ON GENERALIZED (σ, τ)-DERIVATIONS IN 3-PRIME NEAR-RINGS

EMINE KOÇ SÖGÜTCÜ

Abstract

Let N be a 2-torsion free 3-prime left near-ring with multiplicative center Z, I be a nonzero semigroup ideal of N and f be a right generalized (σ, τ)-derivation on N associated with a (σ, τ)-derivation d. Assume $d \sigma=\sigma d, d \tau=\tau d, f \sigma=\sigma f, f \tau=\tau f$. We prove that N is a commutative ring or $d=0$ if any one of the following holds: i) $f(N) \subseteq Z$ ii) $f(I) \subseteq Z$. Moreover, if f is a generalized (σ, τ) derivation on N associated with d, then $d=0$ if any one of the following is satisfied : iii) f acts as a homomorphism on I iv) f acts as an anti-homomorphism on I.

1. Introduction

An additively written group $(N,+)$ equipped with a binary operation $\cdot: N \times N \rightarrow N,(x, y) \mapsto$ $x y$ such that $(x y) z=x(y z)$ and $z(x+y)=z x+z y$ for all $x, y, z \in N$ is called a left near-ring. A near-ring N is called 3-prime if for any $x, y \in N, x N y=0$ implies that $x=0$ or $y=0$ and N is called zero-symmetric if $0 x=0$ for all $x \in N$. A nonempty subset I of N is called a semigroup left ideal (resp. semigroup right ideal) if $N I \subseteq I$ (resp. $I N \subseteq I$) and if I is both a semigroup left ideal and a semigroup right ideal, it is called a semigroup ideal. For $x, y \in N$, the symbol $[x, y]$ will denote $x y-y x . Z$ is the multiplicative center of N. An additive mapping $d: N \rightarrow N$ is said a derivation if $d(x y)=x d(y)+d(x) y$ for all $x, y \in N$, or equivalently, as noted in [11], that $d(x y)=d(x) y+x d(y)$ for all $x, y \in N$. Recently, in [7], Bresar defined the following concept. An additive mapping $f: N \rightarrow N$ is called a generalized derivation if there exists a derivation $d: N \rightarrow N$ such that

$$
f(x y)=f(x) y+x d(y), \text { for all } x, y \in N .
$$

Inspired by the definition of derivation, we define the notion of (σ, τ)-derivation as follows: Let σ, τ be two near-ring automorphisms of N. An additive mapping $d: N \rightarrow N$ is called a (σ, τ)-derivation if $d(x y)=\tau(x) d(y)+d(x) \sigma(y)$ holds for all $x, y \in N$. It is noted that $d(x y)=$ $d(x) \sigma(y)+\tau(x) d(y)$, for all $x, y \in N$ in [9, Lemma 1].

Definition 1 ([10], Definition 1). Let N be a near-ring and d be a (σ, τ)-derivation of N. An additive mapping $f: N \rightarrow N$ is called a right generalized (σ, τ)-derivation associated with d if

$$
f(x y)=f(x) \sigma(y)+\tau(x) d(y), \text { for all } x, y \in N,
$$

and $f: N \rightarrow N$ is called a left generalized (σ, τ)-derivation associated with d if

$$
f(x y)=d(x) \sigma(y)+\tau(x) f(y), \text { for all } x, y \in N .
$$

f is called a generalized (σ, τ)-derivation associated with d if it is both left and right generalized (σ, τ)-derivation associated with d.

Of course a (1,1)-derivation (resp. generalized (1,1)-derivation) is a derivation (resp. generalized derivation) on N, where 1 is the identity on N.

Several authors have obtained commutativity results for prime or semiprime rings admitting derivations or generalized derivations. The study of derivations of near-rings was initiated by H. E. Bell and G. Mason in 1987 [4] and [6]. Some recent results on rings deal with commutativity on prime and semiprime rings admitting suitably constrained derivations. It is natural to look for comparable results on near-rings and this has been done in [9], [8], [1], [10], [2] and [3] .

Throughout this paper, N will denote a zero-symmetric left near-ring and $d \sigma=\sigma d, d \tau=$ $\tau d, f \sigma=\sigma f$ and $f \tau=\tau f$. It is our purpose to extend some of these results on prime nearrings admitting suitably constrained generalized (σ, τ)-derivation.

2. Results

Lemma 1 ([4], Lemma 3). Let N be a 3-prime near-ring.
i) If $z \in Z-(0)$, then z is not a zero divisor.
ii) If $Z-(0)$ contains an element z for which $z+z \in Z$, then $(N,+)$ is abelian.
iii) If $z \in Z-(0)$ and x is an element of N such that $x z \in Z$ or $z x \in Z$, then $x \in Z$.

