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ON .2 -EXTENDING MODULES

TAYYEBEH AMOUZEGAR

Abstract. Let M be a right R-module and S = Endg(M). We call M a % -extending mod-
ule if for every element ¢ € S, Ker¢ is essential in a direct summand of M. In this paper
we investigate these modules. We give a characterization of % -extending modules. We
prove that if M is a projective self-generator module, then M is a £ -extending module
and every finitely generated projective right ideal of S is a summand if and only if S is
semiregular and A(M) = Jac(S), where A(M) = {f € S| Ker f <¢ M} if and only if M is
Z(M)-#-lifting.

1. Introduction

Throughout this paper R will denote an associative ring with identity, M a unitary right
R-module and S = Endg(M) the ring of all R-endomorphisms of M. We will use the notation
N < M to indicate that N is an essential submodule of M (i.,e. VOZL<M,LNN#0); N< M
to indicate that N is small in M (i.e. VL < M,L+ N # M). The notation N <® M denotes that
N is a direct summand of M. We also denote ry;(I) ={xe M| Ix=0},for IS S; A(M)={f €S|
Kerf <°M}and Z(M) = {x € M| xI =0 for some essential right ideal I of R}.

Extending modules, continuous modules and lifting modules play important roles in
rings and categories of modules, and have been studied extensively by many authors in recent
years (see, [4], [5], [7], [9], [11]). A module M is called extending (or CS) if every submodule
of M is essential in a direct summand of M. Dually, a module M is called lifting if for every
A < M, there exists a direct summand B of M such that B< A and A/B < M/B [9]. In [1],
we introduced .#-lifting modules as a generalization of lifting modules. A module M is called
¢ -lifting if for every ¢ € S there exists a decomposition M = M; & M, such that M; < Im¢
and M, NnIm¢p < M,. It is obvious that every lifting module is .#-lifting while the converse
in not true (the Z-module Q is .#-lifting but it is not lifting). A ring R is called a semiregular
ring if for each a € R, there exists e? = e € aR such that (1 - e)a € J(R) [10]. It is easily checked
that Rp is an .#-lifting module if and only if R is a semiregular ring. In [11], Nicholson and
Yousif introduced right /-semiregular rings for an ideal I of a ring R. A ring R is called a right
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I-semiregularring if for each a € R, there exists e% = e € aR such that (1 —e)a € I. In this note,
motivated by [11], we introduce F-.#-lifting modules for a submodule F of a module M as a
generalization of the right I-semiregular ring. A module M is called F-.#-lifting if for every
¢ € S there exists a decomposition M =A@ Bsuchthat Ac¢pMandpMnNB<F.Let F=1be
anideal of R. Itis clear that Ry is an I-.#-lifting module if and only if R is a right I-semiregular
ring.

In [11], a ring R is called an ACS-ring if for every element a € R, rg(a) <° fR for some
f? = f € R. Inspired by this definition we introduce and investigate .# -extending modules
as a generalization of the ACS-ring. We call M a % -extending module if for every element
¢ € S, Kerg is essential in a direct summand of M. These modules are also a generalization of
extending modules and dual of .#-lifting modules. It is clear that Ry is a £ -extending module
if and only if R is an ACS-ring. In this paper our aim is to generalize the some results of [11]
from the ring case to the module case.

In Section 2, we characterize semi-projective F-.#-lifting modules. We show that the fol-

lowing are equivalent for a semi-projective retractable module M:
(1) Mis Z(M)-.#-lifting.

(2) Sis A(M)-semiregular.

(3) Sis Z,(S)-semiregular.

(4) M is A(M)M-.¢#-lifting.

In Section 3, we give a characterization of £ -extending modules. We prove that if M
is a projective self-generator module, then M is a .# -extending module and every finitely
generated projective right ideal of S is a summand if and only if S is semiregular and A(M) =
Jac(S), where A(M) ={f € S| Ker f <° M} if and only if M is Z(M)-.#-lifting.

We also prove the following which generalizes [11, Corollary 2.7]:

Let M be a projective self-generator module. Then the following are equivalent:
(1) M is quasi-injective.
(2) M has (Cy) and M & M is extending.
(3) Mis Z(M)-.#-lifting and M & M is extending.

(4) M is weakly continuous and M & M is extending.

