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JOINS, CORONAS AND THEIR VERTEX-EDGE

WIENER POLYNOMIALS

MAHDIEH AZARI AND ALI IRANMANESH

Abstract. The vertex-edge Wiener index of a simple connected graph G is defined as the

sum of distances between vertices and edges of G. The vertex-edge Wiener polynomial of

G is a generating function whose first derivative is a q−analog of the vertex-edge Wiener

index. Two possible distances D1(u,e|G) and D2(u,e|G) between a vertex u and an edge

e of G can be considered and corresponding to them, the first and second vertex-edge

Wiener indices of G, and the first and second vertex-edge Wiener polynomials of G are

introduced. In this paper, we study the behavior of these indices and polynomials under

the join and corona product of graphs. Results are applied for some classes of graphs

such as suspensions, bottlenecks, and thorny graphs.

1. Introduction

Throughout the paper, our graphs are considered to be finite, simple, and connected.

In theoretical chemistry, the physico-chemical properties of chemical compounds are often

modeled by means of molecular-graph-based structure-descriptors, which are also referred

to as topological indices [15, 25]. The vertex version of the Wiener index is the first reported

distance-based topological index which was introduced in 1947 by Wiener [26, 27], who used

it for modeling the shape of organic molecules and for calculating several of their physico-

chemical properties. The Wiener index W (G) of a graph G is defined as

W (G) =
∑

{u,v}⊆V (G)

d (u, v |G ),

where d (u, v |G ) denotes the distance between the vertices u and v of G which is defined as

the length of any shortest path in G connecting them. We refer the reader to [8, 10, 12, 13, 23]

for more information on the Wiener index.

The Wiener polynomial [17, 24] of a graph G is defined in terms of a parameter q as

W (G ; q) =
∑

{u,v}⊆V (G)

qd(u,v |G ).
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The first derivative of this polynomial at q = 1 is equal to the Wiener index, i.e., W ′(G ;1) =

W (G). Details on the Wiener polynomial and its applications can be found in [9, 11, 14].

The edge versions of the Wiener index based on the distance between edges in a graph G

were introduced in 2009 [7, 19, 20]. The first and second edge-Wiener indices of G are denoted

by We0
(G) and We4

(G), respectively and defined as

Wei
(G) =

∑

{e, f }⊆E(G)

di (e, f |G ), i ∈ {0,4},

where for distinct pair of edges e =uv and f = zt of G , the distances d0(e, f |G ) and d4(e, f |G )

are defined as

d0(e, f |G ) = 1+min{d (u, z |G ),d (u, t |G ),d (v, z |G ),d (v, t |G )},

d4(e, f |G ) = max{d (u, z |G ),d (u, t |G ),d (v, z |G ),d (v, t |G )}.

It is easy to see that, d0(e, f |G ) = d (e, f |L(G) ), where L(G) is the line graph of G . This im-

plies that, We0
(G) = W (L(G)). For details on the edge-Wiener indices see [1, 2, 3, 4, 22] and

especially the recent survey [18].

The first and second edge-Wiener polynomials of G are denoted by We0
(G ; q) and We4

(G ; q),

respectively and defined in terms of a parameter q as

Wei
(G ; q) =

∑

{e, f }⊆E(G)

qdi (e, f |G ), i ∈ {0,4}.

One can easily see that, We0
(G ; q) = W (L(G); q) and the first derivative of the edge-Wiener

polynomials at q = 1 are equal to their corresponding edge-Wiener indices, i.e., W
′

ei
(G ;1) =

Wei
(G), i ∈ {0,4}.

Motivated by definitions of the vertex version and edge versions of the Wiener index, the

vertex-edge Wiener indices were defined based on distance between vertices and edges of a

graph [6, 20]. Two possible distances between a vertex u and an edge e = ab of a graph G can

be considered. The first distance is denoted by D1(u,e |G ) and defined as [20],

D1(u,e |G ) = min{d (u, a |G ),d (u,b |G )},

and the second one is denoted by D2(u,e |G ) and defined as [6],

D2(u,e |G ) =max{d (u, a |G ),d (u,b |G )}.

Based on these two distances, two vertex-edge versions of the Wiener index can be defined.

The first and second vertex-edge Wiener indices of G are denoted by Wve1
(G) and Wve2

(G),

respectively and defined as

Wvei
(G) =

∑

u∈V (G)

∑

e∈E(G)

Di (u,e |G ), i ∈ {1,2}.
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The first and second vertex-edge Wiener polynomials [1] of G are denoted by Wve1
(G ; q)

and Wve2
(G ; q), respectively and defined in terms of a parameter q as

Wvei
(G ; q) =

∑

u∈V (G)

∑

e∈E(G)

qDi (u,e|G ), i ∈ {1,2}.

The first derivative of these polynomials at q = 1 are equal to their corresponding vertex-edge

Wiener indices, i.e., W
′

vei
(G ;1) =Wvei

(G) , i ∈ {1,2}.