Lemma 2 ([1], Lemma 3.1). Let N be a 3-prime near-ring, d a non trivial (σ, τ)-derivation and $a \in N$. If $a d(N)=(0) \operatorname{ord}(N) a=(0)$, then $a=0$.

Lemma 3 ([10], Lemma 2). Let N be a left near-ring.
i) Let d be a (σ, τ)-derivation of N. Then

$$
(d(x) \sigma(y)+\tau(x) d(y)) z=d(x) \sigma(y) z+\tau(x) d(y) z, \text { for all } x, y, z \in N .
$$

ii) Let (f, d) be a nonzero right generalized (σ, τ)-derivation of N. Then

$$
(f(x) \sigma(y)+\tau(x) d(y)) z=f(x) \sigma(y) z+\tau(x) d(y) z, \text { for all } x, y, z \in N .
$$

iii) Let (f, d) be a nonzero left generalized (σ, τ)-derivation of N. Then

$$
(d(x) \sigma(y)+\tau(x) f(y)) z=d(x) \sigma(y) z+\tau(x) f(y) z, \text { for all } x, y, z \in N
$$

Lemma 4 ([5], Lemma 1.3). Let N be a3-prime near-ring, d a non trivial (σ, τ)-derivation and I a nonzero semigroup ideal of N.
i) If $x, y \in N$ and $x I y=(0)$, then $x=0$ or $y=0$.
ii) If $x, y \in N$ and $x I=(0)$ or $I x=(0)$, then $x=0$.

Lemma 5 ([8], Lemma 4). Let N be a 3-prime near-ring, d a (σ, τ)-derivation and I a nonzero right (or left) semigroup ideal of N. If $d(I)=(0)$, then $d=0$.

Lemma 6. Let N be a 3-prime near-ring and I a nonzero semigroup right ideal of N. If $[I, I]=$ (0), then N is commutative.

Proof. By the hypothesis, we have

$$
u v=v u, \text { for all } u, v \in I .
$$

Replacing u by $u r, r \in N$, we get

$$
I[\nu, r]=(0), \text { for all } v \in I, r \in N .
$$

By Lemma 4, we obtain that $[v, r]=(0)$, for all $v \in I, r \in N$. Again, replacing v by $v x$, $x \in N$ this implies that $I[x, r]=(0)$, for all $r, x \in N$. Using Lemma 4, we conclude that N is commutative.

Theorem 1. Let N be a 3-prime near-ring, (f, d) a nonzero right generalized (σ, τ)-derivation of N. If $f(N) \subseteq Z$, then $(N,+)$ is abelian. Moreover, N is a commutative ring or $d=0$.

Proof. As $f(N) \subseteq Z$ and f is nonzero, there exists a nonzero element x in N such that $f(x) \in$ $Z-(0)$ and $f(x+x)=f(x)+f(x) \in Z$. Hence, $(N,+)$ is abelian by Lemma 1 (ii).

Suppose that $d=0$. We have $f(x y)=f(x) \sigma(y) \in Z$, for all $x, y \in N$. Thus,

$$
f(x) \sigma(y) \sigma(z)=\sigma(z) f(x) \sigma(y), \text { for all } x, y, z \in N .
$$

Using the hypothesis, we get

$$
\begin{aligned}
0 & =f(x) \sigma(y) \sigma(z)-\sigma(z) f(x) \sigma(y) \\
& =f(x) \sigma(y) \sigma(z)-f(x) \sigma(z) \sigma(y) \\
& =f(x)(\sigma(y) \sigma(z)-\sigma(z) \sigma(y)) .
\end{aligned}
$$

Using Lemma 1 (iii), $f(x) \neq 0$ and $f(x) \in Z$, we have

$$
\sigma([y, z])=0, \text { for all } y, z \in N .
$$

As σ is an automorphism, we obtain that

$$
[y, z]=0, \text { for all } y, z \in N .
$$

Hence, N is commutative ring.
Now, we suppose that $d \neq 0$. Let distinguish this into two situations. Firstly, we have $d(Z) \neq(0)$. Thus, there exists a nonzero element c in $Z-(0)$ such that $d(c) \neq 0$. By the hypothesis, we get

$$
f(x c)=f(x) \sigma(c)+\tau(x) d(c) \in Z, \text { for all } x \in N .
$$

We have

$$
(f(x) \sigma(c)+\tau(x) d(c)) \tau(y)=\tau(y)(f(x) \sigma(c)+\tau(x) d(c)), \text { for all } x, y \in N .
$$

By Lemma 3(ii), we obtain that

$$
f(x) \sigma(c) \tau(y)+\tau(x) d(c) \tau(y)=\tau(y) f(x) \sigma(c)+\tau(y) \tau(x) d(c), \text { for all } x, y \in N .
$$

