This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst

EXTENSION OF AN INEQUALITY WITH POWER EXPONENTIAL FUNCTIONS

MITSUHIRO MIYAGI AND YUSUKE NISHIZAWA

Abstract. V. Cîrtoaje et al. [2] conjectured and proved [3, 4] that the inequality $a^{rb} + b^{ra} \le 2$ holds for all nonnegative numbers $r \le 3$ and nonnegative real numbers a, b with a + b = 2. In this paper, we will show that $a^{rb} + b^{ra} \le 2$ holds for all nonnegative $r \ge 3$ and all nonnegative real numbers a, b with a + b = 2 and some conditions. This gives an extended inequality of conjectured by V. Cîrtoaje.

1. Introduction

Inequalities appear on the various branches of mathematics. In this paper, we give a result of an inequality with power exponential functions which is studied by V. Cîrtoaje et al. [1, 2, 3, 4, 5, 6, 7, 8]. The formula of inequalities with power exponential functions are very simple, but their proof is not as simple as it seems. V. Cîrtoaje et al. [3, 4] proved that the inequality

$$a^{rb} + b^{ra} \le 2 \tag{1.1}$$

holds for all nonnegative real number $r \le 3$ and all nonnegative real numbers a, b with a + b = 2. Miyagi et al. [7] proved that the stronger inequality

$$a^{3b} + b^{3a} + \left(\frac{a-b}{2}\right)^4 \le 2 \tag{1.2}$$

holds for the same conditions. These inequalities (1.1) and (1.2) are conjectures by V. Cîrtoaje [2]. The following is our main theorem.

Theorem 1.1. *The inequality*

$$a^{rb} + b^{ra} \le 2 \tag{1.3}$$

holds for all numbers $r \ge 3$ and all real numbers $a, b \in [0, 1 - ((r-3)/(r-2))^{1/3}] \cup [1 + ((r-3)/(r-2))^{1/3}, 2]$ with a + b = 2.

Corresponding author: Yusuke Nishizawa.

Received January 15, 2015, accepted March 15, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 26D10.

Key words and phrases. Power-exponential function, monotonically decreasing function, monotonically increasing function.

The above inequality (1.3) is an extension of the inequality (1.1).

2. Preliminaries

In this section, we will show some lemmas to prove our main theorem.

Lemma 2.1. *If* 0 < *b* < 1*, then*

$$(2-b)^{3b-1}\ln(2-b) + b^{5-3b}\ln b > 0.$$

Proof.

$$(2-b)^{3b-1}\ln(2-b) + b^{5-3b}\ln b > 0$$

is equivalent to

$$\frac{-(b(2-b))^{3b}\ln(2-b)}{(2-b)b^5\ln b} > 1.$$

We set

$$f(b) = b^{3b-4} - (2-b)$$

then we have derivatives

$$f'(b) = 1 + b^{3b-4} \left(\frac{3b-4}{b} + 3\ln b\right)$$

and

$$f''(b) = b^{3b-4} \left(\frac{3}{b} + \frac{4}{b^2}\right) + b^{3b-4} \left(\frac{3b-4}{b} + 3\ln b\right)^2.$$

Since f''(b) > 0, f'(b) is strictly increasing for *b*. Since f'(1) = 0, we have f'(b) < 0 for all 0 < b < 1. Therefore, f(b) is strictly decreasing for 0 < b < 1. Since f(1) = 0, we have f(b) > 0 for all 0 < b < 1. Therefore, we get

$$\frac{b^{3b-4}}{2-b} > 1$$

for all 0 < b < 1. We set

$$g(b) = \ln\left(2 - b\right) + b\ln b$$

then we have derivatives

$$g'(b) = 1 - \frac{1}{2 - b} + \ln b$$
$$g''(b) = \frac{(b - 4)(b - 1)}{(b - 2)^2 b}.$$

and

Since
$$g''(b) > 0$$
, $g'(b)$ is strictly increasing for *b*. Since $g'(1) = 0$, we have $g'(b) < 0$ for all $0 < b < 1$. Therefore, $g(b)$ is strictly decreasing for $0 < b < 1$. Since $g(1) = 0$, we have $g(b) > 0$ for all $0 < b < 1$. Therefore, we get

$$-\frac{\ln\left(2-b\right)}{b\ln b} > 1$$

428

for all 0 < b < 1. Since 2 - b > 1 and $(2 - b)^{3b} > 1^{3b} = 1$, we have $(2 - b)^{3b} > 1$. Thus, we can get

$$\frac{-(b(2-b))^{3b}\ln(2-b)}{(2-b)b^5\ln b} > 1.$$

for all $0 \le b \le 1$.