In [2, 5], some mathematical properties of these new indices and polynomials were inves-

tigated and in [6], the vertex-edge Wiener indices of some chemical graphs were computed.

In this paper, we are interested in the type of relationship that exists between the vertex-edge

Wiener indices and polynomials of the join and corona product of graphs and their compo-

nents. Then, we apply our results to compute these indices and polynomials for some classes

of graphs by specializing the components in joins and coronas.

2. Main results

In this section, we study the behavior of the vertex-edge Wiener polynomials and their

related indices under the join and corona product of graphs.

In what follows, for a given graph G we denote by NG(u) the neighborhood of a vertex

u in G , i.e., the set of all vertices of G adjacent with u. The cardinality of NG(u) is called the

degree of u in G and is denoted by degG (u). One can easily see that,

∑

uv∈E(G)

|NG(u)∩NG (v)| = 3∆(G),

where ∆(G) is the number of all triangles in G .

We denote by M1(G), the first Zagreb index of G which was introduced by Gutman and

Trinajstić [16] in 1972, as

M1(G) =
∑

u∈V (G)

degG (u)2
=

∑

uv∈E(G)

[

degG (u)+degG (v)
]

.

2.1. Join

The join G1 +G2 +·· ·+Gn of graphs G1,G2, . . . ,Gn with disjoint vertex sets V (G1), V (G2),

. . . ,V (Gn) and edge sets E (G1),E (G2),. . . , E (Gn) is a graph with the vertex set V (G1)∪V (G2)∪

·· ·∪V (Gn) and the edge set E (G1)∪E (G2)∪·· ·∪E (Gn)∪{uv |u ∈V (Gi ), v ∈V (G j ), 1 ≤ i 6= j ≤ n}.

All distinct vertices of G1 +G2 +·· ·+Gn are either at distance 1 or 2. The vertices at distance 2

are precisely those of Gi that are not adjacent in Gi , for 1 ≤ i ≤ n.
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Theorem 2.1. Let G1,G2, . . . ,Gn be graphs with |V (Gi )| = vi and |E (Gi )| = ei , 1 ≤ i ≤ n, and let

G =G1 +G2 +·· ·+Gn , N =
∑n

i=1 vi , and E =
∑n

i=1 ei . Then

Wve1
(G ; q) =(N 2

+2E −

n
∑

i=1

v 2
i )+

[

n
∑

i=1

M1(Gi )−3
n
∑

i=1

∆(Gi )+
n
∑

i=1

v 3
i

− (2N −1)
n
∑

i=1

v 2
i −

n
∑

i=1

vi ei +N 2(N −1)+E (N −2)
]

q

+
[

3
n
∑

i=1

∆(Gi )−
n
∑

i=1

M1(Gi )+
n
∑

i=1

vi ei

]

q2,

Wve2
(G ; q) =

[

3
n
∑

i=1

∆(Gi )+2
n
∑

i=1

v 3
i − (3N +1)

n
∑

i=1

v 2
i −3

n
∑

i=1

vi ei

+N 2(N +1)+E (3N +2)
]

q −
[

3
n
∑

i=1

∆(Gi )+
n
∑

i=1

v 3
i

− (N +1)
n
∑

i=1

v 2
i −3

n
∑

i=1

vi ei +N 2
+2E (N +1)

]

q2.

Proof. By definition of the join, the polynomial Wver
(G ; q), r ∈ {1,2}, can be obtained by

adding four polynomials as follows:

Wver
(G ; q) =

n
∑

i=1

∑

u∈V (Gi )

∑

e∈E(Gi )

qDr (u,e|G )
+

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Gi )

∑

e∈E(G j )

qDr (u,e|G )

+

n
∑

i=1

n
∑

j=1
j 6=i

∑

u,a∈V (Gi )

∑

b∈V (G j )

∑

e=ab

qDr (u,e|G )

+

n
∑

i=1

n
∑

j=1
j 6=i

n
∑

k=1
k 6=i , j

∑

u∈V (Gi )

∑

a∈V (G j )

∑

b∈V (Gk )

∑

e=ab

qDr (u,e|G ).

Now, we proceed to evaluate each polynomial, separately. So, we consider the following

four cases:

Case 1. Let u ∈V (Gi ) and e = ab ∈ E (Gi ), 1 ≤ i ≤n. Then

D1(u,e |G ) =















0 u ∈ {a,b},

1 u ∈ (NGi
(a)∪NGi

(b))− {a,b},

2 otherwise,

D2(u,e |G ) =

{

1 u ∈ {a,b}∪ (NGi
(a)∩NGi

(b)),

2 otherwise.

