is invertible. R is a Prüfer domain if and only if RM

is a valuation domain for each maximal ideal M of R if and only if RM is a chained ring for

each maximal ideal M of R. Thus a Prüfer domain is an arithmetical ring that is an integral

domain. Finally, R is a Prüfer ring if every finitely generated regular ideals is invertible. Here,

an element is regular if it is not a zero-divisor and an ideal is regular if it contains a regular

element.

We showed [1, Theorem 2.4] if R is an arithmetical ring, then (∗)n and (∗∗)n hold for

all ideals A1, . . . , An of R and that, R is a Prüfer ring if and only if (∗∗)n hold for some n ≥ 2
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(equivalently, for all n ≥ 2) for all ideals A1, . . . , An of R when at least n−1 of them are regular [1,

Theorem 2.6]. We also proved that (GCD)n and (LCM)n hold for any GCD domain [1, Theorem

2.8]:

gcd(a1, . . . , an)
∏

2É2kÉn

∏
1Éi1<···<i2kÉn

lcm(ai1 , . . . , ai2k ) (GCD)n

= a1 · · ·an
∏

2É2k+1Én

∏
1Éi1<···<i2k+1Én

lcm(ai1 , . . . , ai2k+1 )

lcm(a1, . . . , an)
∏

2É2kÉn

∏
1Éi1<···<i2kÉn

gcd(ai1 , . . . , ai2k ) (LCM)n

= a1 · · ·an
∏

2É2k+1Én

∏
1Éi1<···<i2k+1Én

gcd(ai1 , . . . , ai2k+1 ).

Note that for a PID R, GCDn (resp., LCMn) may be obtained from (∗)n (resp., (∗∗)n) by taking

A1 = (a1), . . . , An = (an).

Thus neither (∗)n nor (∗∗)n always holds. In Section 2, however, we show that the one-

sided inclusion

L(n)
∏

2É2kÉn
G(2k) ⊆ ∏

1É2k+1Én
G(2k +1) (†n)

holds for general commutative rings (which may not have an identity). Indeed, this holds not

only for ideal lattices of commutative rings, but in the quite general setting of a (commutative)

multiplicative lattice. In Section 3 we give some examples to illustrate results from Section 2.

2. Inclusion Formula for Multiplicative Lattices

We have noted in the Introduction that the identity (∗)n or (∗∗)n holds for all ideals of

special rings. However one inclusion formula holds for a general commutative ring as follows.

Using the expression in the former section, it is expressed as

L(n; A1, A2, . . . , An)
∏

2É2kÉn
G(2k; A1, A2, . . . , An)

⊆ ∏
1É2k+1Én

G(2k +1; A1, A2, . . . , An)

or equivalently,

L(n)G(2)G(4) · · ·G(2⌊n/2⌋) ⊆G(1)G(3) · · ·G(2⌈n/2⌉−1).

This is the only inclusion formula concerning both sides of (∗)n and (∗∗)n which holds for

all ideals of a general commutative ring. For, it is shown by Example 3.1, that the opposite

inclusion does not always hold and by Example 3.2 that neither of the inclusions between
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G(n)L(2)L(4) · · ·L(2⌊n/2⌋) and L(1)L(3) · · ·L(2⌈n/2⌉−1) always holds. We prove the above in-

clusion in a more generalized form: inequality in a (commutative) multiplicative lattice.

By a multiplicative lattice we mean a lattice with a commutative, associative product that

distributes over finite joins. Observe that A ≤ B implies AC ≤ BC for elements A,B ,and C of a

multiplicative lattice. The ideals of a commutative ring (or even a semiring) or commutative

multiplicative semigroup with 0 forms a complete multiplicative lattice with A∨B = A+B for

a ring or semiring (A ∨B = A ∪B for a semigroup), A ∧B = A ∩B , and AB as the usual ideal

product.

Given elements A1, . . . , An of a multiplicative lattice I , we can define G(k), L(k) ∈I :

G(k) :=
∏

1Éi1<···<ikÉn
(Ai1 ∨·· ·∨ Aik ),

L(k) :=
∏

1Éi1<···<ikÉn
(Ai1 ∧·· ·∧ Ain ),

as in Section 1, replacing + and ∩ respectively by ∨ and ∧. The identities (∗)n , (∗∗)n and (†n)

are defined in the same way as Definition 1.1. Then we can prove the following generalization

of [1, Lemma 2.1]. The proof is similar.

Proposition 2.1. Let I be a multiplicative lattice and take A1, . . . , An ∈ I (n Ê 2). Suppose

that {A1, . . . , An} has a maximum (resp., minimum) element. Then (∗)n (resp., (∗∗)n) holds for

A1, . . . , An ∈I .