Using the hypothesis and $\sigma(c) \in Z$ in the last equation, we get

$$
f(x) \sigma(c) \tau(y)+\tau(x) d(c) \tau(y)=f(x) \sigma(c) \tau(y)+\tau(y) \tau(x) d(c)
$$

and so

$$
\begin{equation*}
\tau(x) d(c) \tau(y)=\tau(y) \tau(x) d(c), \text { for all } x, y \in N . \tag{2.1}
\end{equation*}
$$

Replacing x by $x z, z \in N$ in this equation, we have

$$
\tau(x) \tau(z) d(c) \tau(y)=\tau(y) \tau(x) \tau(z) d(c), \text { for all } x, y, z \in N .
$$

Appliying (2.1), we obtain that

$$
\tau(x) \tau(z) d(c) \tau(y)=\tau(y) \tau(z) d(c) \tau(x), \text { for all } x, y, z \in N,
$$

and so

$$
\tau(z) d(c) \tau(x) \tau(y)=\tau(z) d(c) \tau(y) \tau(x), \text { for all } x, y, z \in N .
$$

That is,

$$
\tau(z) d(c) \tau(x y-y x)=0, \text { for all } x, y, z \in N .
$$

As τ is an automorphism, we obtain that

$$
N d(c)(x y-y x)=0, \text { for all } x, y \in N .
$$

As N is a 3-prime near ring, we get

$$
d(c) x y=d(c) y x, \text { for all } x, y \in N
$$

Taking x by $x z$ in this equation and using this equation, we find that

$$
d(c) x z y=d(c) y x z=d(c) x y z, \text { for all } x, y, z \in N,
$$

and so,

$$
d(c) N[z, y]=0, \text { for all } z, y \in N .
$$

Again, as N is a 3 -prime near ring and $d(c) \neq 0$, we get

$$
[z, y]=0, \text { for all } z, y \in N .
$$

Thus, N is commutative ring. Secondly, $d(Z)=(0)$. Using $f(x) \in Z$, we have $d(f(x))=0$, for all $x \in N$. Replacing x by $x y$ in the last equation, we have

$$
\begin{aligned}
0 & =d(f(x y))=d(f(x) \sigma(y)+\tau(x) d(y)) \\
& =d(f(x)) \sigma^{2}(y)+\tau(f(x)) d(\sigma(y))+d(\tau(x)) \sigma(d(y))+\tau^{2}(x) d^{2}(y) \\
& =\tau(f(x)) d(\sigma(y))+d(\tau(x)) \sigma(d(y))+\tau^{2}(x) d^{2}(y) .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\tau(f(x)) d(\sigma(y))+d(\tau(x)) \sigma(d(y))+\tau^{2}(x) d^{2}(y)=0, \text { for all } x, y \in N . \tag{2.2}
\end{equation*}
$$

If d is applied in the last equation, we have

$$
\begin{aligned}
& d(\tau(f(x))) \sigma(d(\sigma(y)))+\tau^{2}(f(x)) d^{2}(\sigma(y))+d^{2}(\tau(x)) \sigma^{2}(d(y)) \\
& \quad+\tau(d(\tau(x))) d(\sigma(d(y)))+d\left(\tau^{2}(x)\right) \sigma\left(d^{2}(y)\right)+\tau^{3}(x) d^{3}(y)=0 .
\end{aligned}
$$

Using $d \tau=\tau d, d \sigma=\sigma d$ and $d(f(x))=0$, for all $x \in N$, we have

$$
\tau^{2}(f(x)) d^{2}(\sigma(y))+d^{2}(\tau(x)) \sigma^{2}(d(y))+d\left(\tau^{2}(x)\right)\left(\sigma\left(d^{2}(y)\right)+d\left(\tau^{2}(x)\right) \sigma\left(d^{2}(y)\right)+\tau^{3}(x) d^{3}(y)=0\right.
$$

Replacing y by $d(y)$ and x by $\tau(x)$ in (2.2) and using $f \tau=\tau f, d \sigma=\sigma d$, we have

$$
\tau^{2}(f(x)) d^{2}(\sigma(y))+d\left(\tau^{2}(x)\right) \sigma\left(d^{2}(y)\right)+\tau^{3}(x) d^{3}(y)=0, \text { for all } x, y \in N .
$$

Using this equation in the above equation, we obtain that

$$
\begin{equation*}
d^{2}(\tau(x)) \sigma^{2}(d(y))+d\left(\tau^{2}(x)\right) \sigma\left(d^{2}(y)\right)=0, \text { for all } x, y \in N . \tag{2.3}
\end{equation*}
$$

