EXTENSION OF AN INEQUALITY WITH POWER EXPONENTIAL FUNCTIONS

MITSUHIRO MIYAGI AND YUSUKE NISHIZAWA

Abstract. V. Cîrtoaje et al. [2] conjectured and proved [3, 4] that the inequality $a^r b + b^r a \leq 2$ holds for all nonnegative numbers $r \leq 3$ and nonnegative real numbers a, b with $a + b = 2$. In this paper, we will show that $a^r b + b^r a \leq 2$ holds for all nonnegative $r \geq 3$ and all nonnegative real numbers a, b with $a + b = 2$ and some conditions. This gives an extended inequality of conjectured by V. Cîrtoaje.

1. Introduction

Inequalities appear on the various branches of mathematics. In this paper, we give a result of an inequality with power exponential functions which is studied by V. Cîrtoaje et al. [1, 2, 3, 4, 5, 6, 7, 8]. The formula of inequalities with power exponential functions are very simple, but their proof is not as simple as it seems. V. Cîrtoaje et al. [3, 4] proved that the inequality

$$a^r b + b^r a \leq 2 \quad (1.1)$$

holds for all nonnegative real number $r \leq 3$ and all nonnegative real numbers a, b with $a + b = 2$. Miyagi et al. [7] proved that the stronger inequality

$$a^3 b + b^3 a + \left(\frac{a - b}{2}\right)^4 \leq 2 \quad (1.2)$$

holds for the same conditions. These inequalities (1.1) and (1.2) are conjectures by V. Cîrtoaje [2]. The following is our main theorem.

Theorem 1.1. The inequality

$$a^r b + b^r a \leq 2 \quad (1.3)$$

holds for all numbers $r \geq 3$ and all real numbers $a, b \in [0, 1 - ((r - 3) / (r - 2))^{1/3}] \cup [1 + ((r - 3) / (r - 2))^{1/3}, 2]$ with $a + b = 2$.

Received January 15, 2015, accepted March 15, 2015.
2010 Mathematics Subject Classification. Primary 26D10.

Key words and phrases. Power-exponential function, monotonically decreasing function, monotonically increasing function.

Corresponding author: Yusuke Nishizawa.
The above inequality (1.3) is an extension of the inequality (1.1).

2. Preliminaries

In this section, we will show some lemmas to prove our main theorem.

Lemma 2.1. If $0 < b < 1$, then

$$(2 - b)^{3b-1} \ln (2 - b) + b^{5-3b} \ln b > 0.$$

Proof.

$$(2 - b)^{3b-1} \ln (2 - b) + b^{5-3b} \ln b > 0$$

is equivalent to

$$\frac{-(b(2-b))^{3b} \ln (2 - b)}{(2 - b)b^5 \ln b} > 1.$$

We set

$$f(b) = b^{3b-4} - (2 - b)$$

then we have derivatives

$$f'(b) = 1 + b^{3b-4} \left(\frac{3b-4}{b} + 3 \ln b \right)$$

and

$$f''(b) = b^{3b-4} \left(\frac{3}{b} + \frac{4}{b^2} \right) + b^{3b-4} \left(\frac{3b-4}{b} + 3 \ln b \right)^2.$$

Since $f''(b) > 0$, $f'(b)$ is strictly increasing for b. Since $f'(1) = 0$, we have $f'(b) < 0$ for all $0 < b < 1$. Therefore, $f(b)$ is strictly decreasing for $0 < b < 1$. Since $f(1) = 0$, we have $f(b) > 0$ for all $0 < b < 1$. Therefore, we get

$$\frac{b^{3b-4}}{2 - b} > 1$$

for all $0 < b < 1$. We set

$$g(b) = \ln (2 - b) + b \ln b$$

then we have derivatives

$$g'(b) = 1 - \frac{1}{2 - b} + \ln b$$

and

$$g''(b) = \frac{(b-4)(b-1)}{(b-2)^2 b}.$$

Since $g''(b) > 0$, $g'(b)$ is strictly increasing for b. Since $g'(1) = 0$, we have $g'(b) < 0$ for all $0 < b < 1$. Therefore, $g(b)$ is strictly decreasing for $0 < b < 1$. Since $g(1) = 0$, we have $g(b) > 0$ for all $0 < b < 1$. Therefore, we get

$$-\frac{\ln (2 - b)}{b \ln b} > 1.$$
for all $0 < b < 1$. Since $2 - b > 1$ and $(2 - b)^{3b} > 1^{3b} = 1$, we have $(2 - b)^{3b} > 1$. Thus, we can get
\[\frac{-(b(2-b))^{3b} \ln(2-b)}{(2-b)b^5 \ln b} > 1. \]
for all $0 \leq b \leq 1$.

