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UNIQUENESS OF DIFFERENCE-DIFFERENTIAL POLYNOMIALS

OF ENTIRE FUNCTIONS SHARING ONE VALUE

RENUKADEVI S. DYAVANAL AND ASHWINI M. HATTIKAL

Abstract. In this paper, we study the uniqueness of difference-differential polynomials

of entire functions f and g sharing one value with counting multiplicity. In this paper we

extend and generalize the results of X. Y. Zhang, J. F. Chen and W. C. Lin [17], L. Kai, L.

Xin-ling and C. Ting-bin [7] and many others [2, 16].

1. Introduction and main results

In this paper, the term ’meromorphic’ will always mean meromorphic in the whole com-

plex plane C. It is assumed that the reader is familiar with standard notations and fundamen-

tal results of Nevanlinna theory [6], [13] and [15]. We denote by S(r, f ) any quantity satisfying

S(r, f ) = o{T (r, f )} as r −→+∞, possibly outside of a set of finite linear measure.

For a ∈ C and k be a positive integer, we denote by N(k (r, a, f ) be the counting function

for the zeros of f (z)− a with multiplicity ≥ k , and N (k (r, a, f ) be the corresponding one for

which the multiplicity is not counted. In this paper, we denote by

Nk (r, a, f ) = N (1(r, a, f )+N (2(r, a, f )+ . . .+N (k (r, a, f )

Let f (z) and g (z) be two meromorphic functions. If f (z)− a and g (z)− a assume the same

zeros with the same multiplicities, then we say that f (z) and g (z) share the value ′a′ CM,

where ′a′ is a complex number.

In 1993, Wang and Fang [11, 12] proved the following theorem for transcendental entire

functions.

Theorem A. Let f (z) be a transcendental entire function. n and k be two positive integers with

n ≥ k +1, then [ f n](k) −1 has infinitely many zeros.
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In 2002, M. L. Fang [3] proved the unicity theorem corresponding to the above result.

Theorem B. Let f and g be two non-constant entire functions, and let n ≥ 11 be a positive

integer with n > 2k+4. If [ f n](k) and [g n](k) share 1 CM, then either f (z) = c1ecz , g (z) = c2e−cz ,

where c1,c2 and c are three constants satisfying (−1)k (c1c2)n(nc)2k = 1, or f ≡ t g for a constant

t such that t n = 1.

In 2008, X. Y. Zhang, J. F. Chen and W. C. Lin [17] proved the following results on uniqueness

of two polynomials sharing a common value.

Theorem C. Let f be a transcendental entire function, let n,k and m be positive integers with

n ≥ k+2, and P(z) = a0+a1z+a2z2+. . .+amzm , where a0, a1, a2, . . . , am are complex constants.

Then [ f nP( f )](k) = 1 has infinitely many solutions.

Theorem D. Let f and g be two non-constant entire functions. Let n,k and m be three posi-

tive integers with n ≥ 3m +2k +5, and P(z) = am zm +am−1zm−1 + . . .+a1z +a0 or P(z) ≡ c0,

where a0(6= 0), a1, a2, a3, . . . am−1, am(6= 0), c0(6= 0) are complex constants. If [ f nP( f )](k) and

[g nP(g )](k) share 1 CM, then

(1) when P(z) = am zm+am−1zm−1+. . .+a1z+a0, either f (z) ≡ t g (z) for a constant t such that

t d = 1, where d = (n +m, . . . .n +m − i , . . . ,n), am−i (6= 0) for some i = 0,1,2, . . . m, or f and

g satisfy the algebraic equation R( f , g ) ≡ 0, where R(w1, w2) = w n
1 (am w m

1 + am−1w m−1
1 +

. . .+a0)−w n
2 (am w m

2 +am−1w m−1
2 + . . .+a0)

(2) when P(z) ≡ c0, either f (z) = c1
n
p

c0ecz , g (z) = c2
n
p

c0e−cz , where c1,c2 and c are constants satis-

fying (−1)k (c1c2)n(nc)2k = 1, or f ≡ t g for a constant t such that t n = 1.