In this general setting, we do not know any other meaningful sufficient condition for the

identities (∗)n and (∗∗)n to hold. Thus we content ourselves with a one-sided inequality as

follows. Note that it implies the one-sided inclusion formula for ideals of a general commu-

tative semiring (and hence ring) which may not have an identity.

Theorem 2.2. Let I be a multiplicative lattice. For A1, . . . , An ∈I (n ∈N), we always have the

following:

L(n)G(2)G(4) · · ·G(2⌊n/2⌋) ÉG(1)G(3) · · ·G(2⌈n/2⌉−1). (†n)

Proof. In this theorem, (†1) should be interpreted as the trivial assertion A É A. The assertion

(†2) follows from

(A1 ∧ A2)(A1 ∨ A2) É A2 A1 ∨ A1 A2 = A1 A2.

Assume that, for some n Ê 3, we have proved (†k ) (k < n). Let us put

G(p; q,r ; A1, . . . ,An) :=
∏

q<i1<···<ip−2<r
(Aq ∨ Ai1 ∨·· ·∨ Aip−2 ∨ Ar )



A GCD AND LCM-LIKE INEQUALITY 265

(1 É q É r É n, 1 É p É r −q +1).

Here, in the case r = q ,

G(1; q, q ; A1, . . . , An) = Aq ,

and in the case r = q +1,

G(1; q, q +1; A1, . . . , An) =Aq Aq+1,

G(2; q, q +1; A1, . . . , An) =Aq ∨ Aq+1.

We also have

G(p; A1, . . . , An) = ∏
1ÉqÉn

p+q−1ÉrÉn

G(p; q,r ; A1, . . . , An)

for 1 É p É n.

If n is even: n = 2m Ê 4, we have to prove

(Left) := L(2m; A1, . . . , A2m)
∏

1ÉpÉm
G(2p; A1, . . . , A2m)

É ∏
1ÉpÉm

G(2p −1; A1, A2, . . . , A2m) =: (Right).

The expression (Left) contains the factor (A2m−1∨A2m). Let (Left)2m−1 (resp., (Left)2m) denote

the expression obtained by substitution of this factor (A2m−1 ∨ A2m) by A2m−1 (resp. by A2m)

in (Left). Since (Left) = (Left)2m−1 ∨ (Left)2m , we only have to prove

(Left)2m−1 É (Right), (Left)2m É (Right).

By symmetry, we only have to prove the latter. Since

(Left) = L(2m; A1, . . . , A2m)
∏

1ÉpÉm−1

(
G(2p; A1, . . . , A2m−1)

∏
1ÉqÉ2m−2p+1

G(2p; q,2m; A1, . . . , A2m)
)

= L(2m; A1, . . . , A2m)
( ∏

1ÉpÉm−1
G(2p; A1, . . . , A2m−1)

)
·
( ∏

1ÉqÉ2m−1
(Aq ∨ A2m)

)( ∏
2ÉpÉm

1ÉqÉ2m−2p+1

G(2p; q,2m; A1, . . . , A2m)

)

= L(2m; A1, . . . , A2m)
( ∏

1ÉpÉm−1
G(2p; A1, . . . , A2m−1)

)
·
( ∏

1ÉqÉ2m−1
(Aq ∨ A2m)

)
·
( ∏

2ÉpÉm
1ÉqÉ2m−2p+1

G(2p −2; Aq ∨ Aq+1 ∨ A2m ,
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Aq ∨ Aq+2 ∨ A2m , . . . , Aq ∨ A2m−1 ∨ A2m)

)
,

if we put

Bq,ν := Aq ∨ Aν∨ A2m (q < ν< 2m),

we have

(Left)2m = L(2m; A1, . . . , A2m)
( ∏

1ÉpÉm−1
G(2p; A1, . . . , A2m−1)

)
·
( ∏

1ÉqÉ2m−2
(Aq ∨ A2m)

)
A2m( ∏

2ÉpÉm
1ÉqÉ2m−2p+1

G(2p −2;Bq,q+1,Bq,q+2, . . . ,Bq,2m−1)

)
.

Note that

Aq ∨ A2m É L(2m −q −1;Bq,q+1,Bq,q+2, . . . ,Bq,2m−1).

Thus we have

(Left)2m = L(2m; A1, . . . , A2m)
( ∏

1ÉpÉm−1
G(2p; A1, . . . , A2m−1)

)
· (A2m−2 ∨ A2m)A2m

· ∏
1ÉqÉ2m−3

(
(Aq ∨ A2m)

∏
2ÉpÉm−(q−1)/2

G(2p −2;Bq,q+1,Bq,q+2, . . . ,Bq,2m−1)
)

É L(2m −1; A1, . . . , A2m−1)
( ∏

1ÉpÉm−1
G(2p; A1, . . . , A2m−1)

)
· (A2m−2 ∨ A2m)A2m

·
∏

1ÉqÉ2m−3

(
L(2m −q −1;Bq,q+1, . . . ,Bq,2m−1)

∏
2ÉpÉm+(1−q)/2

G(2p −2;Bq,q+1,Bq,q+2, . . . ,Bq,2m−1)
)
.