Writing x by $d(x)$ and y by $\sigma(y)$ in (2.2), we have

$$
\tau\left(f(d(x)) d\left(\sigma^{2}(y)\right)+d^{2}(\tau(x)) \sigma^{2}(d(y))+\tau^{2}(d(x)) d^{2}(\sigma(y))=0, \text { for all } x, y \in N\right.
$$

Using (2.3) in the above equation and $f \tau=\tau f, d \sigma=\sigma d$, we get

$$
f\left(d(\tau(x)) d\left(\sigma^{2}(y)\right)=0, \text { for all } x, y \in N .\right.
$$

As σ, τ are automorphisms, we have $f(d(x)) d(y)=0$, for all $x, y \in N$. Replacing y by $y z$ in this equation, we obtain that $f(d(x)) \tau(y) d(z)=0$, for all $x, y, z \in N$. As N is a 3-prime near ring, we have $f(d(x))=0$, for all $x \in N$ or $d=0$. Suppose that, $f(d(x))=0$, for all $x \in N$. By the hypothesis, we get $f(d(x) \tau(y)) \in Z$. That is, $f(d(x)) \sigma(\tau(y))+\tau(d(x)) d(\tau(y)) \in Z$, and so $\tau(d(x)) d(\tau(y)) \in Z$, for all $x, y \in N$. Using $d \tau=\tau d$, we get $\tau(d(x) d(y)) \in Z$, for all $x, y \in N$. Since τ is an automorphism, we get $d(x) d(y) \in Z$, for all $x, y \in N$. Assume that, $\{d(x) d(y)=0\}$ or $\{d(y) d(x)=0\}$ or $\{d(x) d(y) \neq 0$ and $d(y) d(x) \neq 0\}$ for all $x, y \in N$. In the first two cases, we have $d=0$. In the last case, $d(x) d(y) \in Z-(0)$ and $d(y) d(x) \in Z-(0)$, for all $x, y \in N$. That is, $d(x) d(y)-d(y) d(x) \in Z-(0)$. That is, $d(x) d(x) d(y)=d(x) d(y) d(x)$, for all $x, y \in N$. We conclude that, $d(x)(d(x) d(y)-d(y) d(x))=0$, for all $x, y \in N$. Using $d(x) d(y)-d(y) d(x) \in$ $Z-(0)$ in the last equation, $d(x)=0$, for all $x \in N$ by Lemma 1 (iii). Thus, $d=0$.

Theorem 2. Let N be a 3-prime near-ring, (f, d) a nonzero right generalized (σ, τ)-derivation of N and I a nonzero semigroup ideal of N. If $f(I) \subseteq Z$, then $(N,+)$ is abelian. Moreover, N is a commutative ring or $d=0$.

Proof. Suppose that $f(I)=(0)$. Then, $f(u x)=0$, for all $u \in I, x \in N$. That is, $f(u) \sigma(x)+$ $\tau(u) d(x)=0$. Using $f(I)=(0)$, we have $\tau(u) d(x)=0$, for all $u \in I, x \in N$. Using Lemma 2, we have $d=0$. Therefore, $f(x u)=0=f(x) \sigma(u)$, for all $u \in I, x \in N$. As σ is an automorphism of N, we get $f(x) u=0$, for all $u \in I, x \in N$. By Lemma 4 (ii), we conclude that $f=0$. This is a contradiction. Thus, $f(I) \neq(0)$. There exists a nonzero element a in I such that $f(a) \neq 0$.

As I is a semigroup ideal of N, we get $a x \in I$, for all $x \in N$. Thus, $a x+a x=a(x+x) \in I$. Using $f(I) \subseteq Z$, we have $f(a x+a x)=f(a x)+f(a x) \in Z$. Firstly, suppose that there exists $x \in N$ such that $f(a x) \neq 0$. This implies that $f(a x) \in Z-(0)$ and $f(a x)+f(a x) \in Z$. We obtain that ($N,+$) is abelian by Lemma 1 (ii).

Now, finally assume that $f(a x)=0$, for all $x \in N$. We get

$$
0=f(a(x a))=f((a x) a)=f(a x) \sigma(a)+\tau(a x) d(a)
$$

Application of $f(a x)=0$, we find that

$$
\tau(a x) d(a)=0, \text { for all } x \in N .
$$

As τ is an automorphism of N, we get $\tau(a) N d(a)=0$. By the primeness of N, we have $\tau(a)=0$ or $d(a)=0$ and so, $a=0$ or $d(a)=0$. Let be $d(a)=0$, so that

$$
f(x a)=f(x) \sigma(a)+\tau(x) d(a)=f(x) \sigma(a) \in Z
$$

and so

$$
f(x) \sigma(a) \in Z, \text { for all } x \in N .
$$

Therefore,

$$
0=[f(u) \sigma(a), y]=f(u) \sigma(a) y-y f(u) \sigma(a), \text { for all } u \in I .
$$