In 2012, L. Kai, L. Xin-ling, C. Ting-bin [7] considered Theorem B for difference-differential

polynomials and proved the following results.

Theorem E. Let f (z) be a transcendental entire function of finite order. If n ≥ k +2, then the

difference-differential polynomial [ f n(z) f (z +c)](k)−α(z) has infinitely many zeros.

Theorem F. Let f and g be transcendental entire functions of finite order, n ≥ 2k +6 and c is a

non-zero complex constant. If [ f n(z) f (z+c)](k) and [g n(z)g (z+c)](k) share the value 1CM, then

either f (z) = c1eC z , g (z) = c2e−C z , where c1,c2 and C are constants satisfying (−1)k(c1c2)n+1((n+
1)C )2k = 1, or f ≡ t g for a constant t such that t n+1 = 1.

In the same direction J. Zhang [16] investigated the value distribution and uniqueness of dif-

ference polynomials of entire functions and obtained the following results.

Theorem G. Let f (z) be a transcendental entire function of finite order, and α(z) be a small

function with respect to f (z). Suppose that c is a non-zero complex constant. If n ≥ 2, then

f n(z)( f (z)−1) f (z +c)−α(z) has infinitely many zeros.
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Theorem H. Let f and g be two transcendental entire functions of finite order, and α(z) be a

small function with respect to both f (z) and g (z). Suppose that c is a non-zero constant and n

is an integer. If n ≥ 7, then f n(z)( f (z)−1) f (z + c) and g n(z)(g (z)−1)g (z + c) share α(z) CM,

then f (z) ≡ g (z).

Recently, R. S. Dyavanal and R. V. Desai [2] extended the results of J. Zhang[16] and proved the

following results.

Theorem I. Let f (z) be a transcendental entire function of finite order, and α(z) be a small

function with respect to f (z). Suppose that c is a non-zero complex constant and n is an integer.

If n ≥ 2, k1 ≥ 1 then f n(z)( f (z)−1)k1 f (z +c)−α(z) has infinitely many zeros.

Theorem J. Let f (z) and g (z) be two transcendental entire functions of finite order, and α(z)

be a small function with respect to both f (z) and g (z). Suppose that c is a non-zero complex

constant, k1 ≥ 1, n ≥ k1 +6. If f n(z)( f (z)−1)k1 f (z + c) and g n(z)(g (z)−1)k1 g (z + c) share

α(z) CM, then f (z) ≡ t g (z), where t k1 = 1.

In this paper, we consider Theorem C and Theorem D to difference-differential polynomials

and extends the above theorems as follows.

Theorem 1.1. Let f be a transcendental entire function. n, k and m be positive integers with

n ≥ k + 2 and P(z) = am zm + am−1zm−1 + . . .+ a1z + a0, where a0, a1, a2, a3, . . . am−1, am are

complex constants and α(z) be a small function with respect to f (z). Then [ f n(z)P( f ) f (z +
c)](k)−α(z) has infinitely many zeros.

Remark 1.1. If P( f ) = 1 in Theorem 1.1, then Theorem 1.1 reduces to Theorem E.

Remark 1.2. If P( f ) = ( f −1) and k = 0 in Theorem 1.1, then Theorem 1.1 reduces to Theorem

G.

Remark 1.3. If P( f ) = ( f −1)k1 and k = 0 in Theorem 1.1, then Theorem 1.1 reduces to Theo-

rem I.

The unicity theorem corresponding to Theorem 1.1 is as follows.

Theorem 1.2. Let f and g be two non-constant entire functions of finite order. Let n, k and m

be three positive integers with n ≥ m +2k +6, ′c ′ is a non-zero complex constant and P(z) =
am zm +am−1zm−1 + . . .+a1z +a0 or P(z) ≡ c0, where a0(6= 0), a1, a2, a3, . . . , am−1,

am(6= 0),c0(6= 0) are complex constants. If [ f n(z)P( f ) f (z + c)](k) and [g n(z)P(g )g (z + c)](k)

share 1 CM, then

(1) when P(z) = amzm + am−1zm−1 + . . .+ a1z + a0, we get f (z) ≡ t g (z) for a constant t such

that t d = 1, where d =GC D{n+m+1,n+m, . . . ,n+m+1−i , . . . ,n+1} and i = 0,1,2, . . . ,m.
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(2) when P(z) ≡ c0 either f (z) = c1eC z

n
p

c0
, g (z) = c2e−C z

n
p

c0
, where c1,c2,c0 and C are constants satis-

fying (−1)k (c1c2)n+1((n +1)C )2k = ( n
p

c0)2, or f ≡ t g for a constant t such that t n+1 = 1.