By the inductive assumption and by

A2m−2 ∨ A2m É A2m−2 ∨ A2m−1 ∨ A2m ,

the expression (Left)2m is majorized by( ∏
1ÉpÉm

G(2p −1; A1, . . . , A2m−1)
)
(A2m−2 ∨ A2m−1 ∨ A2m)A2m

·
∏

1ÉqÉ2m−3

∏
1ÉpÉm−q/2

G(2p −1;Bq,q+1,Bq,q+2, . . . ,Bq,2m−1)

É
( ∏

1ÉpÉm
G(2p −1; A1, . . . , A2m)

)
= (Right).

Here note that A2m−2 ∨ A2m−1 ∨ A2m is the only join of three Ai ’s which contains A2m and is

not equal to some Bq,r .
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In the case n = 2m+1 Ê 3, putting Cq,r := Aq ∨Ar ∨A2m+1 and replacing the factor A2m ∨
A2m+1 of

(Left) := L(2m +1; A1, . . . , A2m+1)
∏

1ÉpÉm
G(2p; A1, . . . , A2m+1)

by A2m+1, we similarly have the following.

(Left)2m+1 = L(2m; A1, . . . , A2m+1)
( ∏

1ÉpÉm
G(2p; A1, . . . , A2m)

)
·(A2m−1 ∨ A2m+1)A2m+1

· ∏
1ÉqÉ2m−2

(
L(2m −q ;Cq,q+1, . . . ,Cq,2m)

∏
2ÉpÉm+1−q/2

G(2p −2;Cq,q+1,Cq,q+2, . . . ,Cq,2m)
)

É
( ∏

1ÉpÉm
G(2p −1; A1, . . . , A2m)

)
(A2m−1 ∨ A2m ∨ A2m+1)A2m+1

·
∏

1ÉqÉ2m−2

∏
1ÉpÉm

G(2p −1;Cq,q+1,Cq,q+2, . . . ,Cq,2m)

=
( ∏

1ÉpÉm
G(2p −1; A1, . . . , A2m+1)

)
= (Right).

This completes the mathematical induction. ���

3. Examples

In this section we give some examples which illustrate the results of Section 2.

Example 3.1 (A ring with L(n)
∏

2É2kÉn G(2k) (
∏

1É2k+1Én G(2k + 1) for all n Ê 2). Put R =
k[X1, X2, . . .] for a field k and take Ai = (Xi ). Here L(n) = (X1)∩·· ·∩ (Xn) = (X1 · · ·Xn), G(1) =
(X1 · · ·Xn) and G(n) = (X1, . . . , Xn). We can quote Theorem 2.2 to get

L(n)
∏

2É2kÉn
G(2k) ⊆

∏
1É2k+1Én

G(2k +1).

However, we sketch a proof. This example shows that the inequality given in Theorem 2.2

may be strict, or equivalently, that the reverse inequality need not hold.

Note that each of the ideals L(n) and G(l ) (1 É l É n) is generated by monomials in

X1, . . . , Xn . Of course L(n) and G(1) are generated by X1 · · ·Xn and G(n) is generated by X1, . . . , Xn .

Suppose 1 < k < n, G(k) =∏
1Éi1<···<ikÉn(Xi1 , . . . , Xin ), a product of

(n
k

)
ideals and hence is gen-

erated by monomials in X1, . . . , Xn of degree
(n

k

)
. In fact G(k) is generated by

{X α1
1 · · ·X αn

n : 0 Éαi É
(

n −1

k −1

)
, α1 +·· ·+αn =

(
n

k

)
}.



268 DANIEL D. ANDERSON, TAKASHI AOKI, SHUZO IZUMI, YASUO OHNO AND MANABU OZAKI

Suppose n is even. Then L(n)
∏

G(2k) is generated by the monomials

X1 · · ·Xn
∏

1ÉkÉn/2−1
X

α1,2k

1 · · ·X
αn,2k
n X β1

1 · · ·X βn
n

where

0 Éαi ,2k É
(

n −1

2k −1

)
, α1,2k +·· ·+αn,2k =

(
n

2k

)
,

0 Éβi É 1, β1 +·· ·+βn = 1.

