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INEQUALITIES APPLICABLE TO RETARDED VOLTERRA

INTEGRAL EQUATIONS

B. G. PACHPATTE

Abstract. The main objective of this paper is to establish explicit bounds on certain integral

inequialities which can be used as tools in the study of certain classes of retarded Volterra integral

equations.

1. Introduction

In 1972, K. Ahmedov, A. Jakubov and A. Veisov obtained the upper bounds on the
following inequalities. (see [2, pp.11, 13])

u(t) ≤ f(t) +

∫ φ(t)

t0

k(t, s)g(u(s))ds, (1.1)

u(t) ≤ f(t) +

n
∑

i=1

ai(t)

∫ φi(t)

t0

bi(s)g(u(s)ds), (1.2)

under some suitable conditions on the functions involved in (1.1) and (1.2). The bounds
obtained on (1.1) and (1.2) can be used to study the qualitative behavior of solutions of
certain retarded integral equations. In fact, the bound obtained on (1.2) is based on the
solutions of a certain initial value problem (see [2, Theorem 24, p.13]), which basically
involves the comparision principle and usually difficult to calculate explicitly. In the
present paper, we offer some fundamental integral inequalities of the above forms provid-
ing explicit bounds, which can be used as tools in the study of certain classes of Volterra
integral equations involving several retarded arguments. To convey the importance of
the results, applications of one of our results are also given.

2. Statement of Results

In what follows R denotes the set of real numbers, R+ = [0,∞), I = [t0, T ) are the
given subsets of R and define H = {(t, s) : t0 ≤ s ≤ t < T }. Throughout, all the integrals
involved are assumed to exist on the respective domains of their definitions.
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Our main results are given in the following theorems.

Theorem 2.1. Let u(t), a(t) ∈ C(I, R+)ki(t, s),
∂
∂t

ki(t, s) ∈ C(H, R+) and αi(t) ∈

C1(I, I) be nondecreasing with αi(t) ≤ t on I for i = 1, 2, . . . , n.

(a1) If c ≥ 0 is a constant and

u(t) ≤ c +

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)u(s)ds, (2.1)

t ∈ I, then

u(t) ≤ c exp

(
∫ t

t0

Q(s)ds

)

, (2.2)

for t ∈ I, where

Q(t) =

n
∑

i=1

[

ki(t, αi(t))α
′

i(t) +

∫ αi(t)

αi(t0)

∂

∂t
ki(t, σ)dσ

]

(2.3)

for t ∈ I.

(a2) If a(t) is nondecreasing for t ∈ I and

u(t) ≤ a(t) +

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)u(s)ds (2.4)

for t ∈ I then

u(t) ≤ a(t) exp

(
∫ t

t0

Q(s)ds

)

(2.5)

for t ∈ I where Q(t) is given by (2.3).

Theorem 2.2. Let u(t), a(t), ki(t, s),
∂
∂t

ki(t, s), αi(t) be as in Theorem 2.1.

(b1) Let c ≥ 0 be a constant, g(u) be continous, nondecreasing function defined on R+

and g(u) > 0 on (0,∞). If

u(t) ≤ c +

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)g(u(s))ds, (2.6)

for t ∈ I, then for t0 ≤ t ≤ t1, t, t1 ∈ I

u(t) ≤ G−1

[

G(c) +

∫ t

t0

Q(s)ds

]

(2.7)

where Q(t) is given by (2.3) and G−1 is the inverse function of

G(r) =

∫ r

r0

ds

g(s)
, r > 0, (2.8)
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r0 > 0 is arbitrary and t1 ∈ I is chosen so that

G(c) +

∫ t

t0

Q(s)ds ∈ Dom(G−1)

for all t laying in the interval t0 ≤ t ≤ t1
(b2) Let g(u) be as in (b1) and suppose in addition it is subadditive. If

u(t) ≤ a(t) +

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)g(u(s))ds, (2.9)

for t ∈ I then for t0 ≤ t ≤ t2, t, t2 ∈ I

u(t) ≤ a(t) + G−1

[

G(B(t)) +

∫ t

t0

Q(s)ds

]

, (2.10)

where G, G−1, Q be as in (b1),

B(t) =

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)g(a(s))ds (2.11)

for t ∈ I and t2 ∈ I is chosen so that

G(B(t)) +

∫ t

t0

Q(s)ds ∈ Dom(G−1),

for all t ∈ I laying in the interval t0 ≤ t ≤ t2.