Remark 1.4. If P( f ) = 1 in Theorem 1.2, then Theorem 1.2 reduces to Theorem F.

Remark 1.5. If P( f ) = ( f −1) and k = 0 in Theorem 1.2, then Theorem 1.2 reduces to Theorem

H, when α(z) = 1.

Remark 1.6. If P( f ) = ( f −1)k1 and k = 0 in Theorem 1.2, then Theorem 1.2 reduces to Theo-

rem J, when α(z) = 1.

2. Some lemmas

For the proof of our main results, we need the following lemmas.

Lemma 2.1 ([1]). Let f (z) be a trancendental meromorphic function of finite order, then

T (r, f (z +c)) = T (r, f )+S(r, f )

Lemma 2.2 ([15]). Let f (z) be a non-constant meromorphic function, and an(6= 0), an−1,

. . . , a0 be small functions with respect to f . Then

T (r, an f n +an−1 f n−1 + . . .+a1 f +a0) = nT (r, f )+S(r, f )

Lemma 2.3 ([5]). Let f be a transcendental meromorphic function of finite order. Then

m

(

r,
f (z +c)

f (z)

)

= S(r, f )

Lemma 2.4 ([6, 13]). Let f (z) be a non-constant meromorphic function and a1(z), a2(z)

be two meromorphic functions such that T (r, ai ) = S(r, f ), i = 1,2. Then

T (r, f ) ≤ N (r, f )+N

(

r,
1

f −a1

)

+N

(

r,
1

f −a2

)

+S(r, f )

Lemma 2.5 ([15]). Let f (z) and g (z) be two trancendental entire functions, and k be a positive

integer. Then

T (r, f (k)) ≤ T (r, f )+k N (r, f )+S(r, f )

Lemma 2.6 ([1],[4]). Let f (z) be a meromorphic function of finite order and c is a non-zero

complex constant. Then

m

(

r,
f (z +c)

f (z)

)

+m

(

r,
f (z)

f (z +c)

)

= S(r, f )
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Lemma 2.7 (Lemma 3 in [14]). Let F and G be non-constant meromorphic functions. If F and

G share 1 CM, then one of the following three cases holds

(1) max{T (r,F ),T (r,G)} ≤ N2

(

r, 1
F

)

+N2(r,F )+N2

(

r, 1
G

)

+N2(r,G)+S(r,F )+S(r,G),

(2) F ≡G ,

(3) FG ≡ 1.

Lemma 2.8 ([8], Lemma 2.3). Let f (z) be a non-constant meromorphic function and p, k be

positive integers. Then

(1) Np

(

r,
1

f (k)

)

≤ T (r, f (k))−T (r, f )+Np+k

(

r,
1

f

)

+S(r, f )

(2) Np

(

r,
1

f (k)

)

≤ k N(r, f )+Np+k

(

r,
1

f

)

+S(r, f )

Lemma 2.9. Let f (z) be a transcendental entire function of finite order and let

F∗ = f (z)nP( f ) f (z +c). Then

T (r,F∗)= (n +m +1)T (r, f )+S(r, f )

Proof. Since f is a transcendental entire function and also from Lemma 2.2, Lemma 2.3,

Lemma 2.6, we obtain

(n +m +1)T (r, f )+S(r, f ) = T (r, f (z)n+1P( f )) ≤m(r, f (z)n+1P( f ))+S(r, f )

≤ m

(

r,
f (z)F∗

f (z +c)

)

+S(r, f )

≤ m(r,F∗)+S(r, f )

≤ T (r,F∗)+S(r, f )

On the other hand, using Lemma 2.1 and f is a transcendental entire function of finite order,

we have

T (r,F∗) ≤ nT (r, f )+mT (r, f )+T (r, f (z +c))+S(r, f )

≤ (n +m +1)T (r, f )+S(r, f )

Hence we get Lemma 2.9.

