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UNIQUENESS OF DIFFERENCE-DIFFERENTIAL POLYNOMIALS
OF ENTIRE FUNCTIONS SHARING ONE VALUE

RENUKADEVI S. DYAVANAL AND ASHWINI M. HATTIKAL

Abstract. In this paper, we study the uniqueness of difference-differential polynomials
of entire functions f and g sharing one value with counting multiplicity. In this paper we
extend and generalize the results of X. Y. Zhang, J. E Chen and W. C. Lin [17], L. Kai, L.
Xin-ling and C. Ting-bin [7] and many others [2, 16].

1. Introduction and main results

In this paper, the term 'meromorphic’ will always mean meromorphic in the whole com-
plex plane C. It is assumed that the reader is familiar with standard notations and fundamen-
tal results of Nevanlinna theory [6], [13] and [15]. We denote by S(r, f) any quantity satisfying
S(r, f) = ofT(r, f)} as r — +o0, possibly outside of a set of finite linear measure.

For a € C and k be a positive integer, we denote by N (r, a, f) be the counting function

for the zeros of f(z) — a with multiplicity = k, and N(r, a, f) be the corresponding one for
which the multiplicity is not counted. In this paper, we denote by

Ni(r,a,f)=Nq(ra, f)+Ne(ra f)+...+ Ng(r,a, f)

Let f(z) and g(z) be two meromorphic functions. If f(z) — a and g(z) — a assume the same
zeros with the same multiplicities, then we say that f(z) and g(z) share the value 'a’ CM,
where 'a’ is a complex number.

In 1993, Wang and Fang [11, 12] proved the following theorem for transcendental entire
functions.

Theorem A. Let f(z) be a transcendental entire function. n and k be two positive integers with

n=k+1, then [f"1® —1 has infinitely many zeros.
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In 2002, M. L. Fang [3] proved the unicity theorem corresponding to the above result.

Theorem B. Let f and g be two non-constant entire functions, and let n = 11 be a positive
integer withn>2k+4. If [f”](k) and [g”](k) share1 CM, then either f(z) = c1e?, g(z) = coe™ %,
where ¢y, ¢y and c are three constantssatisﬁ/ing(—l)k(cl 62)”(nc)2]c =1, or f = tg for a constant
t such that t" = 1.

In 2008, X. Y. Zhang, J. E Chen and W. C. Lin [17] proved the following results on uniqueness
of two polynomials sharing a common value.

Theorem C. Let f be a transcendental entire function, let n, k and m be positive integers with
n=k+2,andP(z) = ap+a 1 z+ azz2 +...+a, 2™, where ay, a, ay, ..., ay are complex constants.
Then [f"P(f)1® =1 has infinitely many solutions.

Theorem D. Let f and g be two non-constant entire functions. Let n, k and m be three posi-

m=ly +ayz+agyorP(z) = cp,

tive integers with n = 3m+2k +5, and P(z) = a2 + am-12
where ay(# 0), a1, az, as, ... am-1, am(# 0), co(# 0) are complex constants. If [f"P(f)1® and

[g"P(g)]® share1 CM, then

(1) whenP(z) = anzm+am 12" +...+a1z+ay, either f(z) = tg(z) for a constant t such that
t9 =1, whered=n+m,...n+m- i,...,n),am-i(#0) for somei=0,1,2,...m, or f and
g satisfy the algebraic equation R(f, g) =0, where R(w1, w2) = wi(amwi" + am-1 w{”_l +
..+ ag) — wgl(amwén+am_1w§”_1+...+ao)

(2) when P(z) = cy, either f(z) = ﬁ,

g(z) = ﬁ, where ¢, ¢y and c are constants satis-
fying (=D*(c1¢2)"(nc)?* =1, or f = tg for a constant t such that t" = 1.

In 2012, L. Kai, L. Xin-ling, C. Ting-bin [7] considered Theorem B for difference-differential
polynomials and proved the following results.

Theorem E. Let f(z) be a transcendental entire function of finite order. If n = k + 2, then the

difference-differential polynomial [f"(2) f (z + ¢)]® — a(z) has infinitely many zeros.