Hence,

n
∑

i=1

∑

u∈V (Gi )

∑

e∈E(Gi )

qD1(u,e|G )
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=

n
∑

i=1

∑

e=ab∈E(Gi )

[
∑

u∈{a,b}

q0
+

∑

u∈(NGi
(a)∪NGi

(b))−{a,b}

q1
+

∑

u∈V (Gi )−(NGi
(a)∪NGi

(b))

q2
]

=2E +
[

n
∑

i=1

M1(Gi )−3
n
∑

i=1

∆(Gi )−2E
]

q+
[

n
∑

i=1

vi ei −

n
∑

i=1

M1(Gi )+3
n
∑

i=1

∆(Gi )
]

q2,

and

n
∑

i=1

∑

u∈V (Gi )

∑

e∈E(Gi )

qD2(u,e|G )

=

n
∑

i=1

∑

e=ab∈E(Gi )

[
∑

u∈{a,b}∪(NGi
(a)∩NGi

(b))

q1
+

∑

u∈V (Gi )−[{a,b}∪(NGi
(a)∩NGi

(b))]

q2
]

=
[

2E +3
n
∑

i=1

∆(Gi )
]

q +
[

n
∑

i=1

vi ei −2E −3
n
∑

i=1

∆(Gi )
]

q2.

Case 2. Let u ∈ V (Gi ) and e ∈ E (G j ), where 1 ≤ i 6= j ≤ n. Then D1(u,e |G ) = D2(u,e |G ) = 1.

So, for r ∈ {1,2},

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Gi )

∑

e∈E(G j )

qDr (u,e|G )
=

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Gi )

∑

e∈E(G j )

q

=q
n
∑

i=1

vi

n
∑

j=1
j 6=i

e j = q
n
∑

i=1

vi (E −ei )= (N E −

n
∑

i=1

vi ei )q.

Case 3. Let u ∈V (Gi ) and e = ab, where a ∈V (Gi ), b ∈V (G j ), 1 ≤ i 6= j ≤ n. Then

D1(u,e |G ) =

{

0 u = a,

1 otherwise,
D2(u,e |G ) =

{

1 u ∈ NGi
(a)∪ {a},

2 otherwise.

Hence,

n
∑

i=1

n
∑

j=1
j 6=i

∑

u,a∈V (Gi )

∑

b∈V (G j )

∑

e=ab

qD1(u,e|G )

=

n
∑

i=1

n
∑

j=1
j 6=i

∑

a∈V (Gi )

∑

b∈V (G j )

[
∑

u=a

q0
+

∑

u∈V (Gi )−{a}

q1
]

=

n
∑

i=1

vi

n
∑

j=1
j 6=i

v j +q
n
∑

i=1

vi (vi −1)
n
∑

j=1
j 6=i

v j

=

n
∑

i=1

vi (N −vi )+q
n
∑

i=1

vi (vi −1)(N −vi )

=N 2
−

n
∑

i=1

v 2
i +q

n
∑

i=1

[

N v 2
i −v 3

i −N vi +v 2
i

]
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=N 2
−

n
∑

i=1

v 2
i +

[

(N +1)
n
∑

i=1

v 2
i −

n
∑

i=1

v 3
i −N 2

]

q,

and

n
∑

i=1

n
∑

j=1
j 6=i

∑

u,a∈V (Gi )

∑

b∈V (G j )

∑

e=ab

qD2(u,e|G )

=

n
∑

i=1

n
∑

j=1
j 6=i

∑

a∈V (Gi )

∑

b∈V (G j )

[
∑

u∈NGi
(a)∪{a}

q1
+

∑

u∈V (Gi )−(NGi
(a)∪{a})

q2
]

=q
n
∑

i=1

(2ei +vi )
n
∑

j=1
j 6=i

v j +q2
n
∑

i=1

(v 2
i −2ei −vi )

n
∑

j=1
j 6=i

v j

=q
n
∑

i=1

(2ei +vi )(N −vi )+q2
n
∑

i=1

(v 2
i −2ei −vi )(N −vi )

=
[

N 2
+2N E −2

n
∑

i=1

vi ei −

n
∑

i=1

v 2
i

]

q

+
[

(N +1)
n
∑

i=1

v 2
i −

n
∑

i=1

v 3
i +2

n
∑

i=1

vi ei −N 2
−2N E

]

q2.

Case 4. Let u ∈ V (Gi ) and e = ab, where a ∈ V (G j ), b ∈ V (Gk ), 1 ≤ i , j ,k ≤ n, j ,k 6= i , and

j 6= k . Then D1(u,e |G ) = D2(u,e |G ) = 1. So, for r ∈ {1,2},

n
∑

i=1

n
∑

j=1
j 6=i

n
∑

k=1
k 6=i , j

∑

u∈V (Gi )

∑

a∈V (G j )

∑

b∈V (Gk )

∑

e=ab

qDr (u,e|G )

=

n
∑

i=1

n
∑

j=1
j 6=i

n
∑

k=1
k 6=i , j

∑

u∈V (Gi )

∑

a∈V (G j )

∑

b∈V (Gk )

q

=q
n
∑

i=1

vi

n
∑

j=1
j 6=i

v j

n
∑

k=1
k 6=i , j

vk = q
n
∑

i=1

vi

n
∑

j=1
j 6=i

v j (N −vi −v j )

=q
n
∑

i=1

vi

[

(N −vi )
n
∑

j=1
j 6=i

v j −

n
∑

j=1
j 6=i

v 2
j

]

=q
n
∑

i=1

vi

[

(N −vi )2
− (

n
∑

j=1

v 2
j −v 2

i )
]

=q
n
∑

i=1

vi

[

N 2
−2N vi +2v 2

i −

n
∑

j=1

v 2
j

]

=
[

N 3
−3N

n
∑

i=1

v 2
i +2

n
∑

i=1

v 3
i

]

q.
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Now, the formulas of the theorem follow by adding the above four polynomials and simplify-

ing the resulting expression. ���

As a direct consequence of Theorem 2.1, we can compute the vertex-edge Wiener indices

of the join of graphs.