Lemma 2.10. Let f (z) and g (z) be two non-constant entire functions, let n, k be two positive

integers with n > k, ′c ′ is a non-zero complex constant and let P(z) = am zm +am−1zm−1+ . . .+
a1z + a0 be a non-zero polynomial, where a0, a1, a2, . . . am−1, am are complex constants. If

[ f nP( f ) f (z + c)](k)[g nP(g )g (z + c)](k) ≡ 1, then P(z) is reduced to a non-zero monomial, that

is P(z) = ai zi 6= 0 for some i = 0,1,2, . . . ,m.
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Proof. If P(z) is not reduced to a non-zero monomial, then without loss of generality, we may

assume that

P(z) = am zm +am−1zm−1 + . . .+a1z +a0

where a0(6= 0), a1, a2, . . . am−1, am(6= 0) are complex constants. Since

[

f n(am f m + . . .+a0) f (z +c)
](k) [

g n(am g m + . . .+a0)g (z +c)
](k) ≡ 1 (2.1)

From n > k and the assumption that f (z) and g (z) are two non-constant entire functions we

deduce by (2.1) that

f (z) 6= 0 , g (z) 6= 0. (2.2)

Let f (z) = eα(z), where α(z) is a non-constant entire function. Thus, by induction we get

[

ai f i+n f (z +c)
](k)

= Pi

(

α
′
, . . .α(k),α

′
(z +c), . . .α(k)(z +c)

)

e (i+n)αeα(z+c). (2.3)

Where Pi

(

α
′
,α

′′
, . . .α(k),α

′
(z +c),α

′′
(z +c), . . .α(k)(z +c)

)

(i = 0,1, . . . m) are difference-differ-

ential polynomials.

Obviously,

Pm

(

α
′
, . . .α(k),α

′
(z +c), . . .α(k)(z +c)

)

6≡ 0

...

P0

(

α
′
, . . .α(k),α

′
(z +c), . . .α(k)(z +c)

)

6≡ 0

Where if ai 6= 0 for some i = 1,2. . . m −1, then Pi

(

α
′
. . .α(k),α

′
(z +c), . . .α(k)(z +c)

)

6≡ 0

Since g (z) is an entire function, we get from (2.1) that
[

f n(am f m + . . .+a0) f (z +c)
](k) 6= 0.

Thus, by (2.3) we have

Pm

(

α
′
,α

′′
, . . .α(k),α

′
(z +c),α

′′
(z +c), . . .α(k)(z +c)

)

emα+ . . .

+ . . .P0

(

α
′
,α

′′
, . . .α(k),α

′
(z +c),α

′′
(z +c), . . .α(k)(z +c)

)

6≡ 0 (2.4)

Since α(z) and α(z +c) is an entire function, we obtain

T (r,α( j ))≤ T (r,α
′
)+S(r, f ) = m(r,α

′
)+S(r, f )

= m

(

r,
(eα)

′

eα

)

+S(r, f )

Similarly, we obtain

T (r,α( j )(z +c)) ≤ T (r,α
′
(z +c))+S(r, f ) = m(r,α

′
(z +c))+S(r, f )
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= m

(

r,
(eα(z+c))

′

eα(z+c)

)

+S(r, f )

for j = 1,2, . . . ,k . Hence, we deduce that

T (r,Pm) = S(r, f ), . . . ,T (r,P0) = S(r, f ) (2.5)

Note that f = eα(z). Thus, by (2.4), (2.5) above, and Lemma 2.2 and Lemma 2.4, we get

mT (r, f ) = T
(

r,Pmemα+ . . .+P1eα
)

+S(r, f )

≤ N

(

r,
1

Pmemα+ . . .+P1eα

)

+N

(

r,
1

Pmemα+ . . .+P1eα+P0

)

+S(r, f )

≤ N

(

r,
1

Pme (m−1)α+ . . .+P2eα+P1

)

+S(r, f )

≤ (m −1)T (r, f )+S(r, f )

which is a contradiction. This shows that P(z) is reduced to a non-zero monomial, that is,

P(z) = ai zi 6= 0 for some i = 0,1,2, . . . m. This completes the proof of the Lemma 2.10.