\[\text{Lemma 2.2. If } 0 < t < 1, \text{ then } G_1(t) > 0, \text{ where} \]
\[G_1(t) = 18 + 54t + 45t^2 + 12t^3 - 63t^4 - 60t^5 - 22t^6 + 36t^7 + 30t^8 + 16t^9 > 0. \]

Proof. We set
\[f(t) = 6 + 45t^2 + 12t^3 - 63t^4 \]
and
\[g(t) = 12 + 54t - 60t^5 - 22t^6 + 36t^7. \]
Since $f'(t) = 18t(5 + 2t - 14t^2)$ and $f'(0) = f'((1 + \sqrt{7})/14) = 0$, $f(t)$ is strictly increasing for $0 < t < (1 + \sqrt{7})/14$ and $f(t)$ is strictly decreasing for $(1 + \sqrt{7})/14 < t < 1$. From $f(0) = 6$ and $f(1) = 0$, $f(t) > 0$ for all $0 < t < 1$. Since $g''(t) = 12t^3(-100 - 55t + 126t^2) < 0$, $g'(t)$ is strictly decreasing for $0 < t < 1$. From $g'(0) = 54$ and $g'(1) = -126$, there exists uniquely a number t_0 with $0 < t_0 < 1$ such that $g'(t_0) = 0$. Since $g'(t) > 0$ for $0 < t < t_0$ and $g'(t) < 0$ for $t_0 < t < 1$, $g(t)$ is strictly increasing for $0 < t < t_0$ and $g(t)$ is strictly decreasing for $t_0 < t < 1$. From $g(0) = 12$ and $g(1) = 20$, $g(t) > 0$ for all $0 < t < 1$. Since $G_1(t) > f(t) + g(t)$ and $f(t) + g(t) > 0$, we have $G_1(t) > 0$ for $0 < t < 1$.

Lemma 2.3. There exists uniquely a number t_1 with $0 < t_1 < 1$ such that $G_2(t_1) = 0$, $G_2(t) > 0$ for $0 < t < t_1$ and $G_2(t) > 0$ for $t_1 < t < 1$, where
\[G_2(t) = -18 + 18t + 9t^2 + 36t^3 + 24t^5 + 2t^6 + 16t^7. \]

Proof. From $G_2'(t) > 0$, $G_2(t)$ is strictly increasing for $0 < t < 1$. Since $G_2(0) = -18$ and $G_2(1) = 87$, there exists uniquely a number t_1 with $0 < t_1 < 1$ such that $G_2(t_1) = 0$. Therefore, we have $G_2(t) < 0$ for $0 < t < t_1$ and $G_2(t) > 0$ for $t_1 < t < 1$.

Lemma 2.4. If $0 < t < 1$, **then**
\[H_1(t) > 0, \quad H_2(t) > 0, \quad H_3(t) > 0, \]
where
\[H_1(t) = 648 - 5184t + 13986t^2, \]
\[H_2(t) = 31320t^3 + 73143t^4 + 14742t^5 - 35433t^6 - 137844t^7 - 53988t^8 - 2000t^9 - 3828t^9 + 121410t^{10}, \]
\[H_3(t) = 50100t^{11} + 44862t^{12} - 36280t^{13} + 7156t^{14} - 20384t^{15} + 1408t^{16} - 22064t^{17} - 840t^{18}. \]
Proof. We have following inequalities

\[H_1(t) > H_1\left(\frac{48}{259}\right) = \frac{43416}{259} \]

and

\[H_2(t) > 30000t^3 + 70000t^4 + 14000t^5 - 36000t^6 - 138000t^7 - 54000t^8 - 2000t^9 - 4000t^9 + 120000t^{10} \]
\[= 2000(-1 + t)t^3(-15 - 50t - 57t^2 - 39t^3 + 30t^4 + 57t^5 + 60t^6). \]

Here, we set

\[f(t) = -39t^3 + 30t^4, \]
\[g(t) = -57t^2 + 57t^5 \]

and

\[h(t) = -15 - 50t + 60t^6. \]

