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OSCILLATION THEOREMS FOR SECOND ORDER DIFFERENCE

EQUATIONS WITH NEGATIVE NEUTRAL TERM

DEVARAJULU SEGHAR, ETHIRAJU THANDAPANI AND SANDRA PINELAS

Abstract. In this paper we obtain some new oscillation criteria for the neutral difference
equation

∆
(
an(∆(xn −pn xn−k ))

)
+qn f (xn−l ) = 0

where 0 ≤ pn ≤ p < 1, qn > 0 and l and k are positive integers. Examples are presented to
illustrate the main results. The results obtained in this paper improve and complement
to the existing results.

1. Introduction

Consider the second order neutral difference equation of the form

∆
(
an(∆(xn −pn xn−k ))

)
+qn f (xn−l ) = 0, n ∈N(n0) (1.1)

where N(n0) = {n0,n0+1, . . .}, n0 is a nonnegative integer, subject to the following conditions:

(H1) {an} is a positive real sequence with
∞∑

n=n0

1

an
<∞;

(H2) {pn} is a real sequence with 0 ≤ pn ≤ p < 1 for all n ∈N(n0);

(H3) {qn} is a positive real sequence for all n ∈N(n0);

(H4) l and k are positive integers;

(H5) f : R→ R is a continuous function with u f (u) > 0 for u ̸= 0, and there exists a constant

M > 0 such that
f (u)

uα
> M for all u ̸= 0, where α is a ratio of odd positive integers.
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Let θ = max{k, l }. By a solution of equation (1.1), we mean a real sequence {xn} defined for

n ≥ n0 −θ and satisfying equation (1.1) for all n ∈N(n0). A solution of equation (1.1) is said to

be oscillatory if it is neither eventually positive nor eventually negative, and it is nonoscillatory

otherwise.

From a review of literature, it is known that there are many results available on the oscil-

latory and asymptotic behavior of solutions of equation (1.1) when the neutral term is non-

negative, i.e., pn ≤ 0; see for example [1, 2, 3, 9, 15] and the references cited therein. However,

there are few results available on the oscillatory behavior of solutions of equation (1.1) when

the neutral term is negative; see, for example [4, 6, 7, 8, 11, 12, 13, 14, 16, 17] and the references

therein.

In [1], we see that the oscillatory behavior of the equation

∆2
(
xn −pxn−k

)
+qn xn−l = 0, n ∈N(n0), (1.2)

is discussed and in [14], the authors studied the oscillatory and asymptotic behavior of equa-

tion

∆
(
an(∆(xn −pn xn−k ))

)
+qn xα

n−l = 0, n ∈N(n0), (1.3)

with
∞∑

n=n0

1

an
=∞. The results obtained for equations (1.2) and (1.3) has been improved and

generalized by other authors. We mention Thandapani et al.[12] studied the oscillation of

∆
(
an(∆(xn −pn xn−k ))α

)
+qn f (xn−l ) = 0, (1.4)

under the conditions
f (u)

uα
≥ M , and

∞∑
n=n0

1

a
1
α
n

=∞.

In all the results, the authors assumed that either an = 1 or
∞∑

n=n0

1

an
=∞, and as far as the

authors knowledge there are no worthwhile results available in the literature when
∞∑

n=n0

1

an
<

∞ for the equation (1.1). This observation motivated us to study the oscillatory behavior of

equation (1.1) when condition (H1) is satisfied. In Section 2, we obtain some new sufficient

conditions for the oscillation of all solutions of equation (1.1), and in Section 3, we provide

some examples to illustrate the main results. Thus the results presented in this paper improve

and complement to those established in [4, 11, 12, 13, 14, 16, 17].

2. Oscillation results

Throughout this paper, we use the following notation without further mention:

zn = xn −pn xn−k (2.1)
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An =
n−1∑
s=n0

1

as
, and Bn =

∞∑
s=n

1

as
.

Remark 2.1. Without loss of generality, we can deal only with positive solutions of equation

(1.1), since the proof for the other case is similar.

We begin with the following lemma.

Lemma 2.1. Let {xn} be an eventually positive solution of equation (1.1). Then one of the fol-

lowing three cases holds for all sufficiently large n:

(I) zn > 0, an∆zn > 0, ∆(an∆zn) ≤ 0;

(II) zn > 0, an∆zn < 0, ∆(an∆zn) ≤ 0;

(III) zn < 0, an∆zn > 0, ∆(an∆zn) ≤ 0.