Corollary 2.2. Let G1,G2, . . . ,Gn be graphs with |V (Gi )| = vi and |E (Gi )| = ei , 1 ≤ i ≤ n, and let

G =G1 +G2 +·· ·+Gn , N =
∑n

i=1 vi , and E =
∑n

i=1 ei . Then

Wve1
(G) =3

n
∑

i=1

∆(Gi )−
n
∑

i=1

M1(Gi )+
n
∑

i=1

v 3
i − (2N −1)

n
∑

i=1

v 2
i +

n
∑

i=1

vi ei

+N 2(N −1)+E (N −2),

Wve2
(G) =3

n
∑

i=1

vi ei −3
n
∑

i=1

∆(Gi )− (N −1)
n
∑

i=1

v 2
i +N 2(N −1)−E (N +2).

Using Theorem 2.1 and Corollary 2.2, the formulas for vertex-edge Wiener polynomials

and indices of the join of two graphs are easily computed.

Corollary 2.3. Let G1 and G2 be graphs with |V (Gi )| = vi and |E (Gi )| = ei , 1 ≤ i ≤ 2. Then

Wve1
(G1 +G2; q)=2(e1 +e2 +v1v2)+

[

M1(G1)+M1(G2)−3
(

∆(G1)+∆(G2)
)

+v1v2(v1 +v2 −2)+e1(v2 −2)+e2(v1 −2)
]

q

+
[

3
(

∆(G1)+∆(G2)
)

−
(

M1(G1)+M1(G2)
)

+v1e1 +v2e2

]

q2,

Wve2
(G1 +G2, q)=

[

3
(

∆(G1)+∆(G2)
)

+2(e1 +e2 +v1v2)+3(e1v2 +v1e2)
]

q

−
[

3
(

∆(G1)+∆(G2)
)

−(v1 +v2 −2)(v1v2 +e1 +e2)

+3(e1v2+v1e2)
]

q2.

Corollary 2.4. Let G1 and G2 be graphs with |V (Gi )| = vi and |E (Gi )| = ei , 1 ≤ i ≤ 2. Then

Wve1
(G1 +G2) =3

(

∆(G1)+∆(G2)
)

−
(

M1(G1)+M1(G2)
)

+v1e1 +v2e2

+ (v1 +v2 −2)(v1v2 +e1 +e2),

Wve2
(G1 +G2) =2v1v2(v1 +v2 −1)+e1(2v1 −v2 −2)+e2(2v2 −v1 −2)

−3
(

∆(G1)+∆(G2)
)

.

It is interesting to note that, the formulas of Theorem 2.1 and Corollaries 2.2, 2.3, and

2.4 do not depend on the connectivity of the primary graphs. This allows us to compute the

vertex-edge Wiener polynomials and indices of the join of graphs that are not themselves

connected.
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2.2. Corona

The corona product G ◦H of graphs G and H is a graph obtained by taking one copy of G

and |V (G)| = n copies of H , and joining the i−th vertex of G to every vertex in i−th copy of H

for i = 1,2, . . . ,n. The i−th copy of H and i−th element of G will be denoted by Hi and wi , 1 ≤

i ≤ n, respectively. So, we can consider the vertex set of the graph G as V (G) = {w1, w2, . . . , wn}

and the vertex and edge sets of the graph G ◦H as

V (G ◦H ) =V (G)∪V (H1)∪·· ·∪V (Hn),

E (G ◦H )= E (G)∪E (H1)∪·· ·∪E (Hn)∪ {wi v |v ∈V (Hi ), 1 ≤ i ≤ n}.

Also, the distance between two distinct vertices u, v ∈V (G ◦H ) is given by

d (u, v |G ◦H )=



































d (u, v |G) u, v ∈V (G),

d (u, wi |G)+1 u ∈V (G), v ∈V (Hi ),

1 uv ∈ E (Hi ),

2 u, v ∈V (Hi ),uv ∉ E (Hi ),

d (wi , w j |G)+2 u ∈V (Hi ), v ∈V (H j ), i 6= j .

Theorem 2.5. Let G and H be graphs with |V (G)| = n, |V (H )| = n′, |E (G)| = e, and |E (H )| = e ′.