Using $f(I) \subseteq Z$, we have

$$
0=f(u) \sigma(a) y-f(u) y \sigma(a)=f(u)(\sigma(a) y-y \sigma(a))=f(u)[\sigma(a), y], \text { for all } u \in I .
$$

As $f(I) \neq(0)$ and $f(I) \subseteq Z$, we have $f(u) \in Z-\{0\}$. Thus, $[\sigma(a), y]=0$, for all $y \in N$ by Lemma 1 (i). As σ is an automorphism, we get $a \in Z$. Using $f(a x)=0$, for all $x \in N$ and $d(a)=0$, we get

$$
0=f(a x)=f(x a)=f(x) \sigma(a)+\tau(x) d(a)=f(x) \sigma(a) .
$$

That is

$$
f(x) \sigma(a)=0, \text { for all } x \in N \text {. }
$$

Thus, $f(I) \sigma(a)=(0)$. As $f(I) \neq(0)$ and $f(I) \subseteq Z$, we have $\sigma(a)=0$ by Lemma 1 (i). Using σ is an automorphism, we have $a=0$. This is contradiction with $f(a) \neq 0$. Therefore, $(N,+)$ is abelian.

To complete the proof, we prove that N is a commutative ring. First case, consider $d=0$. We obtain that

$$
f(u x)=f(u) \sigma(x)+\tau(u) d(x)=f(u) \sigma(x) \in Z,
$$

and so

$$
f(u) \sigma(x) \in Z, \text { for all } u \in I, x \in N .
$$

As $f(I) \neq(0)$ and $f(I) \subseteq Z$, we have $f(u) \in Z-\{0\}$ for some $u \in I$. Using Lemma 1 (iii) in the last equation, we have $\sigma(x) \in Z$, for all $x \in N$. As σ is an automorphism, we obtain that $x \in Z$, for all $x \in N$. Therefore, N is commutative.

Now, assume that $d \neq 0$. Let $c \in Z-\{0\}$. This implies that $f(u c)=f(u) \sigma(c)+\tau(u) d(c) \in Z$, for all $u \in I$. Commuting $\tau(v), v \in I$ in the last equation, we have

$$
(f(u) \sigma(c)+\tau(u) d(c)) \tau(\nu)=\tau(\nu)(f(u) \sigma(c)+\tau(u) d(c)), \text { for all } u, v \in I .
$$

As N is a left near-ring and Lemma 3 (ii), we have

$$
f(u) \sigma(c) \tau(\nu)+\tau(u) d(c) \tau(\nu)=\tau(\nu) f(u) \sigma(c)+\tau(\nu) \tau(u) d(c), \text { for all } u, v \in I .
$$

Using $f(u), \sigma(c) \in Z$, we get

$$
f(u) \sigma(c) \tau(\nu)+\tau(u) d(c) \tau(\nu)=f(u) \sigma(c) \tau(\nu)+\tau(\nu) \tau(u) d(c),
$$

and so

$$
\begin{equation*}
\tau(u) d(c) \tau(v)=\tau(v) \tau(u) d(c), \text { for all } u, v \in I . \tag{2.4}
\end{equation*}
$$

Replacing u by $u w, w \in I$ in the last equation, we find that

$$
\tau(u) \tau(w) d(c) \tau(v)=\tau(v) \tau(u) \tau(w) d(c), \text { for all } u, v, w \in I .
$$

Using equation (2.4) in the above equation, we have

$$
\tau(w) d(c) \tau(u) \tau(v)=\tau(w) d(c) \tau(v) \tau(u), \text { for all } u, v, w \in I .
$$

That is,

$$
\tau(w) d(c)(\tau(u) \tau(\nu)-\tau(v) \tau(u)=0, \text { for all } u, v, w \in I .
$$

Thus,

$$
I \tau^{-1}(d(c))(u v-v u)=0, \text { for all } u, v \in I .
$$

By Lemma 4 (ii), we have

$$
\tau^{-1}(d(c))(u v-v u)=0, \text { for all } u, v \in I,
$$

and so

$$
\begin{equation*}
\tau^{-1}(d(c)) u v=\tau^{-1}(d(c)) \nu u, \text { for all } u, v \in I, \tag{2.5}
\end{equation*}
$$

Taking v by $v w, w \in I$ in (2.5) and using this equation, we see that

$$
\tau^{-1}(d(c)) v u w-\tau^{-1}(d(c)) v w u=0, \text { for all } u, v \in I .
$$

