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ON THE FIRST PROLONGATIONAL LIMIT SET

OF FLOWS OF FREE MAPPINGS

ZBIGNIEW LEŚNIAK

Abstract. We consider an equivalence relation defined for a given flow of the plane which has no fixed points. We

prove that the first prolongational limit set of every point from the boundary of an equivalence class is contained in

the boundary of this class. Moreover, if two points lying on two different boundary orbits of a class are contained in

the same component of the complement of an orbit of this class, then each of these two points is contained in the

first prolongational limit set of the other one.

1. Introduction

We assume that f is a free mapping, i.e. a homeomorphism of the plane onto itself without

fixed points which preserves orientation. We consider a relation in R
2 defined in the following

way:

p ∼ q if p = q or p and q are endpoints of some arc K for which f n(K )→∞ as n →±∞.

By an arc K with endpoints p and q we mean the image of a homeomorphism c : [0,1] →

c([0,1]) satisfying conditions c(0) = p, c(1) = q , where the topology on c([0,1]) is induced by

the topology of R2. It turns out that the relation defined above is an equivalence relation (see

[5]) and has the same equivalence classes as the relation defined by S. Andrea in [1].

From now on we assume that f is embeddable in a flow { f t : t ∈ R}. It follows from the

Jordan theorem that each orbit C of { f t : t ∈ R} divides the plane into two simply connected

regions. Note that each of them is invariant under f t for t ∈ R. Thus two different orbits Cp

and Cq of points p and q , respectively, divide the plane into three simply connected invariant

regions, one of which contains both Cp and Cq in its boundary. We will call this region by the

strip between Cp and Cq and denote by Dpq .

For any distinct orbits Cp1 , Cp2 , Cp3 of { f t : t ∈ R} one of the following two possibilities

must be satisfied: exactly one of the orbits Cp1 , Cp2 , Cp3 is contained in the strip between

the other two or each of the orbits Cp1 , Cp2 , Cp3 is contained in the strip between the other

two. In the first case if Cp j
is the orbit which lies in the strip between Cpi

and Cpk
we will

write Cpi
|Cp j

|Cpk
(i , j , k ∈ {1,2,3} and i , j , k are different). In the second case we will write

|Cpi
,Cp j

,Cpk
| (see [3]).
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Put
J+(q) := {p ∈R

2 : there exist a sequence(qn)n∈N and a sequence

(tn)n∈N such that qn → q, tn →+∞, f tn (qn) → p

as n →+∞},

J−(q) := {p ∈R
2 : there exist a sequence(qn)n∈N and a sequence

(tn)n∈N such that qn → q, tn →−∞, f tn (qn) → p

as n →+∞}.

The set J (q) := J+(q)∪ J−(q) is called the first prolongational limit set of q . Let us observe

that p ∈ J (q) if and only if q ∈ J (p) for any p, q ∈R
2. For a subset H ⊂R

2 we define

J (H) :=
⋃

q∈H

J (q).

One can observe that for each p ∈R
2 the set J (p) is invariant.

In this paper we study the structure of the first prolongational limit set J (R2) of a flow of

free mappings. To this end we use equivalence classes of the equivalence relation defined

above. These results can be useful in finding maximal parallelizable domains of such flows,

because the boundary of each maximal parallelizable domain is contained in J (R2) (see [9]).

Now we collect the results from [5], [6], [7] and [8] which are needed in our considerations.

Proposition 1.1 (see [5]) Each equivalence class is invariant under f t for t ∈R. In particu-

lar, each orbit of { f t : t ∈R} is contained in exactly one equivalence class of the relation ∼.

Proposition 1.2. (see [8]) The boundary of each equivalence class is a union of a family of

orbits. In particular, the boundary of each class is invariant.

Proposition 1.3. (see [7]) If q ∈ intG0 for an equivalence class G0, then q 6∈ J (R2), i.e. J (q) =

;.

Proposition 1.4. (see [6]) Let p ∈ frG0 and q ∈G0 \Cp for an equivalence class G0. Let K be

an arc with endpoints p and q such that K \{p, q} ⊂ Dpq and Cp |Cr |Cq for every r ∈K \{p, q}.