2. F-.#-lifting modules

Definition 2.1. Let F be a submodule of an R-module M. A module M is called F-.# -liftingif
for every ¢ € S there exists a decomposition M = A® B such that Ac )M and pMNB<F.
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It is clear that every .#-lifting module is Rad (M)-.# -lifting.

A module M is called semi-projective if for any epimorphism f : M — N, where N is a
submodule of M, and for any homomorphism g : M — N, there exists h: M — M such that

fh=g.

Lemma 2.2. Let M be a semi-projective module and F be a fully invariant submodule of M.
Then the following are equivalent for ¢ € S:

(1) There existse® = e € ¢S with (¢ —ep) M S F.

(2) Thereexists e’ = e € pS withM N (1 —e)M S F.

3) pM=eMad N wheree? =e€Sand N F.

Proof. (1)= (2) If xe pM N (1—e)M, then x = pm = (1—e)m = (1— e)m’ for some m, m’ € M.
Thusx=(1-e)¢pmeF.

(2)= (3) Itisclear that M =eM & [¢M N (1—e)M]. Set N=¢pMn (1—-e)M.

(3) = (1) First we show that e = e € ¢S. Consider the epimorphisms ¢: M — ¢ M and e: M —
eM. Since M is semi-projective, there exists a homomorphism g € S such that ¢pg =ie=e¢,
where i : eM — ¢ M is the inclusion map. Hence e € ¢S. Since ¢ M = eM & N, for every m e M,
we have ¢m = em' + n for some m’' € M and n € N. Then ¢m — edppm = n—en € F because
Nc F. Hence (¢p—ep)M < F. O

Theorem 2.3. Let F be a fully invariant submodule of a semi-projective module M. Then the
following conditions are equivalent:
(1) M is F-#-lifting.

(2) For any finitely generated right ideal I < S, there exists a homomorphismy from M to IM
such thaty? =y and (1-y)IM C F.

(3) For any finitely generated right ideal I < S, there exists a decomposition M = L& H such
that L is a submodule of IM and IMN H< F.

(4) For any finitely generated right ideal 1 < S, IM can be written as IM = L& N where L is a
direct summand of M and N < F.

When these conditions are satisfied we have:

(i) For every right ideal I of S such that IM ¢ F there exists an idempotent e’ =ee I such
thateM ¢ F.

(i) Jac(SM < F,and A(M)M < F.
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Proof. (1) = (2) We induct on n where I = f4S+:--+ f;,S. If n =1 there is nothing to prove
by (1). If n = 2, then (1) and Lemma 2.2 give % = B € f,S with 1 - B)f,M € F. Set J =
1-BfoS+:-+1—-p)fu-1S. By induction, choose @ : M — JM such that a’=ace€J, and
(1-a)JM € F. Define y = B+ a—apB. Theny =y? and yM = M & aM since fa = 0. It
remains to verify that (1-y)IM < F. Since @ € J and B € f,,S, y € I. Hence yM < IM. But
A-y)=0-pA-Pand(1-P)J=],s0 A-pIcA-a)1-p)J+(1-a)l-p)f,S. Hence
A-pPIMc(-a)JM+(1-a)1-p)fyM<F.

(2)=> (3) Let Iand y beasin (2). Then 1 -p)IM=(1-y)MnIM.Hence M=yMe& (1-y)M
and IMN(1-y)M=(1-y)IMCF.

(3) = (4) = (1) They are clear.
Suppose these conditions hold. Then (i) follows from Lemma 2.2, and (i7) follows (i). I

An R-module M is called retractableif Hompgr(M, N) # 0 for all nonzero submodules N of
M.

Lemma 2.4. Let M be a semi-projective module. Consider the following conditions for ¢ € S:

(1) M =eM & N wheree® = e€ S and N is a singular submodule of M.
(2) ¢S=eSe® B where e =eeSand BSAM) isa right ideal of S.

Then (1) = (2) holds and if moreover M is a retractable module, then (2) = (1) holds.