3. Proofs of Theorem 2.1 and 2.2

From the hypotheses, we observe that α′

i ≥ 0 for t ∈ I.
(a1) Define a function z(t) by the right hand side of (2.1). Then z(t0) = c, u(t) ≤ z(t)

and

z′(t) =

n
∑

i=1

{

ki(t, αi(t))u(αi(t))α
′

i(t) +

∫ αi(t)

αi(t0)

∂

∂t
ki(t, s)u(s)ds

}

≤

{

n
∑

i=1

ki(t, αi(t))z(αi(t))α
′

i(t) +

∫ αi(t)

αi(t0)

∂

∂t
ki(t, s)z(s)ds

}

≤

{

n
∑

i=1

ki(t, αi(t))α
′

i(t) +

∫ αi(t)

αi(t0)

∂

∂t
ki(t, s)ds

}

z(αi(t))

≤ Q(t)z(t),

which implies

z(t) ≤ c exp

(
∫ t

t0

Q(s)ds

)

. (3.1)
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Using (3.1) in u(t) ≤ z(t) we get the desired inequality in (2.2).

(a2) First we assume that a(t) > 0 for all t ∈ I. It is easy to observe that for

s ≤ αi(t) ≤ t we have a(s) ≤ a(αi(t)) ≤ a(t). In view of this, from (2.4) we observe that

u(t)

a(t)
≤ 1 +

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)
u(s)

a(s)
ds. (3.2)

Now an application of the inequality in part (a1) to (3.2) yields (2.5). If a(t) = 0, then

from (2.4) we observe that

u(t) ≤ ε +

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)u(s)ds,

where ε is an arbitrary small constant. An application of the inequality in part (a1)

yields

u(t) ≤ ε exp

(
∫ t

t0

Q(s)ds

)

. (3.3)

Now by letting ε → 0 in (3.3) we have u(t) = 0 and hence (2.5) holds.
(b1) We first assume that c > 0 and define a function z(t) by the right hand side of

(2.6). Then z(t0) = c, u(t) ≤ z(t) and

z′(t) =
n

∑

i=1

{

ki(t, αi(t))g(u(αi(t)))α
′

i(t) +

∫ αi(t)

αi(t0)

∂

∂t
ki(t, s)g(u(s))ds

}

≤

{

n
∑

i=1

ki(t, αi(t))g(z(αi(t)))α
′

i(t) +

∫ αi(t)

αi(t0)

∂

∂t
ki(t, s)g(z(s))ds

}

≤ Q(t)g(z(αi(t)),

≤ Q(t)g(z(t)). (3.4)

From (2.8) and (3.4) we have

d

dt
G(z(t)) =

z′(t)

g(z(t))

≤ Q(t). (3.5)

Now by setting t = s in (3.5) and integrating it from t0 to t we have

G(z(t)) − G(c) ≤

∫ t

t0

Q(s)ds (3.6)

z(t) ≤ G−1

[

G(c) +

∫ t

t0

Q(s)ds

]

(3.7)

Using (3.7) in u(t) ≤ z(t) gives the required inequality in (2.7).
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If c is nonnegative, we carry out the above procedure with c + ε instead of c, where

ε > 0 is an arbitrary small constant and subsequently pass to the limit ε → 0 to obtain

(2.7). The subinterval t0 ≤ t ≤ t1 is obvious.