Then we have following inequalities

\[f(t) = 3t^3(-13 + 10t) < 3t^3(-13 + 10) = -9t^3 < 0, \]
\[g(t) = 57(-1 + t)t^2(1 + t + t^2) < 0 \]

and

\[h(t) = -15 + 10t(-5 + 6t^5) < -15 + 10t(-5 + 6) < -5. \]

Since \(f(t) + g(t) + h(t) < 0 \), we have \(H_2(t) > 0 \). We have

\[H_3(t) > 50000t^{11} + 44000t^{12} - 37000t^{13} + 7000t^{14} - 21000t^{15} + 1400t^{16} - 23000t^{17} - 1000t^{18} \]
\[= -200t^{11}(-250 - 220t + 185t^2 - 35t^3 + 105t^4 - 7t^5 + 115t^6 + 5t^7). \]

Since

\[-250 + 105t^4 + 115t^6 + 5t^7 < -250 + 105 + 115 + 5 < 0 \]

and

\[-220t + 185t^2 - 35t^3 - 7t^5 = -t(220 - 185t + 35t^2 + 7t^4) < -t(220 - 185t) < 0, \]

we have \(H_3(t) > 0 \). Therefore, we have \(H_1(t) > 0, H_2(t) > 0 \) and \(H_3(t) > 0 \) for \(0 < t < 1 \).

Lemma 2.5. If \(0 \leq t \leq 1 \), then \(G(t) \leq 0 \), where

\[G(t) = e^{(1+t)(\frac{1}{1-t^2}+2)}(-t^{\frac{1-t}{2}}+\frac{3}{z}) + e^{(1-t)(\frac{1}{1-t^2}+2)}(t^{\frac{1-t}{2}}+\frac{3}{z}) - 2. \]
The derivative of H where G involves t, we assume that

Proof. We have

$$G'(t) = e^{(1+t)(\frac{1}{1-t^2}+\frac{1}{2})} \left[t^2 - \frac{G_1(t)}{6(-1 + t)^2(1 + t + t^2)^2} + e^{(1-t)(\frac{1}{1-t^2}+\frac{1}{2})} \right]$$

where

$$G_1(t) = 18 + 54t + 45t^2 + 12t^3 - 63t^4 - 60t^5 - 22t^6 + 36t^7 + 30t^8 + 16t^9$$

and

$$G_2(t) = -18 + 18t + 9t^2 + 36t^3 + 24t^5 + 2t^6 + 16t^7.$$

According to Lemmas 2.2 and 2.3, we have $G_1(t) > 0$ and $G_2(t) \geq 0$ for $t_1 \leq t < 1$, therefore $G'(t) < 0$ for $t_1 \leq t < 1$. We will show further that $G'(t)$ is also negative for $0 < t < t_1$, which involves $G'(t) < 0$ for $0 < t < 1$. The inequality $G'(t) < 0$ for $0 < t < t_1$ is equivalent to $H(t) > 0$, where

$$H(t) = (1 + t) \left(-t - \frac{t^2}{2} - \frac{t^3}{3} \right) \left(\frac{1}{1-t^2} + 2 \right) + \ln G_1(t) - \ln((-1 + t)^2)$$

$$- (1 - t) \left(t - \frac{t^2}{2} + \frac{t^3}{3} \right) \left(\frac{1}{1-t^2} + 2 \right) - \ln(-G_2(t)) > 0.$$

The derivative of $H(t)$ is

$$H'(t) = \frac{-t^2(H_1(t) + H_2(t) + H_3(t))}{(-1 + t)^2(1 + t + t^2)^2G_1(t)G_2(t)},$$

where

$$H_1(t) = 648 - 5184t + 13986t^2,$$

$$H_2(t) = 31320t^3 + 73143t^4 + 14742t^5 - 35433t^6 - 137844t^7$$

$$- 53988t^8 - 2000t^9 - 3828t^9 + 121410t^{10},$$

and

$$H_3(t) = 50100t^{11} + 44862t^{12} - 36280t^{13} + 7156t^{14}$$

$$- 20384t^{15} + 1408t^{16} - 22064t^{17} - 840t^{18}.$$

By Lemma 2.4, it follows that $H'(t) > 0$ for $0 < t < t_1$, when $G_1(t) > 0$ and $G_2(t) < 0$. Therefore, $H(t)$ is strictly increasing for $0 < t < t_1$, hence $H(t) > H(0) = 0$. Thus, $G'(t) < 0$ for $0 < t < 1$, $G(t)$ is strictly decreasing, $G(t) < G(0) = 0$ for $t_1 < t \leq 1$. □