Proof. (1) = (2) Suppose that M = eM & N as in (1). First we show that N = ¢ph M for some
h € S. Consider the homomorphism ¢ : M — ¢M. Since M is semi-projective, there exists
a homomorphism h : M — M such that ¢h = in¢, where i : N - ¢M and 7 : M — N are
injection and projection maps respectively. Hence ¢hM = n(¢p)M) = N. Now, by [13, 18.4], we
have Homgr(M,¢pM) = Hom(M,eM) + Hom(M,phM). Since M is semi-projective, ¢S = eS +
¢$hS.AseMnN =0,eSNPhS= Homr(M,eM)NnHomg(M,phM) = Homg(M,eMnphM) = 0.
Thus ¢S = eS® ¢phS. Finally, since N = ¢phM is singular and ¢phM = Ker¢ph <® M by
[11, Lemma 2.1]. So ¢ph € A(M).

M
Keron’

(2) > (1) Let ¢S = eS® B as in (2). Clearly, M = eM + BM. Since eSN B =0 and M is semi-
projective, we have Hompg(M,eM) N Homgr(M,BM) = 0. Therefore Homg(M,eM N B) = 0.
Hence eM N BM = 0 by retractability. It follows that ¢ M = eM & BM and BM € A(M)M <
Z(M). =

Corollary 2.5. Let M be a semi-projective retractable module. Then the following are equiva-
lent:

(1) M is Z(M)-5 -lifting.
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(2) Sis A(M)-semiregular.
(3) Sis Z,(S)-semiregular.
(4) M isA(M)M-¢ -lifting.

Proof. (1) & (2) By Lemma 2.4. (2) < (3) By [6, Proposition 2.4]. (2) < (4) Similar to the proof
of Lemma 2.4. O

3. % -extending modules

Definition 3.1. We call amodule M a % -extending moduleif for every element ¢ € S, Ker¢p <¢

2

eM for some e“=e€S.

Ir it clear that for M = Rp, the notion of a % -extending module coincides with that of an
ACS-ring.

Example 3.2.

(1) Every extending module is a £ -extending module.

(2) Amodule M is said to be Rickart if, for every ¢ € Endgr (M), Ker¢p <® M [8]. Rickart mod-

ules are precisely nonsingular £ -extending modules.

(3) Z™ is a Rickart Z-module by [8, Example 2.3]. Hence it is a % -extending module. But
Z™ is not extending, since if it were, then we would have an epimorphism f : 7N - Q
with nonessential kernel. Then by the extending property, Ker(f) is essential in some
direct summand K of Z™. Hence Q = K/Ker(f) ® T for some direct summand T of Z™,

Since Q is nonsingular, K = Ker(f). It follows that Q embeds in Z, which is a contradiction.

The following proposition generalizes [11, Proposition 2.2].
Proposition 3.3. Let M be a projective module. Consider the following conditions for an ele-
ment¢ € S = Endgr(M).

(1) M isa % -extending module.
(2) ¢M = P& N where Py, is a projective module and Np is a singular module.

(3) ¢S = AeB where A is a projective right ideal of S and Bg is a right ideal of S with B < A(M).
Then (1) < (2) = (3). Moreover, if M generates ry;(I) for every I < Sg, then (3) = (1) holds.

Proof. (1) = (2) Let rp(¢p) <° (1 — e) M where e = e € S. First we show that M = peM & ¢ (1 —
e)M. Clearly ¢M = peM + (1 —e)M. If x € peM N (1 — e)M, then x = pem = ¢p(1 — e)m’
where m,m’' € M. Hence em—(1—e)m’ € ry(p) < (1—e)M, so eme (1—e)M neM = 0, thus



6 TAYYEBEH AMOUZEGAR

em = 0. Hence x = ¢em = 0 and so ¢M = peM & ¢(1 —e)M. Now ¢peM = eM because the
multiplication map 5: eM — ¢eM has kernel {em | pem = 0} = eM N rp(p) = 0. Since M is
projective, eM is projective. Hence ¢peM is projective. Finally, ¢:(1—-e)M — ¢p(1—e)M has
kernel (1 —e)M N ry () = ry(¢p). Hence (1 —e)M = (-oM
[11, Lemma 2.1] because rp;(¢p) <° (1 —e) M.

> (¢) , and so ¢(1 — e) M is singular by

(2) = (1) Suppose that M = Pe N asin (2), and let 7 : ¢ M — P be the projection with Ker(r) =
N. Then define y : M — P by y(m) = n(¢pm), and write K = Ker(y). Then y is onto so, as
P is projective, K = fM for some f? = f € S. Clearly rj;(¢) S fM; it remains to verify that
() <€ fM. If k € K, then ¢(k) € N because n(¢p(k)) = y(k) = 0. Hence we have a map
0:K— N defined by 6(k) = ¢p(k). Then Ker(0) = KN ry(¢p) = - K(p) =Im(0) < N.

