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Abstract. Before 1976, all record-broken computation for the digits of π completely depended

on arctangent-type identities; of them the most celebrated is John Machin’s identity π

4
=

4 tan−1( 1

5
)− tan−1( 1

239
), discovered in 1706. But, in 1976, Eugene Salamin moved in a powerful

heavy artillery. The method is an adaptation of an algorithm discovered by Gauss for the eval-

uation of elliptic integrals. Then, a new era comes. In 1983, Y. Kanada, Y. Tanura, S. Yoshino

and Y. Ushiro used Gauss-Legendre-Brent-Salamin algorithm to calculate π to 224 (16,777,216)

decimal places on a HITAC M-280H supercomputer and used an FFT-based fast multiplication.

In this article, we present an easy-to-understand explanation of this amazing method.

In 1976, Eugene Salamin of Stanford, California, published in Mathematics of Com-

putation an ingenious, quadratically converging algorithm for the calculation of π [10].
Quadratically converging means the number of significant figures doubles after each step.
The method is an adaptation of an algorithm discovered by Gauss for the evaluation of
elliptic integrals.

The complete elliptic integrals of the first and second kinds are defined by

K(k) =

∫ π

2

0

dt
√

(1 − k2 sin2 t)
(1)

and

E(k) =

∫ π

2

0

√

(1 − k2 sin2 t)dt.

It k2 + k′2 = 1, then K(k′) = K ′(k), and E(k′) = E′(k) are also elliptic integrals, and
they satisfy Legendre’s relation:

K(k)E′(k) + K ′(k)E(k) − K(k)K ′(k) =
π

2
. (2)

If {an} is a convergent sequence with limit L, and if there exists a constant C, such
that

|an − L| ≤ C|an − L|2
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for all n, then the sequence {an} is said to converge quadratically to L.
Consider a triple of positive nubmers (a0, b0, c0) satisfying a2

0 = b2
0 + c2

0. We pro-
ceed to determine number triples (a1, b1, c1), (a2, b2, c2), . . . , (aN , bN , cN) according to
the following scheme of arithmetic-geometric means:

a0 b0 c0

a1 =
1

2
(a0 + b0) b1 =

√

(a0b0) c1 =
1

2
(a0 − b0)

a2 =
1

2
(a1 + b1) b2 =

√

(a1b1) c2 =
1

2
(a1 − b1)

· · · · · · · · ·

aN =
1

2
(aN−1 + bN−1) bN =

√

(aN−1bN−1) cN =
1

2
(aN−1 − bN−1)

As a consequence of the arithmetic-geometric mean inequality one has an ≥ an+1 ≥
bn+1 ≥ bn for all n. It follows that {an} and {bn} converge to a common limit, usually
denoted by agm(a0, b0).

Because of the definition of the c’s above one easily obtains

cn+1 =
1

2
(an − bn) =

c2
n

4an+1
≤ c2

n

4agm(a0, b0)
,

and we see that the sequence {cn} converges quadratically to zero.
In calculations one stops at the Nth step, when aN = bN , i.e., when cN = 0 to the

desired degree of accuracy.
The substitution k2 → a2−b2

a2 , a > b shows that equation (1) can, apart from a
constant factor, be put into the form

I(a, b) =

∫ π

2

0

dt
√

(a2 cos2 t + b2 sin2 t)
. (3)

The substitution u = b tan t transforms (3) into the integral

I(a, b) =
1

2

∫ 0

−∞

du
√

(a2 + u2)(b2 + u2)
.

The substitution v = 1
2 (u− ab

u
) and some straightforward but elaborate work shows that

I(a, b) = I

((

a + b

2

)

,
√

ab

)

.

This remarkable result, due to Gauss [6], shows that I(an, bn) is independent of n

and that, interchanging the limit and the integral,

I(a0, b0) = lim
n→∞

I(an, bn) = I(agm(a0, b0), agm(a0, b0)).
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The last integral is elementary and we have

I(a0, b0) =
π

2agm(a0, b0)
.

With a0 = 1, b0 = cosα, c0 = sin α, and K(α) for K(sinα) one has, to the desired

degree of accuracy,

K(α) =
π

2aN

, (4)

K(α) − E(α)

K(α)
=

1

2
[c2

0 + 2c2
1 + 22c2

2 + · · · + 2Nc2
N ]. (5)

Also with a′
0 = 1, b′0 = sinα, c′0 = cosα,

K ′(α) =
π

2a′
N

, (6)

K ′(α) − E′(α)

K(α)
=

1

2
[c′20 + 2c′21 + 22c′22 + · · · + 2Nc′2N ]. (7)

Salamin’s idea was to evaluate each of the elliptic integrals in Legendre’s relation (2)

by Gauss’s arithmetic-geometric mean, equations (4) to (7), and then solve for π!