Then r ∈G0 for every r ∈ K \ {p}. Moreover, Cp |Cs |Cq for every s ∈ Dpq ∩G0.

Proposition 1.5. (see [6]) Let p ∈ frG0 for an equivalence class G0. Then for every class G

such that G \Cp 6= ; the set clG \Cp is contained in exactly one of the components of R2 \Cp .

Proposition 1.6. (see [8]) Let C1, C2 be any orbits of { f t : t ∈R}. If C1, C2 are contained in

an equivalence class, then each point of the strip between C1 and C2 belongs to the interior of

this class.

Proposition 1.7. (see [5]) For any orbit C1, C2, C3 of { f t : t ∈ R}, if |C1,C2,C3|, then C1, C2,

C3 cannot be contained in the same equivalence class of ∼.

2. First Prolongational Limit Set of a Boundary Point of a Class
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In this section we prove that the first prolongational limit set of every point from the

boundary of a class is contained in the boundary of this class.

Theomrem 2.1. Let G0 be an equivalence class which does not consist of just one orbit.

Let H0 the component of R2 \ Cp which contains clG0 \ Cp . Assume that p ∈ frG0, q ∈ H0 and

q ∈ J (p). Then q ∈ clG0.

Proof. Denote by L the straight line segment with endpoints q and p. Let p0 be the first

point of L belonging to Cp . Then by Proposition 1.2 we have p0 ∈ frG0. Moreover, p0 ∈ J (q),

since p0 ∈Cp , p ∈ J (q) and J (q) is invariant. Let L0 denote the subsegment of L having q and

p0 as its endpoints.

Let q0 be the first point of L0 belonging to clG0. Such a point q0 exists on account of

the Weierstrass theorem, since L0 ∩ clG0 is a compact set. Now we will prove that q0 ∈ frG0.

If s ∈ L0 ∩ intG0, then there exists a ball B(s,ε) centered at s with a radius ε > 0 such that

clB(s,ε) ⊂ intG0. Hence s cannot be the first point of L0 belonging to clG0, and consequently

s 6= q0. Thus q0 ∈ frG0, since q0 ∈ L0 ∩clG0 and s 6= q0 for all s ∈ L0 ∩ intG0.

Now we will show that q0 6∈Cp , i.e. q0 6= p0. On account of the Whitney-Bebutov theorem

(see [2], p. 52) there exists a neighbourhood V1 of p which is a union of orbits such that { f t |V1 :

t ∈ R} is conjugate with the flow of translations, i.e. there exists a homeomorphism ψ : V1 →

(−∞,+∞)× (−1,1) such that ψ(p) = (0,0) and for every orbit C contained in V1 the image of

C under ψ is a horizontal straight line in the open set (−∞,+∞)× (−1,1). Then J (V1)∩V1 =;

(see [2], p. 46 and 49), and consequently q 6∈V1.

Since p ∈ frG0 and G0 does not consist of just one orbit, there exists a point r1 ∈ V1 ∩ H0

such that r1 ∈ G0. Let K1 be a section of V1 passing through p0 and r1 (as K1 we can take the

preimage of the straight line containing ψ(p0) and ψ(r1)). Then by Proposition 1.4, s ∈G0 for

every s ∈ K1 ∩Dr1 p . Hence by Proposition 1.1 we have V1 ∩Dr1p ⊂G0. Let B1 be the preimage

of a closed ball with center at ψ(p0) contained in (−∞,+∞)× (−1,1) which has no common

point with (−∞,+∞)× {ψ(r1)}. Then B1 ∩ H0 ⊂ V1 ∩Dr1 p and frB1 is a Jordan curve having

exactly two common points with Cp . Denote these points by z1 and z2.