Then

Wve1
(G ◦H ; q)=(n′q +1)Wve1

(G ; q)+2(n′q +1)(e ′q +n′)W (G ; q)+nq2
[

3∆(H )

−M1(H )+n′e ′
]

+nq
[

M1(H )−3∆(H )+n′(n′
−1)−e ′

]

+2n(n′
+e ′),

Wve2
(G ◦H ; q)=(n′q +1)Wve2

(G ; q)+2q(n′q +1)(n′
+e ′)W (G ; q)+nq2

[

n′(n′
−1)

+e ′(n′
−4)−3∆(H )

]

+nq
[

2n′
+5e ′

+3∆(H )
]

.

Proof. By definition of the corona product, the polynomial Wver
(G ◦ H ; q), r ∈ {1,2}, can

be obtained by adding eight polynomials as follows:

Wver
(G ◦H ; q)=

∑

u∈V (G)

∑

e∈E(G)

qDr (u,e|G ◦H)
+

n
∑

i=1

∑

u∈V (G)

∑

e∈E(Hi )

qDr (u,e|G◦H )

+

n
∑

i=1

∑

u∈V (G)

∑

v∈V (Hi )

∑

e=wi v

qDr (u,e|G◦H )
+

n
∑

i=1

∑

u∈V (Hi )

∑

e∈E(G)

qDr (u,e|G◦H )

+

n
∑

i=1

∑

u∈V (Hi )

∑

e∈E(Hi )

qDr (u,e|G ◦H)
+

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Hi )

∑

e∈E(H j )

qDr (u,e|G◦H )

+

n
∑

i=1

∑

u,v∈V (Hi )

∑

e=wi v

q
Dr (u,e|G◦H )

+

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Hi )

∑

v∈V (H j )

∑

e=wi v

qDr (u,e|G◦H ).
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We proceed to evaluate each polynomial, separately. So, we consider the following eight

cases:

Case 1. Let u ∈V (G) and e ∈ E (G). Then

Dr (u,e |G ◦H ) = Dr (u,e |G ), r ∈ {1,2}.

So, for r ∈ {1,2},

∑

u∈V (G)

∑

e∈E(G)

qDr (u,e|G ◦H)
=

∑

u∈V (G)

∑

e∈E(G)

qDr (u,e|G )
=Wver

(G ; q).

Case 2. Let u ∈V (G) and e ∈ E (Hi ), 1 ≤ i ≤ n. Then

Dr (u,e |G ◦H ) = d (u, wi |G )+1, r ∈ {1,2}.

So, for r ∈ {1,2},

n
∑

i=1

∑

u∈V (G)

∑

e∈E(Hi )

qDr (u,e|G◦H )
=

n
∑

i=1

∑

u∈V (G)

∑

e∈E(Hi )

qd(u,wi |G )+1
= e ′q

[

n +2W (G ; q)
]

.

Case 3. Let u ∈V (G) and e = wi v , where v ∈V (Hi ), 1≤ i ≤ n. Then

D1(u,e |G ◦H ) = d (u, wi |G ), D2(u,e |G ◦H ) = d (u, wi |G )+1.

Hence,

n
∑

i=1

∑

u∈V (G)

∑

v∈V (Hi )

∑

e=wi v

qD1(u,e|G◦H )
=

n
∑

i=1

∑

u∈V (G)

∑

v∈V (Hi )

qd(u,wi |G )
= n′

[

n +2W (G ; q)
]

,

and

n
∑

i=1

∑

u∈V (G)

∑

v∈V (Hi )

∑

e=wi v

qD2(u,e|G◦H )
=

n
∑

i=1

∑

u∈V (G)

∑

v∈V (Hi )

qd(u,wi |G )+1
= n′q

[

n +2W (G ; q)
]

.

Case 4. Let u ∈V (Hi ) and e ∈ E (G), where 1 ≤ i ≤ n. Then

Dr (u,e |G ◦H ) = Dr (wi ,e |G )+1, r ∈ {1,2}.

So, for r ∈ {1,2},

n
∑

i=1

∑

u∈V (Hi )

∑

e∈E(G)

qDr (u,e|G◦H )
=

n
∑

i=1

∑

u∈V (Hi )

∑

e∈E(G)

qDr (wi ,e|G )+1
= n′qWver

(G , q).

Case 5. Let u ∈V (Hi ) and e ∈ E (Hi ), 1 ≤ i ≤n. Then

D1(u,e |G ◦H ) =















0 u ∈ {a,b},

1 u ∈ (NHi
(a)∪NHi

(b))− {a,b},

2 otherwise,
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D2(u,e |G ◦H ) =

{

1 u ∈ {a,b}∪ (NHi
(a)∩NHi

(b)),

2 otherwise.