Lemma 2.2. *If* 0 < t < 1, *then* $G_1(t) > 0$, *where*

$$G_1(t) = 18 + 54t + 45t^2 + 12t^3 - 63t^4 - 60t^5 - 22t^6 + 36t^7 + 30t^8 + 16t^9 > 0.$$

Proof. We set

$$f(t) = 6 + 45t^2 + 12t^3 - 63t^4$$

and

$$g(t) = 12 + 54t - 60t^5 - 22t^6 + 36t^7.$$

Since $f'(t) = 18t(5+2t-14t^2)$ and $f'(0) = f'((1+\sqrt{71})/14) = 0$, f(t) is strictly increasing for $0 < t < (1+\sqrt{71})/14$ and f(t) is strictly decreasing for $(1+\sqrt{71})/14 < t < 1$. From f(0) = 6 and f(1) = 0, f(t) > 0 for all 0 < t < 1. Since $g'(t) = 6(9-50t^4-22t^5+42t^6)$ and $g''(t) = 12t^3(-100-55t+126t^2) < 0$, g'(t) is strictly decreasing for 0 < t < 1. From g'(0) = 54 and g'(1) = -126, there exists uniquely a number t_0 with $0 < t_0 < 1$ such that $g'(t_0) = 0$. Since g'(t) > 0 for $0 < t < t_0$ and g'(t) < 0 for $t_0 < t < 1$, g(t) is strictly increasing for $0 < t < t_0$ and g(t) = 51 and g'(t) < 0 for $t_0 < t < 1$, g(t) is strictly increasing for $0 < t < t_0$ and g(t) = 51 and g'(t) < 0 for $t_0 < t < 1$. From g(0) = 12 and g(1) = 20, g(t) > 0 for all 0 < t < 1. Since $G_1(t) > f(t) + g(t)$ and f(t) + g(t) > 0, we have $G_1(t) > 0$ for 0 < t < 1.

Lemma 2.3. There exists uniquely a number t_1 with $0 < t_1 < 1$ such that $G_2(t_1) = 0$, $G_2(t) < 0$ for $0 < t < t_1$ and $G_2(t) > 0$ for $t_1 < t < 1$, where

$$G_2(t) = -18 + 18t + 9t^2 + 36t^3 + 24t^5 + 2t^6 + 16t^7.$$

Proof. From $G'_2(t) > 0$, $G_2(t)$ is strictly increasing for 0 < t < 1. Since $G_2(0) = -18$ and $G_2(1) = 87$, there exists uniquely a number t_1 with $0 < t_1 < 1$ such that $G_2(t_1) = 0$. Therefore, we have $G_2(t) < 0$ for $0 < t < t_1$ and $G_2(t) > 0$ for $t_1 < t < 1$.

Lemma 2.4. *If* 0 < *t* < 1*, then*

 $H_1(t) > 0$, $H_2(t) > 0$, $H_3(t) > 0$,

where

$$\begin{split} H_1(t) &= 648 - 5184t + 13986t^2, \\ H_2(t) &= 31320t^3 + 73143t^4 + 14742t^5 - 35433t^6 - 137844t^7 \\ &- 53988t^8 - 2000t^9 - 3828t^9 + 121410t^{10}, \\ H_3(t) &= 50100t^{11} + 44862t^{12} - 36280t^{13} + 7156t^{14} \\ &- 20384t^{15} + 1408t^{16} - 22064t^{17} - 840t^{18}. \end{split}$$

Proof. We have following inequalities

$$H_1(t) > H_1\left(\frac{48}{259}\right) = \frac{43416}{259}$$

and

$$\begin{split} H_2(t) &> 30000t^3 + 70000t^4 + 14000t^5 - 36000t^6 - 138000t^7 \\ &- 54000t^8 - 2000t^9 - 4000t^9 + 120000t^{10} \\ &= 2000(-1+t)t^3(-15-50t-57t^2-39t^3+30t^4+57t^5+60t^6). \end{split}$$

Here, we set

$$f(t) = -39t^3 + 30t^4,$$

$$g(t) = -57t^2 + 57t^5$$

and

$$h(t) = -15 - 50t + 60t^6.$$

Then we have following inequalities

$$f(t) = 3t^{3}(-13+10t) < 3t^{3}(-13+10) = -9t^{3} < 0,$$

$$g(t) = 57(-1+t)t^{2}(1+t+t^{2}) < 0$$

and

$$h(t) = -15 + 10t(-5 + 6t^5) < -15 + 10t(-5 + 6) < -5t^5$$

Since f(t) + g(t) + h(t) < 0, we have $H_2(t) > 0$. We have

$$\begin{split} H_3(t) &> 50000 t^{11} + 44000 t^{12} - 37000 t^{13} + 7000 t^{14} - 21000 t^{15} + 1400 t^{16} \\ &- 23000 t^{17} - 1000 t^{18} \\ &= -200 t^{11} (-250 - 220 t + 185 t^2 - 35 t^3 + 105 t^4 - 7 t^5 + 115 t^6 + 5 t^7). \end{split}$$

Since

$$-250 + 105t^4 + 115t^6 + 5t^7 < -250 + 105 + 115 + 5 < 0$$

and

$$-220t + 185t^{2} - 35t^{3} - 7t^{5} = -t(220 - 185t + 35t^{2} + 7t^{4})$$

$$< -t(220 - 185t)$$

$$< 0,$$

we have $H_3(t) > 0$. Therefore, we have $H_1(t) > 0$, $H_2(t) > 0$ and $H_3(t) > 0$ for 0 < t < 1.

