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NEW PROOFS OF MONOTONICITIES OF GENERALIZED

WEIGHTED MEAN VALUES

CHAO-PING CHEN AND FENG QI

Abstract. Two new proofs of monotonicities with either r, s or x, y of the generalized weighted

mean values Mp,f (r, s; x, y) are given.

1. Introduction

Let x, y, r, s ∈ R, let p 6= 0 be a nonnegative and integrable function and f a positive

and integrable function on the interval between x and y. Then the generalized weighted

mean values Mp,f(r, s; x, y) of function f with nonnegative weight p and two parameters

r and s are defined in [4, 6] as follows

Mp,f (r, s; x, y) =

(

∫ y

x p(u)fs(u)du
∫ y

x p(u)f r(u)du

)1/(s−r)

, (r − s)(x − y) 6= 0; (1)

Mp,f (r, r; x, y) = exp

(

∫ y

x p(u)f r(u) ln f(u)du
∫ y

x
p(u)f r(u)du

)

, x − y 6= 0; (2)

M(r, s; x, x) = f(x).

In [4, 12], using Tchebycheff’s integral inequality, it was proved that, if p 6≡ 0 is a

nonnegative and continuous function, f a positive, monotonic and continuous function,

then Mp,f(r, s; x, y) increases with both r and s strictly.

In [13], from Cauchy-Schwarz-Buniakowski inequality, it follows that, the generalized

weighted mean values Mp,f(r, s; x, y) are increasing strictly with both r and s for any

given continuous nonnegative weight p and continuous positive function f .

In [3], it was verified that the generalized weighted mean values Mp,f (r, s; x, y) have

the same monotonicity with x and y as the continuous positive function f for any con-

tinuous nonnegative weight p.
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In [11], another two proofs of monotonicity of variables x and y for the generalized
weighted mean values Mp,f (r, s; x, y) are given.

Recently, in [1], a new proof of monotonicity of the generalized weighted mean values
was given.

The concepts of the generalized weighted mean values Mp,f(r, s; x, y) are further
generalized to the generalized abstract mean values in [3].

Applications of the generalized weighted mean values Mp,f (r, s; x, y) to theory of
convex function, to constructing Steffensen pairs, and to theory of gamma functions are
researched in [2, 5, 8, 9, 10]. For further information, please see the expository article
[7].

In this short note, we will give by double integral method two new proofs of mono-
tonicities with either x, y or r, s of the generalized weighted mean values Mp,f(r, s; x, y)
stated as follows.

Theorem 1. Let p and f be nonconstant continuous positive functions defined on

the interval between x and y, then the generalized weighted mean values Mp,f(r, s; x, y)
are increasing strictly with respect to both r and s.

Theorem 2. Let p and f be continuous positive functions defined on R. If f is

increasing (decreasing), then the generalized weighted mean values Mp,f (r, s; x, y) are

also increasing (decreasing) with respect to both x and y.

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Since the generalized weighted mean values Mp,f(r, s; x, y)
are symmetric on r and s, it suffices to prove its monotonicity of Mp,f(r, s; x, y) with
respect to s for fixed r. Without loss of generality, assume x < y. Taking logarithm on
the both sides of (1), we have

lnMp,f (r, s; x, y) =
1

s − r
ln

(

∫ y

x p(u)fs(u)du
∫ y

x p(u)f r(u)du

)

. (3)

Differentiating with respect to s on both sides of (3) and rearranging leads to

φ(r, s; x, y)
∆
=

(s − r)2

Mp,f (r, s; x, y)

∂Mp,f(r, s; x, y)

∂s

=
(s − r)

∫ y

x p(u)fs(u) ln f(u)du
∫ y

x p(u)fs(u)du
− ln

(

∫ y

x p(u)fs(u)du
∫ y

x p(u)f r(u)du

)

. (4)

The function φ(r, s; x, y) has the same sign as
∂Mp,f (r,s;x,y)

∂s . Furthermore, direct com-
puting and rearranging yields

∂φ(r, s; x, y)

(s − r)∂s
=

∫ y

x p(u)fs(u)(ln f(u))2du
∫ y

x p(u)fs(u)du−(
∫ y

x p(u)fs(u) ln f(u)du)2

(
∫ y

x p(u)fs(u)du)2
(5)
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∆
=

I

(
∫ y

x
p(u)fs(u)du)2

.

The term I can be expressed by double integral as follows

I =

∫ y

x

p(u)fs(u)(ln f(u))2du

∫ y

x

p(v)fs(v)dv

−

∫ y

x

p(u)fs(u) ln f(u)du

∫ y

x

p(v)fs(v) ln f(v)dv (6)

=

∫ y

x

∫ y

x

p(u)p(v)fs(u)fs(v)[(ln f(u))2 − ln f(u) ln f(v)]dudv.

Commuting between u and v, we obtain

I =

∫ y

x

∫ y

x

p(v)p(u)fs(v)fs(u)[(ln f(v))2 − ln f(v) ln f(u)]dudv. (7)

Adding (6) and (7), we have

I =
1

2

∫ y

x

∫ y

x

p(v)p(u)fs(v)fs(u)[(ln f(u))2 +(ln f(v))2−2 ln f(u) ln f(v)]dudv > 0. (8)

Combination of (5) and (8) impleis that the function ∂φ(r,s;x,y)
∂s has a zero s0 = r uniquely,

and then ∂φ(r,s;x,y)
∂s is negative for s < r and positive for s > r, therefore φ(r, s; x, y) takes

its minimum φ(r, r; x, y) = 0 at s = r, this is equivalent to
∂Mp,f (r,s;x,y)

∂s > 0 for s 6= r.
Hence the generalized weighted mean values Mp,f (r, s; x, y) increases with respect to s

strictly. So does Mp,f (r, s; x, y) with respect to r, since Mp,f (r, s; x, y) = Mp,f (s, r; x, y).

Proof of Theorem 2. Since the generalized weighted mean values Mp,f(r, s; x, y)
are symmetric with respect to variables x and y, it suffices to prove its monotonicity of
Mp,f(r, s; x, y) with respect to y for fixed x. Without loss of generality, assume r < s. A
simple calculation yields

∂ lnMp,f(r, s; x, y)

∂y
=

p(y)

s − r

(

fs(y)
∫ y

x
p(u)fs(u)du

−
f r(y)

∫ y

x
p(u)f r(u)du

)

. (9)

Define for t ∈ R

J(t) =
f t(y)

∫ y

x p(u)f t(u)du
. (10)

Then we have

J ′(t) =
f t(y)

∫ y

x
p(u)f t(u)[ln f(y) − ln f(u)]du

(
∫ y

x p(u)f t(u)du)2
. (11)

It is easy to see that, if f is increasing, then J ′(t) is nonnegative, so is
∂ ln Mp,f (r,s;x,y)

∂y .
Thus lnMp,f (s, r; x, y), and Mp,f (s, r; x, y), increases with respect to y. If f is de-

ceasing, then J ′(t) is nonpositive, so is
∂ ln Mp,f (r,s;x,y)

∂y , and then lnMp,f (s, r; x, y), and
Mp,f(s, r; x, y), decreases with respect to y.
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The similar argument can be applied to the variable x, since Mp,f(r, s; x, y) = Mp,f

(r, s; y, x).
The proof is complete.
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