3. Proof of Theorem 1.1

Denote F (z) = [ f (z)nP( f ) f (z + c)](k) and F∗ = f (z)nP( f ) f (z + c). From Lemma 2.9, F∗

is not a constant. Assume that F (z)−α(z) has only finitely many zeros, then from the second

fundamental theorem for three values and (1) of Lemma 2.8, we get

T (r,F ) ≤ N (r,F )+N (r,0,F )+N (r,0,F −α(z))+S(r,F )

≤ N1(r,0,F )+N (r,0,F −α(z))+S(r,F )

≤ T (r,F )−T (r,F∗)+Nk+1(r,0,F∗)+S(r,F∗)+S(r,F )

T (r,F∗) ≤ Nk+1(r,0,F∗)+S(r, f ). (3.1)

From Lemma 2.9 and (3.1), it implies that

(n +m +1)T (r, f )+S(r, f ) = T (r,F∗) ≤ Nk+1(r,0,F∗)+S(r, f )

≤ (k +1)N (r,0, f )+N (r,0,P( f ))+N (r,0, f (z +c))+S(r, f )

≤ (k +m +2)T (r, f )+S(r, f ).

Which is contradiction to n ≥ k + 2. Hence
[

f n(z)(am f m + . . .+a0) f (z +c)
](k) −α(z) has in-

finitely many zeros.

Proof of theorem 1.2.

(1) If P(z) = amzm +am−1zm−1 + . . .+a1z +a0.
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Then by assumption and Theorem 1.1 we know that either both f and g are transcendental

entire functions or both f and g are polynomials.

First, we consider the case when f and g are transcendental entire functions.

Considering F = [ f n(z)P( f ) f (z+c)](k) , G = [g n(z)P(g )g (z+c)](k). Since F and G share 1 CM,

let us assume (1) of Lemma 2.7 holds. That is

max{T (r,F ),T (r,G)} ≤ N2

(

r,
1

F

)

+N2(r,F )+N2

(

r,
1

G

)

+N2(r,G)+S(r,F )+S(r,G) (3.2)

Since f is an entire function and from Lemma 2.5, Lemma 2.9 we have S(r,F ) = S(r, f ). We

also have S(r,G)= S(r, g ).

From (1) of Lemma 2.8, we obtain

N2

(

r,
1

F

)

= N2

(

r,
1

[ f n(z)P( f ) f (z +c)](k)

)

≤ T (r,F )−T
(

r, f n(z)P( f ) f (z +c)
)

+Nk+2

(

r,
1

f n(z)P( f ) f (z +c)

)

+S(r, f ). (3.3)

From Lemma 2.9 and (3.3), we get

(n +m +1)T (r, f ) = T
(

r, f n(z)P( f ) f (z +c)
)

+S(r, f )

≤ T (r,F )−N2

(

r,
1

F

)

+Nk+2

(

r,
1

f n(z)P( f ) f (z +c)

)

+S(r, f ) (3.4)

From (2) of Lemma 2.8, we get

N2

(

r,
1

F

)

≤ Nk+2

(

r,
1

f n(z)P( f ) f (z +c)

)

≤ (k +2)N

(

r,
1

f

)

+mN

(

r,
1

f

)

+N

(

r,
1

f (z +c)

)

≤ (k +m +3)T (r, f )+S(r, f ). (3.5)

Similarly as above, we obtain

(n +m +1)T (r, g ) ≤ T (r,G)−N2

(

r,
1

G

)

+Nk+2

(

r,
1

g n(z)P(g )g (z +c)

)

+S(r, g ) (3.6)

N2

(

r,
1

G

)

≤ Nk+2

(

r,
1

g n(z)P(g )g (z +c)

)

≤ (k +m +3)T (r, g )+S(r, g ). (3.7)

Using equations (3.2)−(3.7), we deduce

(n +m +1)[T (r, f )+T (r, g )] ≤ 2Nk+2

(

r,
1

f (z)nP( f ) f (z +c)

)

+2Nk+2

(

r,
1

g (z)nP(g )g (z +c)

)

+S(r, f )+S(r, g )

≤ 2(k +m +3)[T (r, f )+T (r, g )]+S(r, f )+S(r, g ).
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Which is contradiction to n ≥ m+2k +6. Hence, by Lemma 2.7, we get either FG ≡ 1 or F ≡G .