Lemma 2.5. *If* $0 \le t \le 1$ *, then* $G(t) \le 0$ *, where*

$$G(t) = e^{(1+t)\left(\frac{1}{1-t^3}+2\right)\left(-t-\frac{t^2}{2}-\frac{t^3}{3}\right)} + e^{(1-t)\left(\frac{1}{1-t^3}+2\right)\left(t-\frac{t^2}{2}+\frac{t^3}{3}\right)} - 2.$$

Proof. We have

$$G'(t) = e^{(1+t)\left(\frac{1}{1-t^3}+2\right)\left(-t-\frac{t^2}{2}-\frac{t^3}{3}\right)} \frac{-G_1(t)}{6(-1+t)^2(1+t+t^2)^2} + e^{(1-t)\left(\frac{1}{1-t^3}+2\right)\left(t-\frac{t^2}{2}+\frac{t^3}{3}\right)} \frac{-G_2(t)}{6(1+t+t^2)^2}$$

where

$$G_1(t) = 18 + 54t + 45t^2 + 12t^3 - 63t^4 - 60t^5 - 22t^6 + 36t^7 + 30t^8 + 16t^9$$

and

$$G_2(t) = -18 + 18t + 9t^2 + 36t^3 + 24t^5 + 2t^6 + 16t^7.$$

According to Lemmas 2.2 and 2.3, we have $G_1(t) > 0$ and $G_2(t) \ge 0$ for $t_1 \le t < 1$, therefore G'(t) < 0 for $t_1 \le t < 1$. We will show further that G'(t) is also negative for $0 < t < t_1$, which involves G'(t) < 0 for 0 < t < 1. The inequality G'(t) < 0 for $0 < t < t_1$ is equivalent to H(t) > 0, where

$$H(t) = (1+t)\left(-t - \frac{t^2}{2} - \frac{t^3}{3}\right)\left(\frac{1}{1-t^3} + 2\right) + \ln G_1(t) - \ln \left((-1+t)^2\right)$$
$$- (1-t)\left(t - \frac{t^2}{2} + \frac{t^3}{3}\right)\left(\frac{1}{1-t^3} + 2\right) - \ln \left(-G_2(t)\right) > 0.$$

The derivative of H(t) is

$$H'(t) = \frac{-t^2(H_1(t) + H_2(t) + H_3(t))}{(-1+t)^2(1+t+t^2)^2G_1(t)G_2(t)}$$

where

$$\begin{split} H_1(t) &= 648 - 5184t + 13986t^2, \\ H_2(t) &= 31320t^3 + 73143t^4 + 14742t^5 - 35433t^6 - 137844t^7 \\ &- 53988t^8 - 2000t^9 - 3828t^9 + 121410t^{10}, \end{split}$$

and

$$H_3(t) = 50100 t^{11} + 44862 t^{12} - 36280 t^{13} + 7156 t^{14}$$
$$-20384 t^{15} + 1408 t^{16} - 22064 t^{17} - 840 t^{18}.$$

By Lemma 2.4, it follows that H'(t) > 0 for $0 < t < t_1$, when $G_1(t) > 0$ and $G_2(t) < 0$. Therefore, H(t) is strictly increasing for $0 < t < t_1$, hence H(t) > H(0) = 0. Thus, G'(t) < 0 for 0 < t < 1, G(t) is strictly decreasing, G(t) < G(0) = 0 for $t_1 < t \le 1$.

3. Proof of Theorem 1.1

Proof. Without loss of generically, we assume that

$$0 \le b \le 1 - \left(\frac{r-3}{r-2}\right)^{\frac{1}{3}}$$

and

$$1 + \left(\frac{r-3}{r-2}\right)^{\frac{1}{3}} \le a \le 2.$$

We set

$$F(b,r) = (2-b)^{rb} + b^{r(2-b)} - 2.$$

Then we have derivatives

$$\frac{\partial F}{\partial r}(b,r) = (2-b)^{br}b\ln(2-b) + (2-b)b^{(2-b)r}\ln b$$

and

$$\frac{\partial^2 F}{\partial r^2}(b,r) = (2-b)^{br} b^2 (\ln (2-b))^2 + (2-b)^2 b^{(2-b)r} (\ln b)^2$$