Theorem E. Let f and g be transcendental entire functions of finite order, n = 2k +6 and c isa
non-zero complex constant. If [ f"(2) f (z+¢)] &) and (g"(2)g(z+0)] &) share the value 1CM, then
either f(z) = c1e%?, g(z) = coe"C% wherecy, c, and C are constantssatisﬁ/ing(—l)k(cl )" ((n+
1)C)** =1, or f = tg for a constant t such that t"*' = 1.

In the same direction J. Zhang [16] investigated the value distribution and uniqueness of dif-
ference polynomials of entire functions and obtained the following results.

Theorem G. Let f(z) be a transcendental entire function of finite order, and a(z) be a small
function with respect to f(z). Suppose that c is a non-zero complex constant. If n = 2, then
(2 (f(2) — 1) f(z+ c) — a(z) has infinitely many zeros.
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Theorem H. Let f and g be two transcendental entire functions of finite order, and a(z) be a
small function with respect to both f (z) and g(z). Suppose that c is a non-zero constant and n
is an integer. If n =7, then f"(2)(f(2) — 1) f(z + ¢) and g"(2)(g(z) —1)g(z + ¢) share a(z) CM,
then f(z) = g(2).

Recently, R. S. Dyavanal and R. V. Desai [2] extended the results of J. Zhang[16] and proved the

following results.

Theorem 1. Let f(z) be a transcendental entire function of finite order, and a(z) be a small
function with respect to f (z). Suppose that c is a non-zero complex constant and n is an integer.
Ifn=2, ky =1 then f"(2)(f(2) — l)klf(z + ¢) — a(z) has infinitely many zeros.

Theorem J. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z)
be a small function with respect to both f(z) and g(z). Suppose that c is a non-zero complex
constant, k1 =1, n= ki +6. If "(2)(f(2) —1)¥ f(z+¢) and g"(2)(g(z) — 1)* g(z + ¢) share
a(z) CM, then f(z) = t g(z), where t* =1.

In this paper, we consider Theorem C and Theorem D to difference-differential polynomials
and extends the above theorems as follows.

Theorem 1.1. Let f be a transcendental entire function. n, k and m be positive integers with
n=k+2and P(z) = anz™ + apm_12" " +...+ a1z + ay, where ay, ay, az, as, ... am—1, Ay, are
complex constants and a(z) be a small function with respect to f(z). Then [f"(2)P(f) f(z +
0)1® — a(z) has infinitely many zeros.

Remark 1.1. If P(f) =1 in Theorem 1.1, then Theorem 1.1 reduces to Theorem E.

Remark 1.2. If P(f) = (f—1) and k =0in Theorem 1.1, then Theorem 1.1 reduces to Theorem
G.

Remark 1.3. If P(f) = (f — 1) and k = 0 in Theorem 1.1, then Theorem 1.1 reduces to Theo-
rem L.

The unicity theorem corresponding to Theorem 1.1 is as follows.

Theorem 1.2. Let f and g be two non-constant entire functions of finite order. Let n, k and m

be three positive integers with n = m+2k+6, 'c’

is a non-zero complex constant and P(z) =
AmZ™+ Ap12™ V + ...+ a1z +ag or P(2) = ¢y, whereay(#0), a1, as, as, ..., Am-1,
am(# 0),co(# 0) are complex constants. If [f"(2)P(f)f(z + c)]® and [g"(2)P(g)g(z + c)]®

sharel CM, then

(1) when P(z) = a; 2™ + am_lzm_1 +...+a1z+ ay, we get f(z) = tg(z) for a constant t such
that t% =1, whered = GCD{n+m+1,n+m,...,n+m+1—i,....n+1}andi=0,1,2,...,m.
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Cz C.

(2) when P(z) = ¢y either f(z) = Ci,eCO ,8(2) = sz;oz

fying (~D)F(c1e)™  (n+1)C)%* = (/)% or f = tg for a constant t such that t"*' = 1.

, Where c1, ¢y, ¢y and C are constants satis-

Remark 1.4. If P(f) =1 in Theorem 1.2, then Theorem 1.2 reduces to Theorem E

Remark 1.5. If P(f) = (f—1) and k = 0 in Theorem 1.2, then Theorem 1.2 reduces to Theorem
H, when a(z) = 1.