Hence,

n
∑

i=1

∑

u∈V (Hi )

∑

e∈E(Hi )

qD1(u,e|G ◦H)

=

n
∑

i=1

∑

ab∈E(Hi )

[
∑

u∈{a,b}

q0
+

∑

u∈(NHi
(a)∪NHi

(b))−{a,b}

q1
+

∑

u∈V (Hi )−(NHi
(a)∪NHi

(b))

q2
]

= 2ne ′
+nq

[

M1(H )−3∆(H )−2e ′
]

+nq2
[

n′e ′
−M1(H )+3∆(H )

]

,

and
n
∑

i=1

∑

u∈V (Hi )

∑

e∈E(Hi )

qD2(u,e|G ◦H)

=

n
∑

i=1

∑

ab∈E(Hi )

[
∑

u∈{a,b}∪(NHi
(a)∩NHi

(b))

q1
+

∑

u∈V (Hi )−[{a,b}∪(NHi
(a)∩NHi

(b))]

q2
]

= nq
[

2e ′
+3∆(H )

]

+nq2
[

n′e ′
−2e ′

−3∆(H )
]

.

Case 6. Let u ∈V (Hi ) and e ∈ E (H j ), where 1 ≤ i 6= j ≤n. Then

Dr (u,e |G ◦H )= d (wi , w j |G )+2, r ∈ {1,2}.

So, for r ∈ {1,2},

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Hi )

∑

e∈E(H j )

qDr (u,e|G◦H )
=

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Hi )

∑

e∈E(H j )

qd(wi ,w j |G )+2

= 2n′e ′q2W (G ; q).

Case 7. Let u, v ∈V (Hi ) and e = wi v , 1 ≤ i ≤ n. Then

D1(u,e |G ◦H ) =

{

0 v = u,

1 otherwise,
D2(u,e |G ◦H )=

{

1 v ∈ NHi
(u)∪ {u},

2 otherwise.

Hence,

n
∑

i=1

∑

u,v∈V (Hi )

∑

e=wi v

q
D1(u,e|G◦H )

=

n
∑

i=1

∑

u∈V (Hi )

[
∑

v=u

q0
+

∑

v∈V (Hi )−{u}

q1
]

= nn′
+nn′(n′

−1)q,

and
n
∑

i=1

∑

u,v∈V (Hi )

∑

e=wi v

q
D2(u,e|G◦H )

=

n
∑

i=1

∑

u∈V (Hi )

[
∑

v∈NHi
(u)∪{u}

q +
∑

v∈V (Hi )−(NHi
(u)∪{u})

q2
]

= n(n′
+2e ′)q +nq2

[

n′(n′
−1)−2e ′

]

.
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Case 8. Let u ∈V (Hi ) and e = w j v , where v ∈V (H j ), 1 ≤ i 6= j ≤ n. Then

D1(u,e |G ◦H ) = d (wi , w j |G )+1, D2(u,e |G ◦H )= d (wi , w j |G )+2.

Hence,

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Hi )

∑

v∈V (H j )

∑

e=wi v

qD1(u,e|G◦H )

=

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Hi )

∑

v∈V (H j )

qd(wi ,w j |G )+1
= 2n′2qW (G ; q),

and
n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Hi )

∑

v∈V (H j )

∑

e=wi v

qD2(u,e|G◦H )

=

n
∑

i=1

n
∑

j=1
j 6=i

∑

u∈V (Hi )

∑

v∈V (H j )

qd(wi ,w j |G )+2
= 2n′2q2W (G ; q).

Now, the formulas of the theorem follow by adding the above eight polynomials and simpli-

fying the resulting expression. ���

As a direct consequence of Theorem 2.5, we obtain the following corollary.

Corollary 2.6. Let G and H be graphs with |V (G)| = n, |V (H )| = n′, |E (G)| = e, and |E (H )| = e ′.

Then

Wve1
(G ◦H ) =(n′

+1)Wve1
(G)+2(n′

+1)(n′
+e ′)W (G)

+n
[

3∆(H )−M1(H )+ne ′
+en′

+ (n′
+2e ′)(nn′

−1)
]

,

Wve2
(G ◦H ) =(n′

+1)Wve2
(G)+2(n′

+1)(n′
+e ′)W (G)

+nn′
[

2n(n′
+e ′)+n +e −1

]

+ne ′(n −4)−3n∆(H ).

Again, it is interesting to note that, the formulas of Theorem 2.5 and Corollary 2.6 do not

include any invariants of H that depend on its connectivity. So, it is possible to apply Theorem

2.5 and Corollary 2.6 to the corona products G ◦ H with disconnected H . Such cases arise in

transitions from kenographs to plerographs, where H is given as an empty graph, i.e., as K̄n

for some positive integer n.

3. Examples

In this section, we present explicit formulas for computing the vertex-edge Wiener poly-

nomials and their related indices for some classes of graphs by specializing components in

joins and coronas.
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For a given graph G , the graph K1 +G = K1 ◦G is called the suspension [28] of G , where

K1 denotes a single vertex graph. Using Corollary 2.3 and Corollary 2.4, we get the following

results.

Corollary 3.1. Let G be a graph of order n and size e. Then

Wve1
(K1 +G ; q) = 2(n +e)+ [n(n −1)−e +M1(G)−3∆(G)]q + [ne −M1(G)+3∆(G)]q2,

Wve2
(K1 +G ; q) = [2n +5e +3∆(G)]q + [(n −1)(n +e)−3e −3∆(G)]q2,

Wve1
(K1 +G) = ne + (n −1)(n +e)−M1(G)+3∆(G),

Wve2
(K1 +G) = 2n2

+ (2n −3)e −3∆(G).