Since q 6∈ V1 and B1 ⊂ V1, we have q 6∈ B1. Hence the endpoint q of L0 lies outside of

the Jordan curve fr B1, whereas the second endpoint p0 of L0 lies inside of frB1. Thus by the

Jordan Theorem there exists a point x1 ∈ L0 ∩ frB1. By the fact that p0 is the only point of L0

belonging to Cp , we have x1 6= z1 and x1 6= z2. Since L0 ⊂ cl H0, the point x1 belongs to the arc

of frB1 having z1 and z2 as its endpoints which is contained in cl H0. Since every point of this

arc different from z1 and z2 belongs to V1 ∩Dr1p and V1 ∩Dr1p ⊂ G0, we have x1 ∈G0. Hence

q0 belongs to the subarc of L0 having q and x1 as its endpoints, since q0 is the first point of L0

belonging to clG0. Thus q0 6∈Cp , and consequently q0 ∈ clG0 \Cp .

Now we show that q = q0. Suppose, on the contrary, that q 6= q0. Since q0 ∈ frG0, we have

by Proposition 1.5 that the set clG0 \ Cq0 is contained in exactly one of the components of

R
2 \Cq0 . Denote this component by F0. In particular, p ∈ F0, since q0 6∈Cp . In the same way as

before we can find a neighbourhood V2 of q0 which is a union of orbits such that { f t |V2 : t ∈R}

is conjugate with the flow of translations and a homeomorphic preimage B2 of a closed ball

such that B2 ∩F0 ⊂ V2 ∩Dr2q0 ⊂ G0 for some r2 ∈V2 ∩F0 ∩G0, q0 ∈ int B2, q 6∈ B2 and frB2 is a

Jordan curve having exactly two common points with Cq0 . Denote these points by y1 and y2.



266 ZBIGNIEW LEŚNIAK

Denote by L1 the subarc of L0 having q and q0 as its endpoints. By the Jordan Theorem,

there exists a point x2 ∈ L1 ∩ frB2. It follows from Propositions 1.1 and 1.2 that clG0 is a union

of orbits. Hence by the fact that y1, y2 ∈ Cq0 , we have y1, y2 ∈ clG0. Since q0 is the only point

of L1 belonging to clG0 and q0 ∈ int B2, we have x2 6= y1 and x2 6= y2. Moreover, the point q0 is

the first point of L1 belonging to Cq0 , since it is the first point of L1 belonging to clG0. Hence

L1 \ {q0} is contained in one of the components of R2 \ Cq0 . By the definition of J (p) we have

J (p) ⊂ F0 ∪Cq0 . Since p ∈ F0 and F0 is invariant, we get from the assumption q ∈ J (p) that

q ∈ F0 ∪Cq0 . Consequently L1 \ {q0} ⊂ F0. Hence x2 ∈ K2 \ {y1, y2}, where K2 is the arc of frB2

having y1 and y2 as its endpoints which is contained in F0. Since this arc is a subset of G0,

we have x2 ∈G0. But this contradicts the fact that q0 is the first point of L1 belonging to clG0.

Thus q = q0, and consequently q ∈ clG0.

Corollary 2.2. Let G0 be an equivalence class which does not consist of just one orbit. Let

H0 be the component of R2 \ Cp which contains clG0 \ Cp . Assume that p ∈ frG0, q ∈ H0 and

q ∈ J (p). Then q ∈ frG0.

Proof. By Theorem 2.1, we have that q ∈ clG0. On account of Proposition 1.3 the point q

cannot belong to intG0. Thus q ∈ frG0.

3. Properties of Boundary Orbits

In this section we prove that if two points lying on two different boundary orbits of a class

are contained in the same component of the complement of an orbit of this class, then each

of these two points is contained in the first prolongational limit set of the other one.

Proposition 3.1. Let G0 be an equivalence class which does not consist of just one orbit. Let

p ∈ frG0, q ∈ frG0 and Cp 6=Cq . Assume that p and q belong to the same component of R2 \Cr0

for an r0 ∈G0. Then p and q belong to the same component of R2 \Cr for every r ∈ intG0.

Proof. Fix an r ∈ intG0 \Cr0 . Denote by H0 the component of R2 \Cr0 which contains p and

q . If r 6∈ H0, then p and q belong to the component of R2 \Cr which contains r0. Now assume

that r ∈ H0. Then by Proposition 1.6 neither p nor q belongs to Dr r0 , since p 6∈ intG0 and

q 6∈ intG0. Thus p and q belong to the same component of R2 \Cr , since p, q ∈ H0 \(Dr r0 ∪Cr ).