Remark 1.6. If P(f) = (f - D% and k = 0 in Theorem 1.2, then Theorem 1.2 reduces to Theo-

rem J, when a(z) = 1.

2. Some lemmas
For the proof of our main results, we need the following lemmas.

Lemma 2.1 ([1]). Let f(z) be a trancendental meromorphic function of finite order, then
T(r,f(z+c) =TT, )+S(r, )

Lemma 2.2 ([15]). Let f(z) be a non-constant meromorphic function, and a, (#0), an-1,
..., ag be small functions with respect to f. Then

T(ranf"+ an_lf"_1 +..+a f+ag)=nTr l+Sr[)

Lemma 2.3 ([5]). Let f be a transcendental meromorphic function of finite order. Then

flz+0)
m(r’ @

) =S, f)

Lemma 2.4 ([6, 13]). Let f(z) be a non-constant meromorphic function and a, (z), a»(z)
be two meromorphic functions such that T(r,a;) = S(r, f), i =1,2. Then

— — 1 — 1
T(r, f) SN(r,f)+N(r,—)+N(r,
f-a f-a

Lemma 2.5 ([15]). Let f(z) and g(z) be two trancendental entire functions, and k be a positive

)+ﬂnﬂ

integer. Then
T(r, f*) < T(r, /) + KN(r, f) + S(r, f)

Lemma 2.6 ([1],[4]). Let f(z) be a meromorphic function of finite order and c is a non-zero

complex constant. Then

m(r, f(Z+C))+m(T, f(Z)

=S ,
7@ f(z+c)) r.f)
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Lemma 2.7 (Lemma 3 in [14]). Let F and G be non-constant meromorphic functions. If F and
G share1 CM, then one of the following three cases holds

(1) max{T(r,F),T(r,G)}} < Nz (r, )+ No(r, F) + No (1, &) + No (1, G) + S(r, F) + S(1, G),

(2) F=G,

(3) FG=1.

Lemma 2.8 ([8], Lemma 2.3). Let f(z) be a non-constant meromorphic function and p, k be

positive integers. Then

1 1
(1) N, (r, W) < T, fO) = T(r, f)+ Npsr (r, ?) +S(r, )

1 — 1
) Np(r,m) skN(r,f)+Np+k(r,?)+S(r,f)

Lemma 2.9. Let f(z) be a transcendental entire function of finite order and let
F*=f(2)"P(f)f(z+c). Then

T(rnF)=m+m+1)T(, [)+Sr,f)

Proof. Since f is a transcendental entire function and also from Lemma 2.2, Lemma 2.3,

Lemma 2.6, we obtain

(n+m+1D)T(r, f)+Sr, f) = T(r, f (2" P(f)) < m(r, f(2)" ' P(F) + S(r, )

f(z)F*)
< m(r, Flzto) +S(r, f)

<m(r,F*)+S(r,f)
<T(r,F)+Sr[f)

On the other hand, using Lemma 2.1 and f is a transcendental entire function of finite order,

we have

T(rF*)<nT(r,f)+mT(r, )+ T(r, f(z+0)+S(r, f)
sn+m+1)T(r, )+Sr,[)

Hence we get Lemma 2.9.

Lemma 2.10. Let f(z) and g(z) be two non-constant entire functions, let n, k be two positive
integers withn > k,’c’ is a non-zero complex constant and let P(z) = an,z™ + Am12™ T .+
a1z + ay be a non-zero polynomial, where ay, ay,ay,...am-1,a, are complex constants. If
(F"P(N) f(z+ )P [g"P(g)g(z +c)]®) = 1, then P(z) is reduced to a non-zero monomial, that

isP(z) = aizi #0 forsomei=0,1,2,...,m.
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Proof. If P(z) is not reduced to a non-zero monomial, then without loss of generality, we may
assume that
P(2) = amz™ + am_12" ...+ a1z +ag

where ao(#0), ay, as, ... am-1, a,(# 0) are complex constants. Since
[ amf™+...+a0) f(z+ c)](k) (8" (amg™ +...+ ap)g(z + c)](k) =1 2.1)

From n > k and the assumption that f(z) and g(z) are two non-constant entire functions we
deduce by (2.1) that
f2)#0, g(z) #0. (2.2)

Let f(z) = e*?, where a(z) is a non-constant entire function. Thus, by induction we get
. (k) ’ U ]
[aif‘+”f(z+c)] =Pp; (a,...a(k),a (z+c),...a(k)(z+c))e(”")“e“(“a. 2.3)

Where P; (a/, a,...a® o (z+0),a (z+¢),...a®(z+ c)) (i=0,1,...m) are difference-differ-
ential polynomials.