Since $\partial^2 F(b, r)/\partial r^2 \ge 0$, the function $\partial F(b, r)/\partial r$ is strictly increasing for *r*. By Lemma 2.1, we have

$$\frac{\partial F}{\partial r}(b,r) \ge \frac{\partial F}{\partial r}(b,3)$$

= $b(2-b)\left((2-b)^{3b-1}\ln(2-b) + b^{5-3b}\ln b\right)$
 $\ge 0.$

Thus, F(b, r) is strictly increasing for $r \ge 3$. Since

$$0 \le b \le 1 - \left(\frac{r-3}{r-2}\right)^{\frac{1}{3}},$$

we have

$$3 \le r \le \frac{1}{1 - (1 - b)^3} + 2.$$

Thus, we can get

$$F(b,r) \le F\left(b, \frac{1}{1 - (1 - b)^3} + 2\right)$$
$$= (2 - b)^{\left(\frac{1}{1 - (1 - b)^3} + 2\right)b} + b^{\left(\frac{1}{1 - (1 - b)^3} + 2\right)(2 - b)} - 2.$$

Therefore, it suffices to show that

$$(2-b)^{\left(\frac{1}{1-(1-b)^3}+2\right)b} + b^{\left(\frac{1}{1-(1-b)^3}+2\right)(2-b)} - 2 \le 0$$

Denoting

$$t = 1 - b, \quad 0 \le t \le 1,$$

this desired inequality becomes

$$(1+t)^{(1-t)\left(\frac{1}{1-t^{3}}+2\right)} + (1-t)^{(1+t)\left(\frac{1}{1-t^{3}}+2\right)} - 2 \le 0.$$

From Lemma 6.1 in [3], we have

$$\ln{(1+t)} \le t - \frac{t^2}{2} + \frac{t^3}{3}$$

432

for all t > -1. Using this inequality, we get

$$(1-t)^{(1+t)\left(\frac{1}{1-t^3}+2\right)} + (1+t)^{(1-t)\left(\frac{1}{1-t^3}+2\right)} - 2$$

= $e^{(1+t)\left(\frac{1}{1-t^3}+2\right)\ln(1-t)} + e^{(1-t)\left(\frac{1}{1-t^3}+2\right)\ln(1+t)} - 2$
 $\leq e^{(1+t)\left(\frac{1}{1-t^3}+2\right)\left(-t-\frac{t^2}{2}-\frac{t^3}{3}\right)} + e^{(1-t)\left(\frac{1}{1-t^3}+2\right)\left(t-\frac{t^2}{2}+\frac{t^3}{3}\right)} - 2.$

Therefore, it suffices to prove that $G(t) \le 0$ for $0 \le t \le 1$, where

$$G(t) = e^{(1+t)\left(\frac{1}{1-t^3}+2\right)\left(-t-\frac{t^2}{2}-\frac{t^3}{3}\right)} + e^{(1-t)\left(\frac{1}{1-t^3}+2\right)\left(t-\frac{t^2}{2}+\frac{t^3}{3}\right)} - 2.$$

This is true by Lemma 2.5. Thus, the proof of Theorem 1.1 is completed.

Acknowledgements

We would like to thank the referees for their valuable comments.

References

- [1] A. Coronel and F. Huancas, On the inequality $a^{2a} + b^{2b} + c^{2c} \ge a^{2b} + b^{2c} + c^{2a}$, Aust. J. Math. Anal. Appl., **9** (2012), Art. 3.
- [2] V. Cîrtoaje, On some inequalities with power-exponential functions, J. Ineq. Pure Appl. Math., **10** (2009), Art. 21.
- [3] V. Cîrtoaje, *Proofs of three open inequalities with power-exponential functions*, J. Nonlinear Sci. Appl., **4** (2011), 130–137.
- [4] L. Matejicka, *Solution of one conjecture on inequalities with power-exponential functions*, J. Ineq. Pure Appl. Math., **10** (2009), Art. 72.
- [5] L. Matejicka, Proof of one open inequality, J. Nonlinear Sci. Appl., 7 (2014), 51-62.
- [6] M. Miyagi and Y. Nishizawa, *Proof of an open inequality with double power-exponential functions*, J. Inequal. Appl. 2013, 2013:468.
- [7] M. Miyagi and Y. Nishizawa, *A short proof of an open inequality with power-exponential functions*, Aust. J. Math. Anal. Appl., **11** (2014), Art. 6.
- [8] M. Miyagi and Y. Nishizawa, *A stronger inequality of Cîrtoaje's one with power exponential functions*, J. Nonlinear Sci. Appl., **8** (2015), 224–230.

General Education, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi 755-8555, Japan.

E-mail: miyagi@ube-k.ac.jp

General Education, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi 755-8555, Japan.

E-mail: yusuke@ube-k.ac.jp