Theorem 3.2. Let G0 be an equivalence class which does not consist of just one orbit. Let

p ∈ frG0, q ∈ frG0 and Cp 6=Cq . Assume that p and q belong to the same component of R2 \ Cr

for an r ∈G0. Then p ∈ J (q).

Proof. First we prove that p 6∈ G0 and q 6∈ G0. Suppose, on the contrary, that one of the

points p, q belongs to G0. Let p ∈ G0. By Proposition 1.5, q and r are contained in the same

component of R2 \ Cp . On the other hand, by our assumption, q and p are contained in the

same component of R2 \ Cr . Thus q ∈ Dpr . Hence by Proposition 1.6 q ∈ intG0, since p ∈ G0.

But this contradicts the assumption that q ∈ frG0.

On account of the Whitney-Bebutov theorem (see [2], p. 52) there exists a neighbour-

hood V1 of p which is a union of orbits such that { f t |V1 : t ∈ R} is conjugate with the flow of
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translations, i.e. there exists a homeomorphism ψ1 of V1 onto (−∞,+∞)× (−1,1) such that

ψ1(p) = (0,0) and for every orbit C contained in V1 the image of C under ψ1 is a horizontal

straight line in the open set (−∞,+∞)× (−1,1). Without loosing of generality we can assume

that r 6∈ V1. Since p ∈ frG0, there exists a point s1 ∈V1 such that s1 ∈G0. Then by Proposition

1.5 s1 and r are contained in the same component of R2 \Cp .

Take as K0 the image under ψ−1
1 of the segment in (−∞,+∞)×(−1,1) from ψ1(s1) to ψ1(p).

Then K0 has just one common point with every orbit contained in Dps1 ∩V1, K0 \{p, s1} ⊂ Dps1

and Cp | Cx | Cs1 for all x ∈ K0 \ {p, s1}. Then by Proposition 1.4 we have K0 \ {p} ⊂ G0. In the

same way we can find a neighbourhood V2 of q which is a union of orbits such that { f t |V2 :

t ∈ R} is conjugate with the flow of translations and r 6∈ V2, a point s2 ∈ V2 ∩G0 and an arc L0

from s2 to q such that L0 has just one common point with every orbit contained in Dqs2 ∩V2,

L0 \ {q, s2} ⊂ Dqs2 and L0 \ {q} ⊂G0.

Fix ε1,ε2 > 0 such that cl B(p,ε1) ∩ cl B(q,ε2) = ;, s1, s2 6∈ cl B(p,ε1), s1, s2 6∈ clB(q,ε2),

clB(p,ε1)∩Cr = ;, clB(q,ε2)∩Cr = ;, clB(p,ε1)∩Cq = ; and clB(q,ε2)∩Cp = ;. Denote

by p0 the last point of K0 which belongs to frB(p,ε1) and let K1 be the subarc of K0 having p0

and p as its endpoints. Then K1 \ {p} ⊂G0 and K1 \ {p0} ⊂ B(p,ε1). Take a positive ε3 ≤ ε2 such

that cl B(q,ε3)∩Cp0 =;. Denote by q0 the last point of L0 which belongs to frB(q,ε3). Let L1

be the subarc of L0 having q0 and q as its endpoints. Then L1 \{q} ⊂G0 and L1 \{q0} ⊂ B(q,ε3).

On account of Proposition 1.7 the relation · | · | · holds for the orbits Cp0 ,Cq0 ,Cr , since

p0, q0,r ∈ G0. Suppose that Cp0 | Cq0 | Cr . Then cl B(q,ε3) ⊂ Dr p0 , since cl B(q,ε3)∩Cp0 = ;,

clB(q,ε3)∩Cr =; and q0 ∈ clB(q,ε3). Hence by Proposition 1.6 we have q ∈ intG0, which is

impossible. Consequently, Cq0 | Cp0 | Cr , since q0 and p0 belong to the same component of

R
2 \Cr .