Obviously,

!

Pm(a ,...a(k),a’(z+c),...a(k)(z+c)) Z0

!

Pg(a,...a(k),a’(z+c),...a(k)(z+c)) Z0

Where if a; # 0 for some i =1,2...m—1, then P; (0/...a(k),a/(z+c),...a(k)(z+c)) £0

Since g(z) is an entire function, we get from (2.1) that [ f"(a;, f™ +...+ ao) f (z + ©)] ® 20.
Thus, by (2.3) we have

P, (a’,(x”,...a(k),al(z+c),(x”(z+c),...(x(k)(z+c)) ey .

! "
+...P0(a,a ,...a(k

),a’(z+c),a”(z+c),...a(’“)(z+c));-éo 2.4)
Since a(z) and a(z + ¢) is an entire function, we obtain

T(r,a )< T(r,a)+ S, f) = m(r,a) + S(r, f)
= m(r, () )+S(r,f)

e(l
Similarly, we obtain

T(r,a?(z+0) < T(r,a (z+¢) +S(r, ) = m(r,a (z+¢) + S(r, f)
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a(z+0)y'
= m(r,u) +S(r, f)

ea(z+c)

for j=1,2,..., k. Hence, we deduce that

T(r»Pm):S(r)f))uwT(r)PO):S(ryf) (2~5)
Note that f = e*®, Thus, by (2.4), (2.5) above, and Lemma 2.2 and Lemma 2.4, we get

mT(r,f) =T (r,Ppe™ +...+ P1e%) + S(r, f)
1 — 1

< N(T, )+N(r,

P,,em* 4+ ...+ Pe% P,,e™m* 4+ ...+ PieY+ Py
<N( 1 )+S( i)
< T, r,
Pyelm=Day 4 Pyed 4 py
<s(m-DT(r, )+S, f)

+S(r, f)

which is a contradiction. This shows that P(z) is reduced to a non-zero monomial, that is,

P(z) = aizi #0forsome i =0,1,2,... m. This completes the proof of the Lemma 2.10.

3. Proof of Theorem 1.1

Denote F(z) = [f(2)"P(f) f(z+c)]® and F* = f(2)"P(f)f(z + ¢). From Lemma 2.9, F*
is not a constant. Assume that F(z) — a@(z) has only finitely many zeros, then from the second
fundamental theorem for three values and (1) of Lemma 2.8, we get

T(r,F) < N(r,F) + N(1,0,F) + N(r,0,F — a(2)) + S(r, F)
< Ny(1,0,F) + N(r,0, F — a(2)) + S(r, F)
<T(rF)=T@F*)+ Niy1 (1,0, F*) + S(r, F*) + S(r, F)
T(r,F*) < Ng+1(r,0,F*) + S(r, f). (3.1

From Lemma 2.9 and (3.1), it implies that

m+m+DTr, )+S, ) =T, F*) < Nepr(r,0, F*) + S(r, f)

< (k+DN(1,0, /) + N(1,0,P() + N(1,0, f (z+ ) + (1, f)
< (k+m+2)T(r, f)+S(r, f).

Which is contradiction to n = k + 2. Hence [f”(z)(amfm +...+ap)f(z+ c)] ) _ a(z) has in-
finitely many zeros.

Proof of theorem 1.2.

W IfP(z) =anz™+am_12" ' +...+ a1z + ap.
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Then by assumption and Theorem 1.1 we know that either both f and g are transcendental
entire functions or both f and g are polynomials.

First, we consider the case when f and g are transcendental entire functions.

