ON THE FIRST PROLONGATIONAL LIMIT SET OF FLOWS OF FREE MAPPINGS

ZBIGNIEW LEŚNIAK

Abstract

We consider an equivalence relation defined for a given flow of the plane which has no fixed points. We prove that the first prolongational limit set of every point from the boundary of an equivalence class is contained in the boundary of this class. Moreover, if two points lying on two different boundary orbits of a class are contained in the same component of the complement of an orbit of this class, then each of these two points is contained in the first prolongational limit set of the other one.

1. Introduction

We assume that f is a free mapping, i.e. a homeomorphism of the plane onto itself without fixed points which preserves orientation. We consider a relation in \mathbb{R}^{2} defined in the following way:
$p \sim q$ if $p=q$ or p and q are endpoints of some arc K for which $f^{n}(K) \rightarrow \infty$ as $n \rightarrow \pm \infty$. By an arc K with endpoints p and q we mean the image of a homeomorphism $c:[0,1] \rightarrow$ $c([0,1])$ satisfying conditions $c(0)=p, c(1)=q$, where the topology on $c([0,1])$ is induced by the topology of \mathbb{R}^{2}. It turns out that the relation defined above is an equivalence relation (see [5]) and has the same equivalence classes as the relation defined by S. Andrea in [1].

From now on we assume that f is embeddable in a flow $\left\{f^{t}: t \in \mathbb{R}\right\}$. It follows from the Jordan theorem that each orbit C of $\left\{f^{t}: t \in \mathbb{R}\right\}$ divides the plane into two simply connected regions. Note that each of them is invariant under f^{t} for $t \in \mathbb{R}$. Thus two different orbits C_{p} and C_{q} of points p and q, respectively, divide the plane into three simply connected invariant regions, one of which contains both C_{p} and C_{q} in its boundary. We will call this region by the strip between C_{p} and C_{q} and denote by $D_{p q}$.

For any distinct orbits $C_{p_{1}}, C_{p_{2}}, C_{p_{3}}$ of $\left\{f^{t}: t \in \mathbb{R}\right\}$ one of the following two possibilities must be satisfied: exactly one of the orbits $C_{p_{1}}, C_{p_{2}}, C_{p_{3}}$ is contained in the strip between the other two or each of the orbits $C_{p_{1}}, C_{p_{2}}, C_{p_{3}}$ is contained in the strip between the other two. In the first case if $C_{p_{j}}$ is the orbit which lies in the strip between $C_{p_{i}}$ and $C_{p_{k}}$ we will write $C_{p_{i}}\left|C_{p_{j}}\right| C_{p_{k}}(i, j, k \in\{1,2,3\}$ and i, j, k are different). In the second case we will write $\left|C_{p_{i}}, C_{p_{j}}, C_{p_{k}}\right|$ (see [3]).

[^0]Put

$$
\begin{aligned}
& J^{+}(q):=\left\{p \in \mathbb{R}^{2}: \text { there exist a sequence }\left(q_{n}\right)_{n \in \mathbb{N}}\right. \text { and a sequence } \\
&\left(t_{n}\right)_{n \in \mathbb{N}} \text { such that } q_{n} \rightarrow q, t_{n} \rightarrow+\infty, f^{t_{n}}\left(q_{n}\right) \rightarrow p \\
&\text { as } n \rightarrow+\infty\}, \\
& J^{-}(q):=\left\{p \in \mathbb{R}^{2}: \text { there exist a sequence }\left(q_{n}\right)_{n \in \mathbb{N}}\right. \text { and a sequence } \\
&\left(t_{n}\right)_{n \in \mathbb{N}} \text { such that } q_{n} \rightarrow q, t_{n} \rightarrow-\infty, f^{t_{n}}\left(q_{n}\right) \rightarrow p \\
&\text { as } n \rightarrow+\infty\} .
\end{aligned}
$$

The set $J(q):=J^{+}(q) \cup J^{-}(q)$ is called the first prolongational limit set of q. Let us observe that $p \in J(q)$ if and only if $q \in J(p)$ for any $p, q \in \mathbb{R}^{2}$. For a subset $H \subset \mathbb{R}^{2}$ we define

$$
J(H):=\bigcup_{q \in H} J(q) .
$$

One can observe that for each $p \in \mathbb{R}^{2}$ the set $J(p)$ is invariant.
In this paper we study the structure of the first prolongational limit set $J\left(\mathbb{R}^{2}\right)$ of a flow of free mappings. To this end we use equivalence classes of the equivalence relation defined above. These results can be useful in finding maximal parallelizable domains of such flows, because the boundary of each maximal parallelizable domain is contained in $J\left(\mathbb{R}^{2}\right)$ (see [9]).