Suppose FG ≡ 1 holds,

i .e.,
[

f n(z)(am f m + . . .+a0) f (z +c)
](k) [

g n(z)(am g m + . . .+a0)g (z +c)
](k) ≡ 1 (3.8)

By assumption that am 6= 0, a0 6= 0, we can arrive at a contradiction by Lemma 2.10.

Hence, by Lemma 2.7 F (z)≡G(z),

i .e.,
[

f n(z)(am f m + . . .+a0) f (z +c)
](k) ≡

[

g n(z)(am g m + . . .+a0)g (z +c)
](k)

(3.9)

From (3.9), we get

f n(z)P( f ) f (z +c) ≡ g n(z)P(g )g (z +c)+q(z)

where q(z) is a polynomial of degree at most k −1. If q(z) 6≡ 0, then we have

f n(z)P( f ) f (z +c)

q(z)
=

g n(z)P(g )g (z +c)

q(z)
+1 (3.10)

Thus, from the second main theorem for three small values and (3.10), we have

(n +m +1)T (r, f ) ≤ T

(

r,
f n(z)P( f ) f (z +c)

q(z)

)

+S(r, f )

≤ N

(

r,
f n(z)P( f ) f (z +c)

q(z)

)

+N

(

r,
q(z)

f n(z)P( f ) f (z +c)

)

+N

(

r,
q(z)

g n(z)P(g )g (z +c)

)

+S(r, f )

≤ N

(

r,
1

f (z)

)

+N

(

r,
1

P( f )

)

+N

(

r,
1

f (z +c)

)

+N

(

r,
1

g (z)

)

+N

(

r,
1

P(g )

)

+ N

(

r,
1

g (z +c)

)

+S(r, f )

≤ (2+m)T (r, f )+ (2+m)T (r, g )+S(r, f ).

Similarly as above, we have

(n +m +1)T (r, g ) ≤ (2+m)T (r, g )+ (2+m)T (r, f )+S(r, g )

Thus, we get

(n +m +1)[T (r, f )+T (r, g )] ≤ 2(2+m)([T (r, f )+T (r, g )]+S(r, f )+S(r, g )

which is contradiction to n ≥ m +2k +6. Hence, we get q(z)≡ 0, which implies that

f n(z)P( f ) f (z +c)= g n(z)P(g )g (z +c)

i .e., f n(z)(am f m +am−1 f m−1 + . . .+a0) f (z +c)
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≡ g n(z)(am g m +am−1g m−1 + . . .+a0)g (z +c). (3.11)

Let h = f
g , and then substituting f = g h and f (z +c) = g (z +c)h(z +c) in (3.11) we deduce

⇒ (g h)n
[

am(g h)m +am−1(g h)m−1 + . . .+a0

]

g (z +c)h(z +c) = g n(am g m + . . .+a0)g (z +c)

⇒ g n+m
[

am(hm+n(z)h(z +c)−1)
]

+ . . .+ g n
[

a0(hn(z)h(z +c)−1)
]

= 0

⇒ g m =
−

[

g m−1
[

am−1(hm+n−1(z)h(z +c)−1)
]

+ . . .+ [a0(hn(z)h(z +c)−1)]
]

am(hm+n(z)h(z +c)−1)
(3.12)

If hn+m(z)h(z + c) 6= 1, then since g is transcendental and from (3.12), we have h(z) is a tran-

scendental meromorphic function with finite order. By Lemma 2.1,

T (r,h(z +c))= T (r,h)+S(r,h) (3.13)

From (3.13) and using the condition n ≥ m +2k +6, it is easy to show that hn+m(z)h(z + c) is

not a constant.