Considering F = [f"(2)P(f) f(z+)]®, G = [g"(2)P(g)g(z+¢)]®. Since F and G share 1 CM,
let us assume (1) of Lemma 2.7 holds. That is

1
max{T(r,F),T(r,G)} <N, (r, F) + No(r, F)+ N>

r,é)+N2(r,G)+S(r,F)+S(r,G) (3.2)

Since f is an entire function and from Lemma 2.5, Lemma 2.9 we have S(r, F) = S(r, f). We
also have S(r,G) = S(r, g).
From (1) of Lemma 2.8, we obtain

1 1
No[r,=|=Nofr,
2( F) 2( [f”(z)P(f)f(Z+C)](k))

1
< T(r,F)=T(r,f"(@P(f)f(z+ ) + Nis2 (r, I C)) +S(r, ). (3.3)
From Lemma 2.9 and (3.3), we get
(n+m+ DT, f)=T(r,f"RPf)f(z+0)+Sr, f)
1 1
<T(rF)—N, (r, F) + Niyo (r, F@P T C)) +S(r, f) (3.4)
From (2) of Lemma 2.8, we get
N- (r l) <N, (r ! )
2 ,F — k+2 ’fn(Z)P(f)f(Z"rC)
< (k+2)N(r, %) + mN(r, %) +N|r, 7f(z1+ c))
s(k+m+3)T(r, /)+S, f). (3.5)
Similarly as above, we obtain
1 1
(n+m+1)T(r,g) <TG — N> (r, 5) + Niyo (r, 2" (2P gz +0) ) +S(r, 8) (3.6)

1 1
N, (r, 6) < Niyo (r, (P @gr0) ) <(k+m+3)T(r,g)+S(r,g). 3.7)
Using equations (3.2)—(3.7), we deduce
1 1
(m+m+D[T(r, )+ T(r,8)] < 2Ngy2 (r, F@ PP i+ c)) +2Nji2 (r, 22" P98zt 0 )

+S(r, /) +S(r, 8)
<2(k+m+3)[T(r, )+ T(r,gl+Sr, f)+S(r,g).
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Which is contradiction to n = m+2k + 6. Hence, by Lemma 2.7, we get either FG=1or F =G.
Suppose FG =1 holds,

](k)

ie., [f”(z)(amfm+...+a0)f(z+c)](k) (8" (@) (amg™ +...+ap)g(z+0)] " =1 (3.8)

By assumption that a,, # 0, ap # 0, we can arrive at a contradiction by Lemma 2.10.
Hence, by Lemma 2.7 F(z) = G(z),

ie., [f”(z)(amfm+...+a0)f(z+c)](k) = [g”(z)(amgm+...+ao)g(z+c)](k) (3.9)

From (3.9), we get
fM@P(f)f(z+c)=g"(2)P(g)g(z+ )+ q(2)

where ¢g(z) is a polynomial of degree at most k — 1. If g(z) Z 0, then we have

f"@P(f)f(z+¢) _ g"(2)P(g)g(z+¢) N

1 (3.10)
q(2) q(z)
Thus, from the second main theorem for three small values and (3.10), we have
(n+m+ DT f) < T (r, / (Z)P;{;)f(“ ‘) ) + S0, f)
sﬁ(r,f (Z)P(f)f(z+c))+ﬁ(r’ q(2) )
q(2) f"@P(f)f(z+c)
+N(r, q(2) )+S(r,f)
g"(2)P(g)g(z+c)
<N

(r,i)+ﬁ(r,L)+N(r,7l )+N(r,i)+ﬁ(r,i)
f(2) P(f) flz+¢) g(2) P(g)
N(r ! )+S(r i)
" "g(z+c) ’
<Q2+m)T(r,f)+Q+m)T(r,g) +S(r, f).