Thus —— v ( ) is singular. Since K is projective, it follows that rj;(¢) <® K by [11, Lemma 2.1].

(1) = (3) Let rp(¢p) <€ (1 — e)M where e? = e € S. First we show that ¢S = peS @ p(1 — e)S.
Clearly ¢S = peS+¢p(1—e)S. If x € peSN¢p(1—e)S, then x = pef = p(1 —e)g where f,g € S.
So,forallme M, (ef —(1-e)gym e ry(p) < (1 —e)M. Hence efm =0 and so ef M = 0. Thus
x =¢ef =0. Therefore ¢S = peS & p(1 —e)S. Now ¢peS = eS because the multiplication map
¢ : eS — ¢eS has kernel {ef | pef = 0} = 0. Hence ¢eS is projective. Finally, ¢ : (1—e)M —
¢(1—e)M has kernel (1 - €)M N ry(¢) = rar(¢). Hence =05 = p(1—e)M = M,
m is singular by [11, Lemma 2.1]. Thus rp;(¢p(1 —e)) <® M by [11, Lemma 2.1] again.
Therefore ¢p(1 —e)S < A(M).

and so

(3) = (1) Suppose that ¢S = A® B as in (3), and let 7 : ¢S — A be the projection with Kerz =
B. Then define y: S — A by y(f) = n(¢f), and write K = Ker(y). Then y is onto so, as A is
projective, K = eS for some e=e€S. Clearly, rs(¢) < eS. Since M generates ry(I) for every
I<Sg, rs(P)M = rps(p). Thus rps(¢p) < eSM = eM. It remains to show that rps(¢p) < eM. Since
e € K, then ¢pem € BM because n(¢pe) = y(e) = 0. Hence we have a map 6 : eM — BM defined
by 8(em) = ¢pem. Then Ker(0) = eM N ry(d) = rpy(h). So rf%p) =Im(0) < BM. Thus rf%p) is
singular so, since eM is projective, it follows that ry;(¢) <® eM by [11, Lemma 2.1]. a

Let M and N be R-modules. We say that M is N- 4% -extending if for every homomor-
phism ¢ : M — N, there exists L <® M such that Ker¢p <¢ M. 1t is clear that a module M is
& -extending if and only if M is M-_% -extending.

Proposition 3.4. The following conditions are equivalent for a module M:

(1) M isa % -extending module;
(2) For any submodule N of M, every direct summand L of M is N-% -extending;

(3) For every pair of summands L and N of M and any ¢ € Homg(M, N), the kernel of the
restricted map |y is essential in a direct summand of L.
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Proof. (1) = (2) Let L= eM where e = e€ S. Let ¥ : L — N be any homomorphism and set ¢ =
wee€ S. Since M is & -extending, there exists f2 = f € S such that Ker¢p <® f M. Thus Kery =
Ker¢pn L <® fMn L. It is enough to show that there exists g = g € S such that fM N L <® gM.
Since (1-e)M < Ker(1-f)e,Ker(1-f)e =eMnKer(1-f)ed(1-e)M = eMnKer(1-f)e(1—-e) M.
There exists h% = h € S such that Ker(1 — fle <® hM as M is a % -extending module. Since
(1-e)M < hM, it follows that hM = hMn(eMa (1—-e)M) = hMneM & (1 —e)M. Hence
eMnKer(l1-f)e(1-e)M <® hMneMe(1—e)M andso eMn fM = eMnKer(1-f) <¢ hMneM.
Since eM N hM is a direct summand of hM, eM N hM is a direct summand of M.

(2) = (3) is obvious to take that N is a direct summand of M.
(3) = (1) is clear to see by taking L= N = M. O
Corollary 3.5. Every direct summand of a % -extending module is % -extending.

We recall that the module M is % -nonsingularif, for all ¢ € S, Ker¢p <¢ M implies ¢ = 0.
Proposition 3.6. The following conditions are equivalent for a % -nonsingular module M:

(1) M is an indecomposable % -extending module;

(2) Every nonzero endomorphism ¢ € S is a monomorphism.