Suppose that there exist a point z0 such that hn+m(z0)h(z0 +c) = 1.

Since g (z) is an entire function and from (3.12), we deduce hd (z0) = 1, where d = GC D{n +
m +1,n +m, . . . ,n +m +1− i , . . . ,n +1} and i = 0,1,2, . . . ,m.

Now denote H = hn+m(z)h(z +c), then

N

(

r,
1

H −1

)

≤ N

(

r,
1

hd (z)−1

)

≤ dT (r,h)+O(1) ≤mT (r,h)+O(1) (3.14)

Applying the second fundamental theorem to H , and using (3.13) and (3.14), we have

T (r, H ) ≤ N (r, H )+N

(

r,
1

H

)

+N

(

r,
1

H −1

)

+S(r,h)

≤ N (r, H )+N

(

r,
1

H

)

+mT (r,h)+S(r,h)

≤ (4+m)T (r,h)+S(r,h)

Noting this, we have

(n +m)T (r,h) = T (r,hn+m(z)) =T

(

r,
H

h(z +c)

)

≤ T (r, H )+T (r,h(z +c))+O(1)

≤ (4+m)T (r,h)+T (r,h)+S(r,h)

= (5+m)T (r,h)+S(r,h)

which is contradiction to n ≥ m +2k +6.

Hence H = hn+m(z)h(z + c) 6= 1, then 1 is picard’s exceptional value of H , then by Second

fundamental theorem, we have

T (r, H ) ≤ N (r, H )+N

(

r,
1

H

)

+N

(

r,
1

H −1

)

+S(r, H )
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≤ 2 T (r,h)+2 T (r,h)+S(r,h)

(n +m +1)T (r,h) ≤ 4 T (r,h)+S(r,h)

Which is contradiction to n ≥ m +2k +6.

∴ hn+m(z)h(z +c) ≡ 1, then, from (3.12), we get hn(z)h(z +c) ≡ 1 ⇒ hd (z) ≡ 1.

Hence, we get f (z) ≡ t g (z), such that t d = 1, where d =GC D{n +m +1,n +m, . . . ,n +m +1−
i , . . . ,n +1} and i = 0,1,2, . . . ,m.

Now we consider the case when f and g are two polynomials.

By [ f n(z)P( f ) f (z +c)](k) and [g n(z)P(g )g (z +c)](k) share 1 CM, we have

[

f n(z)(am f m + . . .+a0) f (z +c)
](k) −1 =β

[

[

g n(z)(am g m + . . .+a0)g (z +c)
](k) −1

]

(3.15)

where β is a non-zero constant. Let deg f = l , then by (3.15) we know that deg g = l . Differ-

entiating the two sides of (3.15), we get

f n−k−1(z)q1(z) = g n−k−1(z)q2(z), (3.16)

where q1(z), q2(z) are two polynomials with deg q1(z) = deg q2(z) = (m +k +2)l − (k +1). By

n ≥m +2k +6, we get deg f n−k−1(z) = (n −k −1)l > deg q2(z).

Thus, by (3.16) we know that there exists z0 such that f (z0)= g (z0) = 0.

Hence, by (3.15) and f (z0) = g (z0) = 0, we deduce that β= 1, that is,

[

f n(z)(am f m + . . .+a0) f (z +c)
](k) =

[

g n(z)(am g m + . . .+a0)g (z +c)
](k)

(3.17)

Thus, we have

f n(z)(am f m + . . .+a0) f (z +c)− g n (z)(am g m + . . .+a0)g (z +c) =Q(z) (3.18)

where Q(z) is a polynomial of degree atmost k −1. Next we prove Q(z) ≡ 0. By rewriting (3.17)

as

f n−k (z)p1(z) = g n−k (z)p2(z). (3.19)

Where p1(z), p2(z) are two polynomials with deg p1(z) = deg p2(z) = (m + k + 1)l − k and

deg f (z) = l .