From the definition of p0 and q0 it follows that p, q , p0 and q0 belong to the same compo-

nent of of R2 \ Cr . Suppose that p ∈ Dr q0 . Then by Proposition 1.6 we have p ∈ intG0, which

is impossible. Thus p 6∈ Dr q0 . Moreover, p 6∈ Cq0 , since p 6∈ G0 and q0 ∈ G0. Consequently p

belongs to the component of R2 \Cq0 which does not contain r . Thus p0 and p lies in different

components of R2 \ Cq0 , which means that Cp | Cq0 | Cp0 . In the same way we can show that

Cq |Cq0 |Cp0 . Hence L1 and p are contained in the same component of R2 \Cp0 . On the other

hand, by Proposition 1.5, L1 and p0 are contained in the same component of R2 \ Cp , since

L1 ⊂ clG0, p0 ∈G0 and q 6∈Cp . Thus L1 ⊂ Dpp0 .

Take a sequence (qn)n∈N such that qn → q as n →∞, qn 6= q and qn ∈ L1 for all n. Then

qn ∈ Dpp0 ∩G0, since L1 ⊂ Dpp0 and L1 \ {q} ⊂ G0. By Proposition 1.4 we have Cp0 | Cqn | Cp .

Hence Cqn ∩K1 6= ; for every n. Since K1 has at most one common point with each orbit, the

set Cqn ∩K1 consists of just one point for every n. Denote this point by pn . Thus there exists

a sequence (tn) such that pn = f tn (qn). Since clB(p,ε1)∩cl B(q,ε3) =;, we have K1 ∩L1 =;.

Hence either tn > 0 for all n or tn < 0 for all n. We assume without loosing of generality that

tn > 0 for all n.

Now we show that pn → p as n →∞. Fix an ε> 0. Let ε≤ ε1. Denote by z the last point of

K1 which belongs to frB(p,ε). Denote by K2 the subarc of K1 having z and p as its endpoints.

Then K2 \ {z} ⊂ B(p,ε). Let V3 := V2 ∩Hz , where Hz denotes the component of R2 \ Cz which

contains q . Since V3 is a neighbourhood of q and qn → q as n →∞, there exists an n0 such

that qn ∈V3 for all n > n0. In the same way as before (taking z instead of p0 and qn instead of
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q0) we get that Cz | Cqn | Cq and Cz | Cqn | Cp . Hence p ∈ Hz and consequently K2 = K1 ∩Hz .

Thus for all n > n0 we have pn ∈ K2, since Cqn ∈ Hz for all n > n0 and pn ∈Cqn . Hence by the

fact that K2 \ {z} ⊂ B(p,ε) we have pn ∈B(p,ε) for all n > n0.

To finish the proof we show that there exists a subsequence (tnk
) of the sequence (tn)

which tends to +∞ as nk →∞. Suppose, on the contrary, that there exists a positive integer

α such that tn ≤ α for all n. Denote by J the Jordan curve which is a union of L1, f α(L1),

the subarc of Cq0 with endpoints q0 and f α(q0) and the subarc of Cq with endpoints q and

f α(q). Let B := J ∪ ins J , where by ins J we mean the bounded component of R2 \ J . Then B is

a closed set and f tn (qn) ∈ B for every n. Hence by the fact that p = limn→∞ f tn (qn) we have

p ∈ B . But this is impossible, since B ⊂ G0 ∪Cq and (G0 ∪Cq )∩Cp = ;. Thus there exists a

subsequence (tnk
) of the sequence (tn ) such that limk→∞ tnk

= +∞. Hence limk→∞ qnk
= q

and limk→∞ f tnk (qnk
) = p, since limn→∞ qn = q and limn→∞ f tn (qn) = p. Consequently p ∈

J (q).
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[5] Z. Leśniak, On an equivalence relation for free mappings embeddeable in a flow, Internat. J. Bifur.

Chaos Appl. Sci. Engrg. 13(2003), 1911–1915.
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[8] Z. Leśniak, On parallelizability of flows of free mappings, Aequationes Math. 71(2006), 280–287.

[9] R. C. McCann, Planar dynamical systems without critical points, Funkcial. Ekvac. 13(1970), 67–95.

Institute of Mathematics, Pedagogical University, Podchora̧żych 2, 30-084 Kraków, Poland.
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