Now we collect the results from [5], [6], [7] and [8] which are needed in our considerations.
Proposition 1.1 (see [5]) Each equivalence class is invariant under for $t \in \mathbb{R}$. In particular, each orbit of $\left\{f^{t}: t \in \mathbb{R}\right\}$ is contained in exactly one equivalence class of the relation \sim.

Proposition 1.2. (see [8]) The boundary of each equivalence class is a union of a family of orbits. In particular, the boundary of each class is invariant.

Proposition 1.3. (see [7]) If $q \in \operatorname{int} G_{0}$ for an equivalence class G_{0}, then $q \notin J\left(\mathbf{R}^{2}\right)$, i.e. $J(q)=$ \varnothing.

Proposition 1.4. (see [6]) Let $p \in \operatorname{fr} G_{0}$ and $q \in G_{0} \backslash C_{p}$ for an equivalence class G_{0}. Let K be an arc with endpoints p and q such that $K \backslash\{p, q\} \subset D_{p q}$ and $C_{p}\left|C_{r}\right| C_{q}$ for every $r \in K \backslash\{p, q\}$. Then $r \in G_{0}$ for every $r \in K \backslash\{p\}$. Moreover, $C_{p}\left|C_{s}\right| C_{q}$ for every $s \in D_{p q} \cap G_{0}$.

Proposition 1.5. (see [6]) Let $p \in \operatorname{fr} G_{0}$ for an equivalence class G_{0}. Then for every class G such that $G \backslash C_{p} \neq \varnothing$ the set $\operatorname{cl} G \backslash C_{p}$ is contained in exactly one of the components of $\mathbb{R}^{2} \backslash C_{p}$.

Proposition 1.6. (see [8]) Let C_{1}, C_{2} be any orbits of $\left\{f^{t}: t \in \mathbb{R}\right\}$. If C_{1}, C_{2} are contained in an equivalence class, then each point of the strip between C_{1} and C_{2} belongs to the interior of this class.

Proposition 1.7. (see [5]) For any orbit C_{1}, C_{2}, C_{3} of $\left\{f^{t}: t \in \mathbb{R}\right\}$, if $\left|C_{1}, C_{2}, C_{3}\right|$, then C_{1}, C_{2}, C_{3} cannot be contained in the same equivalence class of \sim.

2. First Prolongational Limit Set of a Boundary Point of a Class

In this section we prove that the first prolongational limit set of every point from the boundary of a class is contained in the boundary of this class.

Theomrem 2.1. Let G_{0} be an equivalence class which does not consist of just one orbit. Let H_{0} the component of $\mathbb{R}^{2} \backslash C_{p}$ which contains $\operatorname{cl} G_{0} \backslash C_{p}$. Assume that $p \in \operatorname{fr} G_{0}, q \in H_{0}$ and $q \in J(p)$. Then $q \in \operatorname{cl} G_{0}$.

Proof. Denote by L the straight line segment with endpoints q and p. Let p_{0} be the first point of L belonging to C_{p}. Then by Proposition 1.2 we have $p_{0} \in \operatorname{fr} G_{0}$. Moreover, $p_{0} \in J(q)$, since $p_{0} \in C_{p}, p \in J(q)$ and $J(q)$ is invariant. Let L_{0} denote the subsegment of L having q and p_{0} as its endpoints.

Let q_{0} be the first point of L_{0} belonging to $\mathrm{cl} G_{0}$. Such a point q_{0} exists on account of the Weierstrass theorem, since $L_{0} \cap \operatorname{cl} G_{0}$ is a compact set. Now we will prove that $q_{0} \in \operatorname{fr} G_{0}$. If $s \in L_{0} \cap \operatorname{int} G_{0}$, then there exists a ball $B(s, \varepsilon)$ centered at s with a radius $\varepsilon>0$ such that $\operatorname{cl} B(s, \varepsilon) \subset \operatorname{int} G_{0}$. Hence s cannot be the first point of L_{0} belonging to cl_{0}, and consequently $s \neq q_{0}$. Thus $q_{0} \in \operatorname{fr} G_{0}$, since $q_{0} \in L_{0} \cap \operatorname{cl} G_{0}$ and $s \neq q_{0}$ for all $s \in L_{0} \cap \operatorname{int} G_{0}$.

Now we will show that $q_{0} \notin C_{p}$, i.e. $q_{0} \neq p_{0}$. On account of the Whitney-Bebutov theorem (see [2], p. 52) there exists a neighbourhood V_{1} of p which is a union of orbits such that $\left\{\left.f^{t}\right|_{V_{1}}\right.$: $t \in \mathbb{R}\}$ is conjugate with the flow of translations, i.e. there exists a homeomorphism $\psi: V_{1} \rightarrow$ $(-\infty,+\infty) \times(-1,1)$ such that $\psi(p)=(0,0)$ and for every orbit C contained in V_{1} the image of C under ψ is a horizontal straight line in the open set $(-\infty,+\infty) \times(-1,1)$. Then $J\left(V_{1}\right) \cap V_{1}=\varnothing$ (see [2], p. 46 and 49), and consequently $q \notin V_{1}$.