(b2) Define a function z(t) by

z(t) =
n

∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)g(u(s))ds. (3.8)

Then z(t0) = 0 and from (2.9) we have

u(t) ≤ a(t) + z(t). (3.9)

Using (3.9) in (3.8) we have

z(t) ≤

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)g(a(s) + z(s))ds,

≤ B(t) +

n
∑

i=1

∫ αi(t)

αi(t0)

ki(t, s)g(z(s))ds

where B(t) is given by (2.11). It is easy to observe that B(t) is nonnegative and nonde-
creasing in t. Now by following the similar arguments as in the proof of Theorem 2.4.2

given in [4] with suitable modifications we get

z(t) ≤ G−1

[

G(B(t)) +

∫ t

t0

Q(s)ds

]

(3.10)

Using (3.10) in (3.9) we get the required inequality in (2.10).

4. Applications

In this setction we present some model applications which display the importance of

our results to the literature. Consider the following Volterra integral equation involving

several retarded arguments

x(t) = f(t) +

∫ t

t0

F (t, s, x(s − h1(s)), . . . , x(s − hn(s)))ds (4.1)

where f ∈ C(I, R), F ∈ C(I ×Rn, R) and hi ∈ C1(I, R+1) be nonincreasing, t− hi(t) ∈

C1(I, I), hi(t0) = 0, t − hi(t) ≥ 0, h′

i(t) < 1 and

Mi = max
t∈I

1

1 − h′

i(t)
for i = 1, 2, . . . , n. (4.2)

The following theorem deals with estimate on the solution of equation (4.1).
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Theorem 4.1. Suppose that

|f(t)| ≤ c (4.3)

|F (t, s, u1, . . . , un)| ≤
n

∑

i=1

ki(t, s)|ui| (4.4)

where c and ki(t, s) are as in Theorem 1. If x(t) is any solution of (4.1), then

|x(t)| ≤ c exp

(
∫ t

t0

Q̄(s)ds

)

(4.5)

for t ∈ I where Q̄(t) is defined by the right hand side of (2.3), replacing ki(t, r) and αi(t)

by ki(t, r + hi(s))Mi and t − hi(t) respectively for t, r, s ∈ I in which Mi are given by

(4.2).

Proof. Let u(t) ∈ C(I, R) be a solution of (4.1). Then from (4.1), (4.3) and (4.4) we

have

|x(t)| ≤ c +

∫ t

t0

n
∑

i=1

ki(t, s)|x(s − hi(s)|ds (4.6)

for t ∈ I. By making the change of variables on the right hand side of (4.6) and using

(4.2) we have

|x(t)| ≤ c +

n
∑

i=1

∫ t0−hi(t)

t0−hi(t0)

ki(t, σ + hi(s))Mi|x(σ)|dσ (4.7)

for t ∈ I. Now a suitable application of the inequality given in Theorem 2.1, part (a1)

to (4.7) yields the required estimate in (4.5).

The next theorem deals with the uniquness of the solution of equation (4.1) by as-

suming that the function F satisfies the general Lipschitz condition.

Theorem 4.2. Suppose that the function F in (4.1) satisfies the condition

|F (t, s, u1, . . . , un) − F (t, s, v1, . . . , vn)| ≤

n
∑

i=1

ki(t, s)|ui − vi| (4.8)

where ki(t, s) are as in Theorem 2.1. Then (4.1) has atmost one solution on I.

Proof. Let u(t) and v(t) be two solution of (4.1) on I, then we have

u(t) − v(t) =

∫ t

t0

{F (t, s, u(s− h1(s)), . . . , u(s − hn(s)))

−F (t, s, v(s − h1(s)), . . . , v(s − hn(s)))}ds. (4.9)
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Using (4.8) in (4.9), making the change of variables and using (4.2) we have

|u(t) − v(t)| =

∫ t

t0

n
∑

i=1

ki(t, s)|u(s − hi(s)) − v(s − hi(s))|ds

≤

n
∑

i=1

∫ t−hi(t)

t0

ki(t, σ + hi(s))Mi|u(σ) − v(σ)|dσ (4.10)

for t ∈ I. A suitable application of the inequality given in Theorem 2.1, part (a1) to

(4.10) yields |u(t)− v(t)| ≤ 0. Therefore u(t) = v(t), i.e. there is at most one solution to

(4.1) on I.
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