Proof. (1) = (2) Let M is an indecomposable % -extending module. Assume that 0 # ¢ € S.
Then there exists e? = e € S such that Ker¢ < eM. Since M is indecomposable, e=0ore=1.
If e = 1, then Ker¢ <® M. By £ -nonsingularity, ¢ = 0, a contradiction. Thus e = 0 and so ¢ is

amonomorphism.
(2) > (1) is clear. 0
Aring is called I-finiteif it contains no infinite set of orthogonal idempotents.

Proposition 3.7. Let M be a % -extending module.

(1) For every X = M, if £5(X) € A(M), then ¢s(X) contains a nonzero idempotent, where
ls(X)=1{peS|p(X) =0}

(2) IfS is I-finite, every left annihilator € s(X) with X € M, has the form ¢ s(X) = Se® T where
e?=eeSandrT < A(M).

Proof. (1) Choose ¢ € £5(X), ¢ ¢ A(M). By hypothesis, ry;(¢p) <® eM where e2=eeSande#1
because ¢ ¢ A(M). Hence X S rp(¢p) SeM,s00# (1—e) € £5(X).

(2) If £5(X) < A(M), then take e =0 and T = ¢5(X). Otherwise use (1) and the I-finite hypoth-

esis to choose e maximal in {e € S| 0 # e? = e € £5(X) }, where e < f means e€ fSf. Then
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lg(X) = Sead [£5(X) N S(1— e)] so it suffices to show that £5(X) nS(1 —e) € A(M). If not, let
0# f2=fels(X)NS1—e) by (1). Then fe=0s0 g =e+ f—ef satisfies gZ = g € £5(X) and
e < g. Thus g = e by the choice of e, and so f = ef and f = f? = f(ef) =0, a contradiction. (I

According to [12], M is called a Baer module if for every left ideal I of S, Ny Kere is a
direct summand of M.

Corollary 3.8. Let S be I-finite and A(M) = 0, then M is a Baer module if and only if M is a

A -extending module.

An R-module M has (C») if any submodule of M isomorphic to a summand of M is itself
a summand. A ring R is called a right C»-ringif Rg has (C»).

Lemma 3.9. If M has (Cy), then A(M) < Jac(S).

Proof. Let ¢ € A(M). Since rps(p) Nrpr(1—¢p) =0, we have rp;(1 —¢p) =0 and so Im(1 —¢p) = M.
Hence Im(1 — ¢) is a direct summand of M by hypothesis. Im(1 — ¢) is also essential in M
because, for every m € ry(¢), we have (1 —¢)m = m and so rp(¢p) < Im(1 — f). Therefore
Im(1 —¢) = M. Since this holds for every ¢ € A(M), we have A(M) € Jac(S). a

An R-module M is called continuousif M is extending and has (C2) [9]. Aring R is called
right continuous if Ry is a continuous module. In [11], Nicholson and Yousif introduced the
notion of weakly continuous rings. A ring R is called right weakly continuous if R is a right
ACS-ring which is also a right C»-ring. Motivated by this concept, we define a weakly contin-

uous module as follows:

Definition 3.10. We call a module M weakly continuous if M is a £ -extending module and
has (C,).

Clearly, a ring R is a right weakly continuous ring if Ry is a weakly continuous module.

Example 3.11.
(1) Itis clear that every continuous module is weakly continuous.
(2) The Z-module Z is a noetherian £ -extending module which is not weakly continuous.

(3) Given a field F and an isomorphism a — a from F — F  F, let M = R be the left F-space
on basis {1, t} with multiplication given by t> = 0 and ta = at for all a € F. Then My is a
weakly continuous module, but Mg is not a continuous module if dim;(F) = 2 (see [11,
Example 2.5] or [3, Page 70]).

Theorem 3.12. Let M be a projective self-generator module. Then the following are equivalent:

(1) M is A(M)M-.2-lifting.
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() M is Z(M)- -lifting.

(3) If1 is a finitely generated right ideal of S, then IM = eM & N wheree’* = e€ S and N is a
singular submodule of M.

(4) M is a % -extending module and for every finitely generated right ideal I of S such that IM
is projective, we have IM <® M.

(5) IfI is a finitely generated right ideal of S, then I = eS ® B wheree® = e € S and B < A(M) is
arightideal of S.

(6) M is a X -extending module and every finitely generated projective right ideal of S is a
summand.

(7) M isa X -extending module and S is a right C,-ring.