Proof. Assume that xn−θ > 0 for n ≥ N ∈ N(n0). Then by the condition (H3), we have from

equation (1.1) that ∆(an∆zn) ≤ 0 for all n ≥ N . Hence {zn} and {an∆zn} are eventually of one

sign for all n ≥ N . Thus {zn} satisfying one of the following four cases for all n ≥ N :

(I) zn > 0, an∆zn > 0, ∆(an∆zn) ≤ 0;

(II) zn > 0, an∆zn < 0, ∆(an∆zn) ≤ 0;

(III) zn < 0, an∆zn > 0, ∆(an∆zn) ≤ 0;

(IV) zn < 0, an∆zn < 0, ∆(an∆zn) ≤ 0.

Now, we shall show that case (IV) cannot happen. If so, then we have lim
n→∞zn = −∞. From

the definition of zn , we obtain xn >
(−zn+k

p

)
, and therefore limsup

n→∞
xn =∞. Thus there exists

a subsequence {n j } of positive integers such that lim
j→∞

n j = ∞ and xn j = max
n0≤n≤n j

xn → ∞ as

j →∞. Then

zn j = xn j −pn j xn j−k ≥ xn j −pxn j = xn j (1−p) →∞

as j →∞, a contradiction. This completes the proof. ���

Lemma 2.2. If {xn} is an eventually positive solution of equation (1.1) such that case (I) holds,

then

xn ≥ zn ≥ An an∆zn , n ≥ N ∈N(n0), (2.2)

and
{

zn
An

}
is eventually strictly decreasing.
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Proof. The proof is similar to that of Lemma 2 in [12], and hence the details are omitted. ���

Lemma 2.3. If {xn} is an eventually positive solution of equation (1.1) such that case (II) holds,

then

xn ≥ zn ≥−Bn an∆zn , n ≥ N ∈N(n0). (2.3)

Proof. From the definition of zn , it is clear that xn ≥ zn for all n ≥ N . Since an∆zn is nonin-

creasing, we have

as∆zs ≤ an∆zn , s ≥ n ≥ N .

Dividing the last inequality by as and then summing it from n to j , we obtain

z j+1 ≤ zn +an∆zn

j∑
s=n

1

as
, j ≥ n ≥ N .

Letting j →∞, we have

0 ≤ zn +Bn an∆zn , n ≥ N .

This completes the proof. ���

Theorem 2.1. Assume that α= 1 and l > k. If

limsup
n→∞

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt > p

M
, (2.4)

liminf
n→∞

n−1∑
s=n−l

qs(As−l +ps−l As−l−k ) > 1

M

(
l

l +1

)l+1

, (2.5)

and ∞∑
n=n0

[
M qnBn+1 − 1

4anBn+1

]
=∞, (2.6)

then every solution of equation (1.1) is oscillatory.

Proof. Assume that there exists a nonoscillatory solution {xn} of equation (1.1), say, xn > 0

and xn−θ > 0 for all n ≥ N ∈ N(n0), where N is chosen so that all three cases of Lemma 2.1

hold for all n ≥ N .

Case I: From (2.1), we have

xn ≥ zn +pn zn−k ≥
(
1+pn

An−k

An

)
zn , n ≥ N , (2.7)

where we have used {zn/An} is decreasing. Using (2.7) and (H5) in equation (1.1), we obtain

∆(an∆zn)+M qn

(
1+pn−l

An−l−k

An−l

)
zn−l ≤ 0, n ≥ N . (2.8)
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From (2.2) and (2.8), we have

∆(an∆zn)+M qn(An−l +pn−l An−l−k )an−l∆zn−l ≤ 0, n ≥ N . (2.9)

Let wn = an∆zn . Then wn > 0 and {wn} is an eventually positive solution of the inequality

∆wn +M qn(An−l +pn−l An−l−k )wn−l ≤ 0. (2.10)

But by Theorem 7.6.1 of [5], and (2.5), the inequality (2.10) has no eventually positive solution,

a contradiction.

Case II: Define

wn = an∆zn

zn
,n ≥ N . (2.11)

Then wn < 0 for all n ≥ N . From (2.3) and (2.11), we have

−1 ≤ Bn wn ≤ 0, n ≥ N . (2.12)

From the equations (1.1), (2.1) and (H5), we have

∆(an∆zn)+M qn zn−l ≤ 0, n ≥ N . (2.13)

From (2.11) and (2.13), we obtain

∆wn ≤ −M qn
zn−l

zn+1
− an(∆zn)2

zn zn+1

≤ −M qn − w2
n

an
, n ≥ N , (2.14)

where we have used {zn} is positive decreasing and l is a positive integer. Multiplying (2.14)

by Bn+1 and then summing it from N to n −1, we have

n−1∑
s=N

Bs+1∆ws +
n−1∑
s=N

MBs+1qs +
n−1∑
s=N

Bs+1
w2

s

as
≤ 0. (2.15)

Using summation by parts formula in the first term of (2.15), and then rearranging we obtain

Bn wn −BN wN +
n−1∑
s=N

MBs+1qs +
n−1∑
s=N

(
ws

as
+ w2

s

as
Bs+1

)
≤ 0.