Hence total number of common zeros of f n−k (z) and g n−k (z) is atleast k . Thus, by (3.18) we

deduce that Q(z) ≡ 0, that is

f n(z)(am f m+am−1 f m−1+. . .+a0) f (z+c)= g n(z)(am g m+am−1g m−1+. . .+a0)g (z+c). (3.20)

Next, similar to the argument of (3.11), we get f (z) ≡ t g (z) for a constant t such that t d = 1,

where d =GC D{n +m +1,n +m, . . . ,n +m +1− i , . . . ,n +1} and i = 0,1,2, . . . ,m.



204 RENUKADEVI S. DYAVANAL AND ASHWINI M. HATTIKAL

Hence proved the (1) of Theorem 1.2.

(2) If P(z) ≡ c0

By the assumption and Theorem 1.1, we know that either both f and g are transcendental

entire functions or both f and g are polynomials.

First, we consider the case when both f and g are transcendental entire functions. Let

F = f n(z)c0 f (z +c) , G = g n(z)c0g (z +c)

By the Theorem F and n ≥ m+2k+6, we obtain either f (z) = c1eC z

n
p

c0
, g (z) = c2e−C z

n
p

c0
, where c1,c2,c0

and C are constants satisfying (−1)k (c1c2)n+1((n +1)C )2k = ( n
p

c0)2, or f ≡ t g for a constant t

such that t n+1 = 1.

Now we consider the case when both f and g are two polynomials.

By [ f n(z)c0 f (z +c)](k) and [g n(z)c0g (z +c)](k) share 1 CM, we have

[

f n(z)c0 f (z +c)
](k) −1 = γ

[

[

g n(z)c0g (z +c)
](k) −1

]

. (3.21)

Where γ is a non-zero constant. Let deg f (z) = l , then by (3.21) we know that deg g (z) = l .

Differentiating the two sides of (3.21), we get

f n−k−1(z)q3(z) = g n−k−1(z)q4(z) (3.22)

where q3(z), q4(z) are two polynomials with deg q3(z) = deg q4(z) = (k + 2)l − (k + 1). By

n ≥ 2k +6, we get deg f n−k−1(z) = (n −k −1)l > deg q4(z).

Thus, by (3.22) we know that there exists z0 such that f (z0) = g (z0) = 0.

Hence, by (3.21) and f (z0)= g (z0) = 0, we deduce that γ= 1, that is,

[

f n(z)c0 f (z +c)
](k) =

[

g n(z)c0g (z +c)
](k)

(3.23)

Thus, we have

f n(z) f (z +c)− g n(z)g (z +c) =Q1(z) (3.24)

where Q1(z) is a polynomial of degree atmost k − 1. Next we prove Q1(z) ≡ 0. By rewriting

(3.23) as

f n−k (z)p3(z) = g n−k (z)p4(z) (3.25)

where p3(z), p4(z) are two polynomials with deg p3(z) = deg p4(z) = (k+1)l−k and deg f (z) =
l .

Hence total number of common zeros of f n−k (z) and g n−k (z) is atleast k .

Thus, by (3.24) we deduce that Q1(z) ≡ 0, that is,

f n(z) f (z +c) = g n(z)g (z +c). (3.26)
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Let h(z)= f (z)
g (z) and h(z +c)= f (z+c)

g (z+c) then

(g h)n g (z +c)h(z +c)= g n g (z +c)

Hence f = t g where (t g )n t g (z +c)= g n g (z +c)

⇒ t n+1 = 1

Hence proved the (2) of Theorem 1.2.

4. Open questions

Question 4.1. Can 1 point shared value in the Theorem 1.2 be replaced by fixed point?

Question 4.2. Can 1 point shared value with CM in the Theorem 1.2 be replaced by 1 point

shared value with IM?

Question 4.3. Do the Theorem 1.1 and Theorem 1.2 hold for meromorphic functions f and g ?

Question 4.4. What happens if the CM sharing is replaced by weighted sharing of small func-

tion in Theorem 1.2?

Question 4.5. Are the conditions n ≥ k +2 in Theorem 1.1 and n ≥ m +2k +6 in Theorem 1.2

sharp?
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