That is

$$
\tau^{-1}(d(c)) I(u w-w u)=0, \text { for all } u, w \in I .
$$

Using Lemma 4 (i), we obtain that

$$
\tau^{-1}(d(c))=0 \text { or }[u, w]=0, \text { for all } u, w \in I .
$$

Therefore,

$$
d(c)=0 \text { or }[u, w]=0, \text { for all } u, w \in I .
$$

If $[u, w]=0$, for all $u, w \in I$, then $I \subseteq Z$ by Lemma 6. Thus, N is commutative. Then, $d(c)=0$.
The last is $d \neq 0$ and $d(c)=0, c \in Z-\{0\}$. For each $u \in I$, we have $u^{2} \in I$. Assume that $\{\sigma(I)+\tau(I)\} \cap Z=(0)$. As σ, τ are automorphisms, there exists $x, y \in N$ such that $f(u)=\sigma(x)$ and $d(u)=\tau(y)$, we have

$$
f\left(u^{2}\right)=f(u) \sigma(u)+\tau(u) d(u)=\sigma(x) \sigma(u)+\tau(u) \tau(y)=\sigma(x u)+\tau(u y) \in \sigma(I)+\tau(I) .
$$

Also, using the hypothesis, we have $f\left(u^{2}\right) \in Z$. Therefore $f\left(u^{2}\right) \in\{\sigma(I)+\tau(I)\} \cap Z=(0)$. That is $f\left(u^{2}\right)=0$, for all $u \in I$. This implies that

$$
f\left(u^{2} x\right)=f\left(u^{2}\right) \sigma(x)+\tau\left(u^{2}\right) d(x)=\tau\left(u^{2}\right) d(x), \text { for all } u \in I, x \in N .
$$

As τ is an automorphism, we have $\tau\left(u^{2}\right) d(x)=\tau(u) \tau(u) \tau(z)$ for some $z \in N$ and so $\tau\left(u^{2}\right) d(x)=$ $\tau\left(u^{2} z\right) \in \tau(I) \subset\{\sigma(I)+\tau(I)\}$. Moreover $f\left(u^{2} x\right)=\tau\left(u^{2}\right) d(x) \in Z$. So $\tau\left(u^{2}\right) d(x) \in\{\sigma(I)+\tau(I)\} \cap$ $Z=(0)$. That is $\tau\left(u^{2}\right) d(x)=0$ for all $u \in I, x \in N$. Replacing x by $x y, y \in N$, we have $\tau\left(u^{2}\right) d(x) \sigma(y)+\tau\left(u^{2}\right) \tau(x) d(y)=0$, and so $\tau\left(u^{2}\right) \tau(x) d(y)=0$, for all $u \in I, x, y \in N$. By the primenessly of N, we have $\tau\left(u^{2}\right)=0$ or $d=0$, for all $u \in I$. We conclude that $\tau\left(u^{2}\right)=0$ for all $u \in I$. Using $\tau \in \operatorname{Aut}(N)$, we have $u^{2}=0$ for all $u \in I$. By the hypothesis, we have

$$
f(x u)=f(x) \sigma(u)+\tau(x) d(u) \in Z, \text { for all } u \in I, x \in N .
$$

Appliying $u^{2}=0$ for all $u \in I$, we have

$$
\begin{aligned}
0 & =\{f(x) \sigma(u)+\tau(x) d(u)\} \sigma\left(u^{2}\right) \\
& =\sigma(u)\{f(x) \sigma(u)+\tau(x) d(u)\} \sigma(u) \\
& =\sigma(u) f(x) \sigma\left(u^{2}\right)+\sigma(u) \tau(x) d(u) \sigma(u) \\
& =\sigma(u) \tau(x) d(u) \sigma(u) .
\end{aligned}
$$

Multipliying the last equation on the left $d(u)$ and as τ is an automorphism, we obtain that

$$
d(u) \sigma(u) N d(u) \sigma(u)=(0), \text { for all } u \in I .
$$

Using N is a 3- prime near-ring, we have

$$
d(u) \sigma(u)=0, \text { for all } u \in I .
$$

As $u^{2}=0$ for all $u \in I$ and using the above equation, we get

$$
0=d\left(u^{2}\right)=d(u) \sigma(u)+\tau(u) d(u)=\tau(u) d(u)
$$

and so

$$
\begin{equation*}
\tau(u) d(u)=0, \text { for all } u \in I . \tag{2.6}
\end{equation*}
$$

As $f(I) \neq(0)$, there exists $v \in I$ such that $f(v) \neq 0$. Using equation (2.6) and $v^{2}=0$, we have

$$
0=f\left(v^{2}\right)=f(\nu) \sigma(\nu)+\tau(v) d(v)=f(\nu) \sigma(\nu) .
$$

Using $f(\nu) \sigma(\nu)=0$ and $0 \neq f(\nu) \in Z$, we have $f(\nu) N \sigma(\nu)=(0)$. By the primenessly of N, we obtain that $f(\nu)=0$ or $\sigma(\nu)=0$ and so $f(\nu)=0$ or $v=0$. This is a contradiction.