Using completing the square in the fourth term of the last inequality and then using (2.12),

we obtain
n−1∑
s=N

(
MBs+1qs − 1

4asBs+1

)
≤ BN wN −Bn wn ≤ BN wN +1.
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Letting n →∞ in the last inequality , we obtain a contradiction with (2.6).

Case III: From (2.1) and (H2), we have

xn−k >
(−zn

p

)
. (2.16)

Using (H5) and (2.16) in equation (1.1), we obtain

∆(an∆zn)− M

p
qn zn−l+k ≤ 0, n ≥ N . (2.17)

Summing (2.17) from s to n −1 for n > s +1, we have

an∆zn −as∆zs − M

p

n−1∑
t=s

qt zt−l+k ≤ 0.

Again summing the last inequality from n − l +k to n −1 for s, we have

zn−l+k − zn ≤ M

p
zn−l+k

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt

or
p

M
≥

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt

which contradicts (2.4). This completes the proof of the theorem. ���

Theorem 2.2. Assume that 0 <α< 1 and l > k. If

limsup
n→∞

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt > 0, (2.18)

∞∑
n=n0

qn(An−l +pn−l an−l−k )α =∞, (2.19)

and for any constant M1 > 0

∞∑
n=n0

[
M1Bn+1qn − 1

4anBn+1

]
=∞, (2.20)

then every solution of equation (1.1) is oscillatory.

Proof. Assume that there exists a nonoscillatory solution {xn} of equation (1.1), say, xn > 0

and xn−θ > 0 for n ≥ N ∈ N(n0), where N is chosen so that all three cases of Lemma 2.1 are

hold for all n ≥ N .

Case I: Proceeding as in Case (I) of Theorem 2.1, we obtain {wn} is an eventually positive

solution of the inequality

∆wn +M qn(An−l +pn−l An−l−k )αwα
n−l ≤ 0. (2.21)
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But by Theorem 1 of [10], and (2.19), the inequality (2.21) has no eventually positive solution,

a contradiction.

Case II: Define

wn = an∆zn

zn
,n ≥ N .

Proceeding as in Case (II) of Theorem 2.1, we obtain (2.12) and

∆wn ≤ −M qn
zα

n−l

zn+1
− w2

n

an

≤ −M qn zα−1
n−l −

w2
n

an

≤ −M1qn − w2
n

an
, n ≥ N ,

where we have used {zn} is a positive decreasing, α< 1, and M1 = M zα−1
N−l . The remaining part

of the proof is similar to that of Case (II) of Theorem 2.1 and hence the details are omitted.

Case III: Proceeding as in Case (III) of Theorem 2.1, we have

an∆zn −as∆zs − M

pα

n−1∑
t=s

qt zα
n−l+k ≤ 0. (2.22)

Let lim
n→∞zn = c = 0. Summing (2.22) from n − l +k to n −1 for s, we have

zn−l+k − zn ≤ M

pα
zn−l+k

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt

or
zn−l+k

zα
n−l+k

≥ M

pα

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt . (2.23)

Since
zn−l+k

zα
n−l+k

= |zn−l+k |1−α and 1−α> 0,

we have

limsup
n→∞

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt ≤ 0,

which contradicts (2.18). Next assume that lim
n→∞zn = c < 0. From (2.18), we claim that

limsup
n→∞

n−1∑
s=N

1

as

n−1∑
t=s

qt =∞. (2.24)

In fact from (2.18), there exists a subsequence {ni } and ni+1 −ni ≥ l −k such that

ni−1∑
s=ni−l+k

1

as

ni−1∑
t=s

qt ≥ b > 0,
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where b is some constant.

Hence

lim
n→∞

n−1∑
s=N

1

as

n−1∑
t=s

qt ≥ lim
j→∞

j∑
i=1

ni−1∑
s=ni−l+k

1

as

n−1∑
t=s

qt

≥ lim
j→∞

j∑
i=1

ni−1∑
s=ni−l+k

1

as

ni−1∑
t=s

qt

= ∞,

where n j = max{ni : ni ≤ n}. From (2.22), we have

∆zs +
M zα

n

pαas

n−1∑
t=s

qt ≥ 0.

Summing the last inequality from N to n −1, we obtain

zN − zn ≤ M

pα
zα

n

n−1∑
s=N

1

as

n−1∑
t=s

qt

or
pαzN

M zα
n

≥
n−1∑
s=N

1

as

n−1∑
t=s

qt .