(8) S issemiregular and A(M) = Jac(S).

(9) M is weakly continuous.

Proof. (1) = (2) Itis clear.
(2) = (3) By Theorem 2.3.

(3)= (4) If ¢ € S, taking I = ¢S in (3) shows that M is a £ -extending module by Proposition
3.3. If I is a finitely generated right ideal of S with I M projective, write IM = eM & N as in (3).
Then Ny, is both singular and projective, so N =0 by [11, Lemma 2.1].

(4) = (2) Let¢p € S. Then ¢ M = P & N where Py, is projective and Ny, is a singular submodule.
Consider the homomorphism ¢ : M — ¢M. Since M is projective, there exists a homomor-
phism /i : M — M such that ¢h = in¢, where 1 : P — ¢M and 7 : $M — P are injection and
projection maps. Hence ¢ph(M) = np(M) = P. Take I = ¢phS in (4), so P is a direct summand
of M.

(2) = (5) By Corollary 2.5, S is A(M)-semiregular and, by [11, Theorem 1.2], we have (5).

(5) = (6) If ¢ € S, taking I = ¢S in (5) shows that M is a £ -extending module by Proposition
3.3. If I is a finitely generated projective right ideal of S, write I = eS ® B, where e®> = e € S and
B < A(M). By [6, Proposition 2.4], A(M) = Z,(S) and so B < Z,(S). Thus Bg is both singular
and projective, so B=0by [11, Lemma 2.1].

(6) = (7) To verify the right C,-condition, let I be a right ideal of S which is isomorphic to a
summand of S. Then I is projective and principal, so I is a summand by (6), as required.

(7) = (8) By Proposition 3.3, for every ¢ € S, we have ¢S = A& B where Ag is a projective right
ideal of S and Bg is a right ideal of S with B < A(M). By Lemma 3.9, A(M) < Jac(S), and so

B < Jac(S). Since Ag is projective, Ag is isomorphic to a summand of S. Hence A = eS where
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e?=e€S by the C,-condition. Therefore S is semiregular. Finally, if ¢ € Jac(S), then e’=ecc

Jac(S) and so e=0and ¢ € ¢S = B < A(M), proving that Jac(S) € A(M). Thus Jac(S) = A(M).
(8) = (1) By Corollary 2.5.
(7) = (9) By [11, Theorem 3.9].

(9) = (2) Let ¢ € S. Since M is a £ -extending module, we have ¢ M = P & N where P is pro-
jective and N is singular. Thus P is isomorphic to a summand of M and so the C,-condition

implies that P = eM where e’ = e € S. O

Corollary 3.13 (see [11, Theorem 2.4]). The following are equivalent for aring R:

(1) R issemiregularand ] = Z,.
(2) R isright Z,-semiregular.

(3) IfT is a finitely generated right ideal, then T = eR ® B where e’ = e € R and B is a singular
right ideal.

(4) R isaright ACS-ring and every finitely generated projective right ideal is a summand.

(5) R isaright ACS-ring which is also a right C, -ring.

Corollary 3.14. Let M be a projective self-generator module. Then the following are equivalent:

(1) M is quasi-injective.
(2) M has (Cy) and M & M is extending.
(3) M is Z(M)-# -lifting and M & M is extending.

(4) M is weakly continuous and M & M is extending.
Proof. (1) = (2) By [9, Proposition 1.18].
(2) = (3) If M ® M is extending, then M is extending. By Theorem 3.12, M is Z(M)-.# -lifting.

(3) = (4) By Theorem 3.12.

(4) => (1) If M is weakly continuous, then S is semiregular by Theorem 3.12. Since
semiregularity is a Morita invariant property by [10, Corollary 2.8], the matrix ring M>(S) =
Endgr(M & M) is semiregular. In particular Endg(M & M) has the right C»-condition, and so
M e M has (Cy) by [11, Theorem 3.9]. Hence M & M is continuous and, by [9, Theorem 3.16],
M is quasi-injective. O

A module M is called finitely lifting, or f-lifting for short, if for every finitely generated
submodule A of M, there exists a direct summand B of M such that B€ Aand A/B < M/B.
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Corollary 3.15. Let M be a projective self-generator module. Then M is weakly continuous if
and only if Ss is f-lifting and A(M) = Jac(S).

Proof. It is clear by Theorem 3.12. O
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