Star graph Sn+1 on n +1 vertices is the suspension of empty graph on n vertices K̄n . Fan

graph Fn+1 and wheel graph Wn+1 on n +1 vertices are also the suspension of n−vertex path

Pn and n−vertex cycle Cn , respectively. So, by the above formulas, the vertex-edge Wiener

polynomials and indices of these graphs are obtained, at once.

Corollary 3.2. For n ≥ 3,

Wve1
(Sn+1; q) = Wve1

(K1 + K̄n , q)= 2n +n(n −1)q,

Wve2
(Sn+1; q) = Wve2

(K1 + K̄n , q)= 2nq +n(n −1)q2,

Wve1
(Sn+1) = Wve1

(K1 + K̄n) =n(n −1),

Wve2
(Sn+1) = Wve2

(K1 + K̄n) = 2n2.

Corollary 3.3. For n ≥ 2,

Wve1
(Fn+1; q) = Wve1

(K1 +Pn , q)= 2(2n −1)+ (n2
+2n −5)q + (n2

−5n +6)q2,

Wve2
(Fn+1; q) = Wve2

(K1 +Pn , q)= (7n −5)q +2(n2
−3n +2)q2,

Wve1
(Fn+1) = Wve1

(K1 +Pn) = 3n2
−8n +7,

Wve2
(Fn+1) = Wve2

(K1 +Pn) = 4n2
−5n +3.

Corollary 3.4. For n ≥ 4,

Wve1
(Wn+1; q) = Wve1

(K1 +Cn , q) = 4n +n(n +2)q +n(n −4)q2,

Wve2
(Wn+1; q) = Wve2

(K1 +Cn , q) = 7nq +n(2n −5)q2,

Wve1
(Wn+1) = Wve1

(K1 +Cn) = 3n(n −2),

Wve2
(Wn+1) = Wve2

(K1 +Cn) = n(4n −3).

The windmill graph D(m)
n is the graph obtained by taking m copies of the complete graph

Kn with a vertex in common. The case n = 3 therefore corresponds to the Dutch windmill

graph. One can easily see that, the windmill graph D(m)
n is the suspension of m copies of

Kn−1. So, by Corollary 3.1, we get the following results.
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Corollary 3.5. For n ≥ 3 and m ≥ 1,

Wve1
(D(m)

n ; q) =
1

2
m(n −1)[2n + (2m(n −1)+n2

−4n +2)q + (m −1)(n −1)(n −2)q2],

Wve2
(D(m)

n ; q) =
1

2
mn(n −1)[nq + (n −1)(m −1)q2],

Wve1
(D(m)

n ) =
1

2
m(n −1)[2m(n −1)2

−n(n −2)−2],

Wve2
(D(m)

n ) =
1

2
mn(n −1)[2m(n −1)− (n −2)].

Now consider a complete n−partite graph G = Km1,m2,...,mn
containing |V (G)| =

∑n
i=1 mi

vertices. By definition of this graph, V (G) can be partitioned into subsets V1,V2, . . . ,Vn such

that for every i, 1 ≤ i ≤ n, there is no edge between the vertices of Vi . It is easy to see that,

Km1,m2,...,mn
= K̄m1

+ K̄m2
+·· ·+ K̄mn

. Using Theorem 2.1 and Corollary 2.2, we can obtain the

formulas for the vertex-edge Wiener polynomials and indices of Km1,m2,...,mn
.

Corollary 3.6. Let G = Km1,m2,...,mn
, µ1 =

∑n
i=1 mi , µ2 =

∑n
i=1 m2

i
, and µ3 =

∑n
i=1 m3

i
. Then

Wve1
(G ; q) =µ

2
1 −µ2 + [µ3 +µ

2
1(µ1 −1)−µ2(2µ1 −1)]q,

Wve2
(G ; q) = [2µ3 −µ2(3µ1 +1)+µ

2
1(µ1 +1)]q − [µ3 −µ2(µ1 +1)+µ

2
1]q2,

Wve1
(G) =µ3 −µ2(2µ1 −1)+µ

2
1(µ1 −1),

Wve2
(G) = (µ1 −1)(µ2

1 −µ2).

Now, we turn our attention toward coronas. Coronas sometimes appear in chemical liter-

ature as plerographs of the usual hydrogen-suppressed molecular graphs known as kenographs.

Interesting classes of graphs can be obtained by specializing the components in the corona

product. For a given graph G , the graph K2 ◦G is called the bottleneck graph of G . Using

Theorem 2.5 and Corollary 2.6, we obtain the following results.