This may be rewritten as
∏

1ÉiÉn X
1+αi ,2+···+αi ,n−2+βi

i and has degree n+∑
1ÉkÉn/2

( n
2k

)
. Similarly

one can write down the generators for G(2k+1) which are monomials of degree
∑

0ÉkÉn/2−1
( n

2k+1

)
.

Now

n + ∑
1ÉkÉn/2

(
n

2k

)
= ∑

0ÉkÉn/2−1

(
n

2k +1

)
,

so the monomial generators for L(n)
∏

G(2k) have degree n−1 greater than the ones for G(2k+
1), which rules out equality of L(n)

∏
G(2k) and

∏
G(2k +1). A rather messy argument shows

that each of the monomial generators for L(n)
∏

G(2k) is a multiple of a monomial generator

for
∏

G(2k +1). Thus we have L(n)
∏

G(2k)(
∏

G(2k +1). The case for n odd is similar.

Example 3.2 (Any relationship between G(3)L(2) and L(1)L(3) is possible). Take R = k[X ,Y , Z ],

k a field.

1. G(3)L(2) = L(1)L(3): Take A1 = (X ), A2 = (Y ), A3 = (X ,Y ). Since A1, A2 ⊆ A3, G(3)L(2) =
L(1)L(3) by Proposition 2.1 or [1, Lemma 2.1].

2. G(3)L(2) ( L(1)L(3): Take A1 = (X ), A2 = (Y ), A3 = (Z ). By [1, Example 3.3], G(3)L(2) (
L(1)L(3).

3. G(3)L(2)) L(1)L(3): Take

A1 = (X ,Y ), A2 = (Y , Z ), A3 = (Z , X ).

So G(3) = (X ,Y , Z ) and

L(2) = ((X ,Y )∩ (X , Z ))((X ,Y )∩ (X , Z ))((X , Z )∩ (Y , Z ))

= (X ,Y Z )(Y , X Z )(Z , X Y ).

So

G(3)L(2) = (X ,Y , Z )(X ,Y Z )(Y , X Z )(Z , X Y )

= (X 3Y 2, X 2Y 3,Y 3Z 2,Y 2Z 3, X 2Z 3, X 3Z 2, X 2Y Z , X Y 2Z , X Y Z 2).
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On the other hand,

L(1)L(3) = (X ,Y )(Y , Z )(Z , X )((X ,Y )∩ (Y , Z )∩ (Z , X ))

= (X ,Y )(Y , Z )(Z , X )(X Y ,Y Z , Z X )

= (X 3Y 2, X 2Y 3,Y 3Z 2,Y 2Z 3, X 2Z 3, X 3Z 2,

X 2Y 2Z , X 2Y Z 2, X Y 2Z 2, X 3Y Z , X Y 3Z , X Y Z 3),

which is easily checked to be a proper subset of G(3)L(2).

4. G(3)L(2) and L(1)L(3) are incomparable: Take ideals

A1 = (X 2,Y ), A2 = (Y 3, Z ), A3 = (X Y , Z ).

First we show X Y 5Z ∈G(3)L(2) but X Y 5Z ∉ L(1)L(3). The first inclusion follows from

X Y 5Z = Y ·Y 3 ·Z ·X Y

∈ (A1 + A2 + A3)(A1 ∩ A2)(A2 ∩ A3)(A1 ∩ A3).

On the other hand,

A1 ∩ A2 ∩ A3 = (A1 ∩ A2)∩ A3

= (X 2Z ,Y 3,Y Z )∩ (X Y , Z ) = (X 2Z , X Y 3,Y Z ).

If

X Y 5Z ∈ L(1)L(3) = A1 A2 A3(A1 ∩ A2 ∩ A3),

it follows that X Y 5Z ∈ A1 A2 A3(X Y 3,Y Z ). So Y 2Z ∈ A1 A2 A3 or X Y 4 ∈ A1 A2 A3. This

implies Y 2Z ∈ (Y )(Z )(Z ) or X Y 4 ∈ (X 2,Y )(Y 3)(X Y ), each of which obviously yields a

contradiction. Thus we have proved that X Y 5Z ∉ L(1)L(3).

Next we prove that Y 2Z 3 ∈ L(1)L(3) but Y 2Z 3 ∉ G(3)L(2). The first inclusion follows

from

Y 2Z 3 = Y ·Z ·Z ·Y Z ∈ A1 A2 A3(A1 ∩ A2 ∩ A3).

Since each nonzero element of

L(2) = (X 2Z ,Y 3,Y Z )(X Y 3, Z )(X 2Z , X Y ,Y Z )

(resp., G(3) = (X 2,Y , Z ))

has degree at least 5 (resp., 1), any nonzero element of G(3)L(2) has degree at least 6.

Hence Y 2Z 3 can not be contained in G(3)L(2).
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