Now, suppose that $\{\sigma(I)+\tau(I)\} \cap Z \neq(0)$. Taking $0 \neq c \in\{\sigma(I)+\tau(I)\} \cap Z$ and $x \in N$ and using $d(Z)=(0)$, we find that

$$
f(x c)=f(x) \sigma(c)+\tau(x) d(c)=f(x) \sigma(c) .
$$

As $c \in\{\sigma(I)+\tau(I)\}$, there exists $u, v \in I$ such that $c=\sigma(u)+\tau(v)$. We have

$$
f(x) \sigma(c)=f(x)\{\sigma(u)+\tau(\nu)\}=f(x) \sigma(u)+f(x) \tau(\nu) .
$$

As $\sigma, \tau \in \operatorname{Aut}(N)$, there exists $x^{\prime}, y^{\prime} \in N$ such that $\sigma\left(x^{\prime}\right)=x, \tau\left(y^{\prime}\right)=x$ and using $\sigma f=f \sigma$, $\tau f=f \tau$, we get

$$
\begin{aligned}
f(x c) & =f(x(\sigma(u)+\tau(v))=f(x \sigma(u)+x \tau(v)) \\
& =f\left(\sigma\left(x^{\prime}\right) \sigma(u)+\tau\left(y^{\prime}\right) \tau(\nu)\right)=f\left(\sigma\left(x^{\prime} u\right)+\tau\left(y^{\prime} v\right)\right) \\
& =f\left(\sigma\left(x^{\prime} u\right)\right)+f\left(\tau\left(y^{\prime} v\right)\right) \\
& =\sigma\left(f\left(x^{\prime} u\right)\right)+\tau\left(f\left(y^{\prime} v\right)\right) .
\end{aligned}
$$

As $x^{\prime} u, y^{\prime} v \in I$ and $f(I) \subset Z$, we have $f\left(x^{\prime} u\right), f\left(y^{\prime} v\right) \in Z$. Using σ, τ are automorphisms, we get $\sigma\left(f\left(x^{\prime} u\right)\right), \tau\left(f\left(y^{\prime} \nu\right)\right) \in Z$. This implies that $f(x c)=\sigma\left(f\left(x^{\prime} u\right)\right)+\tau\left(f\left(y^{\prime} \nu\right)\right) \in Z$. Therefore $f(x) \sigma(c) \in Z$, for all $x \in N$. Using $\sigma(c) \in Z-\{0\}$, we have $f(x) \in Z$, for all $x \in N$ by Lemma 1 (iii). Therefore, N is commutative ring or $d=0$ by Theorem 1 .

Theorem 3. Let N be a 3-prime near-ring, (f, d) a nonzero generalized (σ, τ)-derivation of N and I a nonzero right semigroup ideal of N. If f acts as a homomorphism on I, then $d=0$.

Proof. By the hypothesis, we get

$$
\begin{equation*}
f(u v)=f(u) f(v), \text { for all } u, v \in I . \tag{2.7}
\end{equation*}
$$

Replacing v by $v w, w \in I$, we get

$$
f(u v w)=d(u) \sigma(v w)+\tau(u) f(\nu w)=d(u) \sigma(\nu w)+\tau(u) d(\nu) \sigma(w)+\tau(u v) f(w) .
$$

On the other hand, using Lemma 3 (iii), we get

$$
\begin{aligned}
f(u v w) & =f(u v) f(w)=\{d(u) \sigma(v)+\tau(u) f(v)\} f(w) \\
& =d(u) \sigma(v) f(w)+\tau(u) f(v) f(w)=d(u) \sigma(v) f(w)+\tau(u) f(v w) \\
& =d(u) \sigma(v) f(w)+\tau(u) d(v) \sigma(w)+\tau(u) \tau(v) f(w) .
\end{aligned}
$$

Comparing these two equations, we get

$$
d(u) \sigma(v w)+\tau(u) d(v) \sigma(w)+\tau(u v) f(w)=d(u) \sigma(v) f(w)+\tau(u) d(v) \sigma(w)+\tau(u) \tau(v) f(w) .
$$

That is

$$
d(u) \sigma(v w)=d(u) \sigma(v) f(w)
$$

and so

$$
d(u) \sigma(v)(\sigma(w)-f(w))=0, \text { for all } u, v, w \in I .
$$

As σ is an automorphism, we have

$$
\sigma^{-1}(d(u)) I \sigma^{-1}(\sigma(w)-f(w))=0, \text { for all } u, w \in I
$$

By Lemma 4 (i), we have $d(u)=0$ or $\sigma(w)=f(w)$, for all $u, w \in I$. If $d(I)=0$, then $d=0$ by Lemma 5. In the second case, we get $\sigma(w)=f(w)$, for all $w \in I$. Replacing w by $w x, x \in N$ in the last equation and using this equation, we have

$$
\sigma(w x)=f(w) \sigma(x)+\tau(w) d(x)=\sigma(w) \sigma(x)+\tau(w) d(x)
$$

Therefore, $\tau(w) d(x)=0$, for all $w \in I, x \in N$. As τ is an automorphism and using Lemma 4 (ii), we obtain that $d=0$. Thus, in the both cases, this implies that $d=0$.