Corollary 3.7. Let G be a graph of order n and size e. Then

Wve1
(K2 ◦G ; q) = 2(2n + 2e + 1)+ 2[n(n + 1)− e + M1(G)− 3∆(G)]q + 2[n(n + e)+ e + 3∆(G)−

M1(G)]q2 +2neq3,

Wve2
(K2 ◦G ; q) = 2[2n +5e +3∆(G)+1]q +2[n(n +1)+e(n −3)−3∆(G)]q2 +2n(n +e)q3,

Wve1
(K2 ◦G) = 6n2 +2n +10ne +2e +6∆(G)−2M1(G),

Wve2
(K2 ◦G) = 10n2 +8n +10ne −2e −6∆(G)+2.

In particular, we can obtain the formulas for the bottleneck graph of Pn .

Corollary 3.8. For n ≥ 2,

Wve1
(K2 ◦Pn ; q) = 2n(n −1)q3

+2(2n2
−4n +5)q2

+2(n2
+4n −5)q +2(4n −1),

Wve2
(K2 ◦Pn ; q) = 2n(2n −1)q3

+2(2n2
−3n +3)q2

+2(7n −4)q,

Wve1
(K2 ◦Pn) = 16n2

−14n +10,

Wve2
(K2 ◦Pn) = 20n2

−4n +4.
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For a given graph G , the graph G ◦ K̄t is called the t-thorny graph of G [21]. Using Theo-

rem 2.5 and Corollary 2.6, we can obtain the vertex-edge Wiener polynomials and indices for

t−thorny graphs.

Corollary 3.9. Let G be a graph of order n and size e. Then

Wve1
(G ◦ K̄t , q) = (t q +1)Wve1

(G ; q)+2t (t q +1)W (G ; q)+nt (t −1)q +2nt ,

Wve2
(G ◦ K̄t ; q) = (t q +1)Wve2

(G ; q)+2t q(t q +1)W (G ; q)+nt (t −1)q2
+2nt q,

Wve1
(G ◦ K̄t ) = (t +1)Wve1

(G)+2t (t +1)W (G)+nt (nt +e −1),

Wve2
(G ◦ K̄t ) = (t +1)Wve2

(G)+2t (t +1)W (G)+nt (2nt +n +e −1).

We use known results for the vertex Wiener index and polynomial of paths and cycles

[24], our results for their vertex-edge Wiener indices and polynomials [1], and Corollary 3.9 to

obtain the formulas for the t−thorny path Pn ◦ K̄t and t−thorny cycle Cn ◦ K̄t .

Corollary 3.10. For n ≥ 1,

Wve1
(Pn ◦ K̄t ; q) = 2(t +1)2

n
∑

k=1

(n −k)qk
+2(t 2

−1)
n
∑

k=1

qk
+2(nt +n −1)−nt (t +1)q +2qn ,

Wve2
(Pn ◦ K̄t ; q) = 2(t +1)2

n
∑

k=1

(n −k)qk
+4t (t +1)

n
∑

k=1

qk
−2t (nt +n + t )q −nt (t +1)q2

+2t 2qn+1,

Wve1
(Pn ◦ K̄t ) =

n

3
[(t +1)2n2

+3n(t 2
−1)− (t 2

+5t −2)],

Wve2
(Pn ◦ K̄t ) =

n

3
[(t +1)2n2

+6t (t +1)n − (t 2
+8t +1)].

Corollary 3.11. For n ≥ 3,

Wve1
(Cn ◦ K̄t ; q) =































2n(t +1)2 ∑

n+1
2

k=1
qk −nq

n−1
2 [(3t +2)q +1] n is odd

−n(t +1)(t q −2),

2n(t +1)2 ∑

n
2

k=1
qk +nq

n
2 (t 2q − t −2) n i s even

−n(t +1)(t q −2),

Wve2
(Cn ◦ K̄t ; q) =































2n(t +1)2 ∑

n+1
2

k=1
qk +nq

n−1
2 [2t 2q2 + (t −2)q +1] n i s odd

−nt (t +1)q(q +2),

2n(t +1)2 ∑

n
2

k=1
qk +nt q

n
2
+1(t q +2t +3) n i s even

−nt (t +1)q(q +1),

Wve1
(Cn ◦ K̄t ) =

{

n
4 [n2(t +1)2 +2n(2t 2 + t −1)− (t 2 +4t −1)] n i s odd ,
n
4 [n2(t +1)2 +2n(2t 2 + t −1)−4t ] n i s even,
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Wve2
(Cn ◦ K̄t ) =

{

n
4

[n2(t +1)2 +2n(4t 2 +5t +1)− (t 2 +8t +3)] n i s odd ,
n
4 [n2(t +1)2 +2n(4t 2 +5t +1)−4t ] n i s even.

4. Conclusions

In this paper, we study the behavior of vertex-edge Wiener polynomials and indices un-

der the join and corona product of graphs, and compute them for some classes of graphs such

as suspensions, bottlenecks, and thorny graphs. Nevertheless, there are still many classes of

chemically interesting and relevant graphs not covered by our approach. It would be interest-

ing to find closed formulas for the vertex-edge Wiener indices of various classes of chemical

graphs and nanostructures. In order to achieve that goal, further research into mathematical

properties of the vertex-edge Wiener polynomials under other graph operations such as the

Cartesian product and rooted product will be necessary.
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