Similarly as above, we have
n+m+1D)Trg)<R+m)Trg+2+m)T(r,f)+S(rg)
Thus, we get
m+m+D)ITrH+Tr 9l <22+m){T(r, )+ Trgl+Sr, f)+S(r,g)
which is contradiction to n = m + 2k + 6. Hence, we get g(z) = 0, which implies that

f"(2P(f)f(z+c)=g"(2)P(g)g(z+¢)

i.e., f"(z)(amfm+am_1fm_1+...+a0)f(z+c)
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= g" (D) (Amg™ + am18™  +.. .+ ag)glz+0). 3.11)
Leth= é, and then substituting f = gh and f(z+c¢) = g(z+ c)h(z+¢) in (3.11) we deduce

= (gh)" [am(gh)™ +am 1 (gh)™ 1+ +aplgz+c)h(z+c)=g"(amg™ +...+ ap)g(z+c)
= g""" am(W™ (@) h(z+c)=D] +...+ g" [ap(h" (2)h(z+c)—1)] =0
— g™ [am-1 (W™ " (@) h(z+c) - D] +... + [ag(h" (2) h(z + ¢) — 1)]]

TE am(h"™* " (2)h(z+c)—1) (3.12)

If W™ ™(z)h(z+ c) # 1, then since g is transcendental and from (3.12), we have h(z) is a tran-
scendental meromorphic function with finite order. By Lemma 2.1,

T(r,h(z+c¢)=T(r,h)+S(r, h) (3.13)

From (3.13) and using the condition n = m + 2k + 6, it is easy to show that h"*™(z)h(z + ¢) is
not a constant.

Suppose that there exist a point zq such that """ (zy) h(zo + ¢) = 1.

Since g(z) is an entire function and from (3.12), we deduce h%(z) = 1, where d = GCD{n +
m+1l,n+m,....n+m+1-1i,...,n+1}andi=0,1,2,...,m.

Now denote H = """ (z2)h(z + ¢), then

N(r, T 1) sﬁ(r,ﬁ) <dT(r,h)+00)<mT(r, h)+0(Q) (3.14)

Applying the second fundamental theorem to H, and using (3.13) and (3.14), we have

T(r,H) < N(r,H)+ N

1) —
rn—|+N
H

1
,—— | +S(r,h
rH_1)+ (r,h)

<N, H+N

r,%) +mT(r,h)+ S(r, h)
<@4+m)T(r,h)+S(r,h)

Noting this, we have

m+m)Trh) =THh" M2)=T

W)
" h(z+c¢)
<Tr H)+T(r,h(z+c))+0(1)

<@+m)T(r,h)+ T(r,h)+S(r,h)
=6B+m)T(r,h)+S(r, h)
which is contradiction to n = m+ 2k + 6.

Hence H = h"™*™(z)h(z + ¢) # 1, then 1 is picard’s exceptional value of H, then by Second
fundamental theorem, we have

_ _ 1 _
T(r,H) < N(r,H)+N(r,ﬁ)+N T,

1
1)+S(r,H)
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<2T(r,h)+2T(r,h)+S(r,h)
m+m+1DT,h) <AT h)+S, h)

Which is contradiction to n = m + 2k +6.

o W (Z2)h(z + ¢) = 1, then, from (3.12), we get K" (2)h(z+c) =1 = h%(z) = 1.

Hence, we get f(z) = tg(z), such that t? =1, where d = GCD{n+ m+1,n+m,...,n+m+1—
i,...,n+1}andi=0,1,2,...,m.

Now we consider the case when f and g are two polynomials.

By [f*(2)P(f) f(z+¢))® and [g"(2) P(g)g(z + ¢)]® share 1 CM, we have

[F @ amf™+...+ ag) fz+0)]F —1=p [[g"(z)(amg’"+... +ap)glz+c)|® - 1] (3.15)

where f is a non-zero constant. Let deg f = [, then by (3.15) we know that deg g = [. Differ-
entiating the two sides of (3.15), we get

22 = g" (2 g2(2), (3.16)

where q;(z), g»(z) are two polynomials with deg q;(z) = deg g2(z) = (m+ k+2)] - (k+1). By
n=m+2k+6,wegetdeg f" ¥l (2)=(n-k-1)I>deg q:(2).

Thus, by (3.16) we know that there exists zy such that f(zy) = g(zp) =0.