With k and k′ as defined before, i.e., k2 + k′2 = 1, then

π =
4agm(1, k)agm(1, k′)

1 −
∑∞

j=1 2j(c2
j + c′2j )

. (8)

With the symmetric choice k = k′ = 1√
2
, (8) becomes

π =
4
(

agm
(

1, 1√
2

))2

1 −∑∞
j=1 2j+1c2

j

.

A number of significant improvements on Salamin’s original approcah have been

achieved by the Canadian brothers Jonathan M. Borwein and Peter B. Borwein. Their

results can be summarized as follows [1, 2, 3, 4]:

Algorithm 1.

Let α0 =
1

2
, y0 =

1√
2
, yn+1 =

1 −
√

1 − y2
n

1 +
√

1 − y2
n

, and αn+1 = (1 + yn+1)
2αn − 2n+1yn+1.

Then 0 < αn − 1

π
≤ 16 · 2n

e2nπ
, i.e., αn converges quadratically to

1

π
.

Algorithm 2.

Let α0 = 6 − 4
√

2, y0 =
√

2 − 1, yn+1 =
1 − 4

√

1 − y4
n

1 + 4

√

1 − y4
n

,



308 CHIEN-LIH HWANG

and αn+1 = (1 + yn+1)
4αn − 22n+3yn+1(1 + yn+1 + y2

n+1).

Then 0 < αn − 1

π
≤ 16 · 4n

e2·4nπ
, i.e., αn converges quartically to

1

π
.

Algorithm 3.

Let s0 = 5(
√

5 − 2), α0 =
1

2
, and sn+1 =

25
(

z + x
z

+ 1
)2

sn

,

where x =
5

sn

− 1, y = (x − 1)2 + 7, z = 5

√

[

1

2
x
(

y +
√

y2 − 4x3
)

]

.

Let αn+1 = s2
nαn − 5n

[

s2
n − 5

2
+
√

sn(s2
n − 2sn + 5)

]

.

Then 0 < αn − 1
π
≤ 16 · 5n

e5nπ
, i.e., αn converges quintically to

1

π
.

Note that, for four iterations, algorithm 1 gives 19 digits of π, algorithm 2 gives 694
digits of π, algorithm 3 gives 848 digits of π.

The simplicity and power of algorithm 2 has led the Borweins to term it “the most
efifcient algorithm currently known for the extended precision calculation of pi.” Thirteen
iterations of it yield in excess of one billion decimal places of π!

The underlying mathematics behind these algorithms is far from simple. They all
rely heavily on some pioneering work of Ramanujan on the solution of modular equa-
tions by methods which have yet to be fully understood. Mathematicians have verified
the correctness of some of Ramanujan’s results in this area with recourse to advanced
techniques of group theory or even with the use of sophisticated algebraic manipulation
packages, such as MACSYMA, which were clearly unavailable to him. The natural and
evidently ingenious methods Ramanujan possessed remain still to be rediscovered.

Modular equations, Jacobian elliptic functions, elliptic integrals and the arithmetic-
geometric mean are all intimately connected. These connections are explained in con-
siderable detailed in Borwein and Borwein’s book Pi and the AGM – A Study in Ana-

lytic Number Theory and Computational Complexity, Wiley, N. Y., 1987. The reader is
warned, though, that this is not a book for beginners. A considerable familiarity with
the theory of analytic functions of a complex variable is assumed.

If an and bn designate the reciprocals of the perimeters of the circumscribed and
inscribed regular 6 · 2n-gons about a circle of diameter 1, then a0 = 1

2
√

3
, b0 = 1

3 and the
Archimedean iteration may be put in the form

an+1 =
1

2
(an + bn) and bn+1 =

√

(an+1bn). (9)

This fact was first noticed by Johann Friedrich Pfaff (1765-1825) in 1800.
Equations (9) are remarkably similar to the arithmetic-geometric mean iteration

an+1 =
1

2
(an + bn), bn+1 =

√

(anbn). (10)
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Nonetheless, (10) is, as we have seen, quadratically convergent while (9) gives linear
convergence.
The arithmetic-geometric mean is homogeneous, i.e.,

agm(λa, λb) = λagm(a, b). (11)

There is no restriction, then, in setting a = 1.
The arithmetic-geometric mean satisfies the equation

agm(a, b) = agm

(

a + b

2
,
√

ab

)

,

or, in view of (11), the equation

agm(1, b) =
1 + b

2
agm

(

1,
2
√

b

1 + b

)

. (12)

This shows that solving (12) is equivalent to finding a function f(x) that satisfies the
equation

f(x) =
1 + x

2
f

(

2
√

x

1 + x

)

.