3. **Proof of Theorem 1.1**

Proof. Without loss of generically, we assume that

$$0 \leq b \leq 1 - \left(\frac{r-3}{r-2} \right)^{\frac{1}{3}}.$$
and

\[1 + \left(\frac{r - 3}{r - 2} \right)^{\frac{1}{3}} \leq a \leq 2. \]

We set

\[F(b, r) = (2 - b)^{rb} + b^{r(2-b)} - 2. \]

Then we have derivatives

\[\frac{\partial F}{\partial r}(b, r) = (2 - b)^{rb} b \ln(2 - b) + (2 - b)^{r(2-b)} r \ln b \]

and

\[\frac{\partial^2 F}{\partial r^2}(b, r) = (2 - b)^{rb} b^2 \ln(2 - b)^2 + (2 - b)^{r(2-b)} (\ln b)^2. \]

Since \(\frac{\partial^2 F(b, r)}{\partial r^2} \geq 0 \), the function \(\frac{\partial F(b, r)}{\partial r} \) is strictly increasing for \(r \). By Lemma 2.1, we have

\[\frac{\partial F}{\partial r}(b, r) \geq \frac{\partial F}{\partial r}(b, 3) = b(2 - b) \left((2 - b)^{3b-1} \ln(2 - b) + b^{5-3b} \ln b \right) \]

\[\geq 0. \]

Thus, \(F(b, r) \) is strictly increasing for \(r \geq 3 \). Since

\[0 \leq b \leq 1 - \left(\frac{r - 3}{r - 2} \right)^{\frac{1}{3}}, \]

we have

\[3 \leq r \leq \frac{1}{1 - (1-b)^3} + 2. \]

Thus, we can get

\[F(b, r) \leq F \left(b, \frac{1}{1 - (1-b)^3} + 2 \right) \]

\[= (2 - b)^{b \left(\frac{1}{1 - (1-b)^3} + 2 \right)} b^{(1-t) \left(\frac{1}{1 - (1-b)^3} + 2 \right)^{(2-b)} - 2}. \]

Therefore, it suffices to show that

\[(2 - b)^{b \left(\frac{1}{1 - (1-b)^3} + 2 \right)} b^{(1-t) \left(\frac{1}{1 - (1-b)^3} + 2 \right)} (2-b) - 2 \leq 0. \]

Denoting

\[t = 1 - b, \quad 0 \leq t \leq 1, \]

this desired inequality becomes

\[(1 + t)^{(1-t) \left(\frac{1}{1-t^3} + 2 \right)} + (1 - t)^{(1+t) \left(\frac{1}{1-t^3} + 2 \right)} - 2 \leq 0. \]

From Lemma 6.1 in [3], we have

\[\ln(1 + t) \leq t - \frac{t^2}{2} + \frac{t^3}{3} \]
for all $t > -1$. Using this inequality, we get

\[
(1 - t)^{(1+t)\left(\frac{1}{1-t^3} + 2\right)} + (1 + t)^{(1-t)\left(\frac{1}{1-t^3} + 2\right)} - 2
\]

\[
= e^{(1+t)\left(\frac{1}{1-t^3} + 2\right)} \ln(1-t) + e^{(1-t)\left(\frac{1}{1-t^3} + 2\right)} \ln(1+t) - 2
\]

\[
\leq e^{(1+t)\left(\frac{1}{1-t^3} + 2\right)} \left(-t - \frac{c^2}{t} - \frac{c^3}{3}\right) + e^{(1-t)\left(\frac{1}{1-t^3} + 2\right)} \left(t - \frac{c^2}{t} + \frac{c^3}{3}\right) - 2.
\]

Therefore, it suffices to prove that $G(t) \leq 0$ for $0 \leq t \leq 1$, where

\[
G(t) = e^{(1+t)\left(\frac{1}{1-t^3} + 2\right)} \left(-t - \frac{c^2}{t} - \frac{c^3}{3}\right) + e^{(1-t)\left(\frac{1}{1-t^3} + 2\right)} \left(t - \frac{c^2}{t} + \frac{c^3}{3}\right) - 2.
\]

This is true by Lemma 2.5. Thus, the proof of Theorem 1.1 is completed. \qed

Acknowledgements

We would like to thank the referees for their valuable comments.

References

General Education, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi 755-8555, Japan.

E-mail: miyagi@ube-k.ac.jp

General Education, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi 755-8555, Japan.

E-mail: yusuke@ube-k.ac.jp