In view of c < 0,
pαzN

M zα
n

has an upper bound, so

lim
n→∞

n−1∑
s=N

1

as

n−1∑
t=s

qt <∞

which contradicts (2.24). This completes the proof of the theorem. ���

Theorem 2.3. Let α> 1. If
∞∑

n=n0

qn

(
1+pn−l

An−l−k

An−l

)α
=∞, (2.25)

and
∞∑

n=n0

1

an

n−1∑
s=n0

qsBα
s−l =∞, (2.26)

then every solution {xn} of equation (1.1) is either oscillatory or lim
n→∞xn = 0.

Proof. Proceeding as in the proof of Theorem 2.2, we see that Lemma 2.1 holds for all n ≥ N ∈
N(n0).

Case I: Proceeding as in the proof of Theorem 2.1(Case(I)), we have

∆(an∆zn)+M qn

(
1+pn−l

An−l−k

An−l

)α
zα

n−l ≤ 0, n ≥ N .
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Define wn = an∆zn

zα
n−l

, then wn > 0, and

∆wn ≤ −M qn

(
1+pn−l

An−l−k

An−l

)α− αan+1∆zn+1∆zn−l

zα
n−l

≤ −M qn

(
1+pn−l

An−l−k

An−l

)α
, n ≥ N .

Summing the last inequality from N to n −1, we obtain

n−1∑
s=N

M qs

(
1+ps−l

As−l−k

As−l

)α < wN <∞.

Letting n →∞, in the last inequality, we obtain a contradiction to (2.25).

Case II: From Lemma 2.3, we have

zn−l >−Bn−l an∆zn ≥−Bn−l aN∆zN ≥ dBn−l (2.27)

where d =−aN∆zN .

From equation (1.1), (H5) and (2.27), we obtain

∆(−an∆zn) ≥ M qndαBα
n−l , n ≥ N .

Summing the last inequality from N to n −1, we have

−an∆zn ≥−aN∆zN +Mdα
n−1∑
s=N

qsBα
n−l .

Dividing the last inequality by an and then summing it from N to n −1, we obtain

zN ≥ zN − zn ≥ Mdα
n−1∑
s=N

1

as

s−1∑
t=N

qt Bα
t−l .

Letting n →∞ in the last inequality, we obtain

∞∑
n=N

1

as

n−1∑
s=N

qsBα
s−l ≤ zN

a contradiction to (2.26).

Case III. In this case zn < 0 and ∆zn > 0 for all n ≥ N . Then by Lemma 1 of [12], we see that

lim
n→∞xn = 0. This completes the proof. ���

3. Examples

In this section, we present some examples to illustrate the main results.
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Example 3.1. Consider the second order neutral difference equation

∆(2n∆(xn − 1

2
xn−2))+3(2n)xn−3(1+x2

n−3) = 0, n ≥ 1. (3.1)

Here an = 2n , pn = 1

2
, qn = 3(2n), l = 3, k = 2, α = 1, and M = 1. Since An = 1 − 1

2n−1 and

Bn = 1

2n−1 , it is easy to see that all conditions of Theorem 2.1 are satisfied and hence every

solution of equation (3.1) is oscillatory. In fact {xn} = {(−1)n} is one such oscillatory solution

of equation (3.1).

Example 3.2. Consider the second order neutral difference equation

∆(2n∆(xn − 1

2n xn−1))+21− n
3 (15(4n)+3(2n))x

1
3
n−3 = 0, n ≥ 1. (3.2)

Here an = 2n , pn = 1

2n , qn = 21− n
3 , l = 3, k = 1, α= 1

3 , and M = 1. Since An = 1− 1

2n−1 and Bn =
1

2n−1 , it is easy to see that all conditions of Theorem 2.2 are satisfied and hence every solution

of equation (3.2) is oscillatory. In fact {xn} = {(−1)3n2n} is one such oscillatory solution of

equation (3.2).

Example 3.3. Consider the second order neutral difference equation

∆(n(n +1)∆(xn − 1

2
xn−1))+ (n −2)3

n(n −1)
x3

n−2 = 0, n ≥ 3. (3.3)

Here an = n(n +1), pn = 1

2
, qn = (n −2)3

n(n −1)
, l = 2, k = 1, α= 3, and M = 1. Since An = n −3

3n
and

Bn = 1

n
, it is easy to see that all conditions of Theorem 2.3 are satisfied and so any solution of

equation (3.3) is either oscillatory or tends to zero as n →∞.. In fact {xn} = { 1
n } is one such

solution of equation (3.3) of the latter type.

We conclude this paper with the following remark.

Remark 3.1. It would be interesting to improve the result of Theorem 2.3 to similar that of

Theorem 2.1.
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