Since the complete elliptic integral of the first kind is related to the arithmetic-geometric
mean through equation (4), we see that K(x) satisfies the functional equation

K(x) =
1

1 + x
K

(

2
√

x

1 + x

)

. (13)

If we assume [8] that, apart from the multiplicative constant π
2 , K(x) admits the series

expansion K(x) = 1 + k1x
2 + k2x

4 + · · ·, then (13) gives

K(x) =
1

1 + x
+

4k1x

(1 + x)3
+

16k2x
2

(1 + x)5
+ · · ·

The relation between the coefficients can now be obtained by means of the array

1 −1 1 −1 1

4k1 −4k1·3 4k1 ·6 −4k1·10

16k2 −16k2 ·5 16k2·15
64k3 −64k3·7

256k4

1 0 k1 0 k2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

They give K(x) = 1 + (1
2 )2x2 + (1·3

2·4 )2x4 + (1·3·5
2·4·6 )2x6 · · ·, which is recognized as Gauss’s

hypergeometric function:

K(k) =

∫ π

2

0

dt
√

(1 − k2 sin2 t)
=

π

22
F1

(

1

2
,
1

2
; 1; k2

)

, (14)
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and provides a link between the arithmetic-geometric mean and the hypergeometric func-

tion. (14) may be obtained directly by expanding the radical in the integrand by Newton’s
binomial theorem and integrating term by term [9].

In 1989, Gregory V. and David V. Chudnovsky of Columbia University carried the
tail of π to 1,011,196,691 decimal places. They used a CRAY 2 at the Minnesota Su-

percomputer Center and an IBM 3090 at the Thomas J. Watson Research Center in
Yorktown Heights, New York [5]. The programming was done in ordinary FORTRAN,

and their calculations were made in batch mode, in a environment shared by many users.
Their algorithm is based on a series of the same type as Ramanujan’s

1

π
=

√
8

9801

∞
∑

n=0

(4n)!

(n!)4
(1, 103 + 26, 390n)

3964n
,

and it is given by:

1

π
=

1

426, 880
√

10, 005

∞
∑

n=0

(−1)n(6n)!

(n!)3(3n)!

(13, 591, 409 + 545, 140, 134n)

640, 3203n
. (15)

For purposes of calculation they put series (15) in the form

426, 880
√

10, 005

π
= b − 1

1

3

1

5

1
e

(

a + b − 7

2

9

2

11

2
e

(

2a + b − 13

3

15

3

17

3
e (3a + b − · · · (16)

with a = 545, 140, 134, b = 13, 591, 409, and e = (320, 160)−3.
Summing this series to N terms determines π to 14.18N decimal places. This series

is related to the quadratic field Q(
√
−163), which is the largest-one-class imaginary

quadratic field, and it is the one with the most rapidly converging right-hand side in

which every summand is a rational number. In other words, of all the series which
converge to 1

π
, series (16) is the most rapidly converging one all of whose summands are

rational numbers.
This rationality became a crucial issue for the Chudnovsky brothers for they regard

the series as the expansion of a number in radix 640, 320−3. The coefficients in that base
are all integers.

Operating in the integers modulo p for a prime p that does not divide 640,320, the
Chudnovsky brothers made use of the relationship:

N
∑

n=0

(−1)n(6n)!

(n!)3(3n)!

(13, 591, 409 + 545, 140, 134n)

640, 3203n
≡ 0(modp)

which holds for primes p in the range from N to 6N .
These congruences, together with other specialized congruences, known as p-adic

relations, permitted them to check the correctness of their calculation as they proceeded.
These checks assured them that the probability of an uncorrected error at any step was

less than 10−290.
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On 20th September, 1999, Yasumasa Kanada and Daisuke Takahashi, with a HI-

TACHI SR8000 at the University of Tokyo, using Gauss-Legendre-Brent-Salamin algo-
rithm as the main program and Borwein’s 4-th order convergent algorithm as the veri-

fication program, arrived to the incredible boundary of 206,158,430,000 decimal places.
The elapsed time was 37 hours and 21 minutes.

There exists another extraordinary series of Ramanujan,

1

π
=

∞
∑

n=0

(

2n

n

)3
42n + 5

212n+4
.

The numerators of this series grow like 26n, and the denominators are exactly 16 · 212n.

This fact can be used to calculate the second block of n binary digit of π without
calculating the first n binary digit. This interesting observation, due to Holloway [4],

results, unfortunately, in no reduction in complexity.
Philip J. Davis, of Brown University, mentioned the following anecdote in private

communication to Daŕıo Castellanos: Davis asked Daniel Shanks of the University of
Maryland, who, it will be remembered, together with John W. Wrench, Jr., did the first

calculation of π with 100,000 places in 1961, the question of how many operations were
needed to calculate π to n places? On the basis of his answer, Shanks predicted that

mankind would never see one billion digits of π. We have seen this prediction fall with
the Chinese proverb to the effect that it is silly to make predictions, especially with regard

to the future.
Peter B. Borwein has now put forward the conjecture [7] that mankind will never

know the 101000th digit of π. The only way to know that digit – he reasons – would be
to compute all the digits that come before. And since, all told, the universe does not
contain that many electrons, the project – he says – seems unlikely to succeed.

Will Borwein’s mark be toppled too?
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