Theorem 4. Let N be a 3-prime near-ring, (f, d) a nonzero generalized (σ, τ)-derivation of N and I a nonzero semigroup ideal of N. If f acts as an anti-homomorphism on I, then $d=0$.

Proof. Assume that

$$
f(u v)=f(v) f(u), \text { for all } u, v \in I .
$$

Replacing v by $u v$ in the above equation, we have

$$
f(u u v)=f(u v) f(u)
$$

and so

$$
f(u u v)=f(u(u v))=d(u) \sigma(u v)+\tau(u) f(u v)
$$

Moreover, by Lemma 3 (iii)

$$
f(u v) f(u)=d(u) \sigma(v) f(u)+\tau(u) f(v) f(u)=d(u) \sigma(v) f(u)+\tau(u) f(u v) .
$$

Comparing last two equation, we have

$$
d(u) \sigma(u v)=d(u) \sigma(v) f(u), \text { for all } u, v \in I .
$$

Taking $v x$ instead of $v, x \in N$ and using the last equation, we obtain that

$$
d(u) \sigma(v) f(u) \sigma(x)=d(u) \sigma(v) \sigma(x) f(u)
$$

and so

$$
d(u) \sigma(v)[f(u), \sigma(x)]=0, \text { for all } u, v \in I, x \in N .
$$

As σ is an automorphism, we have

$$
\sigma^{-1}(d(u)) I \sigma^{-1}([f(u), x])=0, \text { for all } u \in I, x \in N .
$$

By the primeness of N, we find that

$$
d(u)=0 \text { or } f(u) \in Z, \text { for all } u \in I .
$$

Since I is a nonzero ideal of N, there exists $u \in I-(0)$. Let $I_{1}=u N$. Then I_{1} is a nonzero semigroup right ideal contained in I and I_{1} is an additive subgroup of N. Let $L=\left\{u \in I_{1} \mid f(u) \in Z\right.$ $\}$ and $K=\left\{u \in I_{1} \mid d(u)=0\right\}$. It is clear that, each of L and K is an additive subgroup of I_{1} such that $I_{1}=L \cup K$. But, a group can not be the set-theoretic union of two proper subgroups. Hence $I_{1}=L$ or $I_{1}=K$. In the first case, $f\left(I_{1}\right) \subset Z$, we get $f(u v)=f(\nu) f(u)=f(u) f(\nu)$. That is, f acts as a homomorphism on I_{1}. This implies that $d=0$, by Theorem 3. In the second case, $d\left(I_{1}\right)=0$. By Lemma 5 , we get $d=0$. This completes the proof.

References

[1] M. Ashraf, A. Ali, S. Ali, (σ, τ)-derivations on prime near-rings", Arch. Math. (Brno), 40 (2004), 281-286.
[2] A. Ali, H. E. Bell and R. Rani, (θ, φ)-Derivations as homomorphisms or as anti-homomorphisms on a near ring, Tamkang Journal of Math., 43 (2012), 385-390.
[3] A. Ali, H. E. Bell and P. Miyan, Generalized derivations on prime near rings, Int. J. Math. Math Sci., 2013 (2013), 1-5.
[4] H. E.Bell and G. Mason, On derivations in near-rings, North-Holland Mathematics Studies, 137(1987), 31-35.
[5] H. E. Bell On derivations in near-rings II, Kluwer Academic Publ. Math. Appl. Dordr., 426(1997), 191-197.
[6] H. E. Bell and G. Mason, On derivations in near-rings and rings, Math. J. Okayama Univ., 34 (1992), 135-144.
[7] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33 (1991), 89-93.
[8] O. Golbasi and N. Aydin, On near-ring ideals with (σ, τ)-derivation, Archivum Math. Bruno, Tomus, 43 (2007), 87-92.
[9] O. Golbasi, Some properties of prime near-rings with (σ, τ) - derivation, Sib. Math. J., 46 (2005), 270-275.
[10] O. Golbasi, On prime near-rings with genearlized (σ, τ)-derivation, Kyungpook Math. J., 45 (2005), 249-254.
[11] X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc., 121 (1994), 361-366.

Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas - TURKEY.
E-mail: eminekoc@cumhuriyet.edu.tr