Hence, by (3.15) and f(zg) = g(z¢) = 0, we deduce that = 1, that is,

[F (@ @mf™ +...+ ag) f(z+0)]® = [g"(@) (amg™ +... + ag)g(z+ )| P (3.17)
Thus, we have
ff @) (amf™+...+ap)f(z+c)—g"(2)(amg™ +...+ ap)g(z+¢c) = Q(2) (3.18)

where Q(z) is a polynomial of degree atmost k — 1. Next we prove Q(z) = 0. By rewriting (3.17)
as

" @pi(2) = g 2 p2(2). (3.19)

Where p;(z), p2(z) are two polynomials with deg p1(z) = deg p»(z) = (m+ k+ 1)l — k and
deg f(z) =1L

Hence total number of common zeros of f n=k(z) and g”_k(z) is atleast k. Thus, by (3.18) we
deduce that Q(z) =0, thatis

FUD ™+ am1 [ 4.+ ag) f(z+0) = 8" (@) (amg™ + am-18™ 1 +...+ag)g(z+c). (3.20)

Next, similar to the argument of (3.11), we get f(z) = tg(z) for a constant ¢ such that 4 =1,
whered =GCD{n+m+1,n+m,...,.n+m+1-—1i,...,.n+1}andi=0,1,2,..., m.
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Hence proved the (1) of Theorem 1.2.

@) IfP(z) =cy
By the assumption and Theorem 1.1, we know that either both f and g are transcendental
entire functions or both f and g are polynomials.

First, we consider the case when both f and g are transcendental entire functions. Let

F=f"2)cof(z+c) ,G=g"(2)cog(z+ )

cle

oo -, g(2) =
and C are constants satisfying (—1)*(c; c2)"*! (n + 1)C)?F = (\/_) ,or f = tg for aconstant ¢
such that "1 =1,

Now we consider the case when both f and g are two polynomials.

By [f"(2)co f(z+ 0)]® and (g (2)cog(z+ )] share 1 CM, we have

By the Theorem F and n = m+2k+6, we obtain either f(z) = = where c1, ¢, ¢o

"c

[F@cofz+0)]P-1= y[[g (2)coglz+0)] ¥ -1 ] (3.21)

Where y is a non-zero constant. Let deg f(z) = [, then by (3.21) we know that deg g(z) = .
Differentiating the two sides of (3.21), we get

252 = g" Y2 qu(2) (3.22)

where g3(z), gs4(z) are two polynomials with deg q3(z) = deg q4(z) = (k+2)] - (k+1). By
n=2k+6,wegetdeg f"*(z)=(n-k-1)]>deg q4(2).

Thus, by (3.22) we know that there exists zy such that f(zy) = g(z¢) =0

Hence, by (3.21) and f(z9) = g(z¢) = 0, we deduce that y =1, that s,

[ @cofz+0]® = [g"@cogz+0)] P (3.23)

Thus, we have
(@) f(z+c)—g"(2)glz+¢c) =Q1(2) (3.24)

where Qq(z) is a polynomial of degree atmost k — 1. Next we prove Q;(z) = 0. By rewriting
(3.23) as
" 2)ps(2) = g (2 pal2) (3.25)

where p3(z), p4(z) are two polynomials with deg p3(z) = deg p4(z) = (k+1)l-kand deg f(z) =
l.

Hence total number of common zeros of " ¥(z) and g" ¥(z) is atleast k.

Thus, by (3.24) we deduce that Q; (z) =0, that s,

(2 f(z+c)=g"(2)g(z+¢). (3.26)
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Let h(z) = % and h(z+c¢) = {;g:g then

(gh)"gz+c)h(z+c)=g"g(z+¢)

Hence f = tg where (1g)"tg(z+c)=g"g(z+¢)

= "=

Hence proved the (2) of Theorem 1.2.

4. Open questions
Question 4.1. Can 1 point shared value in the Theorem 1.2 be replaced by fixed point?

Question 4.2. Can 1 point shared value with CM in the Theorem 1.2 be replaced by 1 point
shared value with IM?

Question 4.3. Do the Theorem 1.1 and Theorem 1.2 hold for meromorphic functions f and g?

Question 4.4. What happens if the CM sharing is replaced by weighted sharing of small func-

tion in Theorem 1.2?

Question 4.5. Are the conditionsn =k +2 in Theorem 1.1 and n = m+ 2k +6 in Theorem 1.2

sharp?
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