Since $p \in \operatorname{fr} G_{0}$ and G_{0} does not consist of just one orbit, there exists a point $r_{1} \in V_{1} \cap H_{0}$ such that $r_{1} \in G_{0}$. Let K_{1} be a section of V_{1} passing through p_{0} and r_{1} (as K_{1} we can take the preimage of the straight line containing $\psi\left(p_{0}\right)$ and $\left.\psi\left(r_{1}\right)\right)$. Then by Proposition 1.4, $s \in G_{0}$ for every $s \in K_{1} \cap D_{r_{1} p}$. Hence by Proposition 1.1 we have $V_{1} \cap D_{r_{1} p} \subset G_{0}$. Let B_{1} be the preimage of a closed ball with center at $\psi\left(p_{0}\right)$ contained in $(-\infty,+\infty) \times(-1,1)$ which has no common point with $(-\infty,+\infty) \times\left\{\psi\left(r_{1}\right)\right\}$. Then $B_{1} \cap H_{0} \subset V_{1} \cap D_{r_{1} p}$ and fr B_{1} is a Jordan curve having exactly two common points with C_{p}. Denote these points by z_{1} and z_{2}.

Since $q \notin V_{1}$ and $B_{1} \subset V_{1}$, we have $q \notin B_{1}$. Hence the endpoint q of L_{0} lies outside of the Jordan curve $\mathrm{fr} B_{1}$, whereas the second endpoint p_{0} of L_{0} lies inside of $\mathrm{fr} B_{1}$. Thus by the Jordan Theorem there exists a point $x_{1} \in L_{0} \cap \mathrm{fr} B_{1}$. By the fact that p_{0} is the only point of L_{0} belonging to C_{p}, we have $x_{1} \neq z_{1}$ and $x_{1} \neq z_{2}$. Since $L_{0} \subset \operatorname{cl} H_{0}$, the point x_{1} belongs to the arc of $\operatorname{fr} B_{1}$ having z_{1} and z_{2} as its endpoints which is contained in $\mathrm{cl} H_{0}$. Since every point of this arc different from z_{1} and z_{2} belongs to $V_{1} \cap D_{r_{1} p}$ and $V_{1} \cap D_{r_{1} p} \subset G_{0}$, we have $x_{1} \in G_{0}$. Hence q_{0} belongs to the subarc of L_{0} having q and x_{1} as its endpoints, since q_{0} is the first point of L_{0} belonging to cl G_{0}. Thus $q_{0} \notin C_{p}$, and consequently $q_{0} \in \operatorname{cl} G_{0} \backslash C_{p}$.

Now we show that $q=q_{0}$. Suppose, on the contrary, that $q \neq q_{0}$. Since $q_{0} \in \operatorname{fr} G_{0}$, we have by Proposition 1.5 that the set $\operatorname{cl} G_{0} \backslash C_{q_{0}}$ is contained in exactly one of the components of $\mathbb{R}^{2} \backslash C_{q_{0}}$. Denote this component by F_{0}. In particular, $p \in F_{0}$, since $q_{0} \notin C_{p}$. In the same way as before we can find a neighbourhood V_{2} of q_{0} which is a union of orbits such that $\left\{\left.f^{t}\right|_{V_{2}}: t \in \mathbb{R}\right\}$ is conjugate with the flow of translations and a homeomorphic preimage B_{2} of a closed ball such that $B_{2} \cap F_{0} \subset V_{2} \cap D_{r_{2} q_{0}} \subset G_{0}$ for some $r_{2} \in V_{2} \cap F_{0} \cap G_{0}, q_{0} \in \operatorname{int} B_{2}, q \notin B_{2}$ and $\operatorname{fr} B_{2}$ is a Jordan curve having exactly two common points with $C_{q_{0}}$. Denote these points by y_{1} and y_{2}.

Denote by L_{1} the subarc of L_{0} having q and q_{0} as its endpoints. By the Jordan Theorem, there exists a point $x_{2} \in L_{1} \cap \mathrm{fr} B_{2}$. It follows from Propositions 1.1 and 1.2 that cl_{0} is a union of orbits. Hence by the fact that $y_{1}, y_{2} \in C_{q_{0}}$, we have $y_{1}, y_{2} \in \operatorname{cl} G_{0}$. Since q_{0} is the only point of L_{1} belonging to $\operatorname{cl} G_{0}$ and $q_{0} \in \operatorname{int} B_{2}$, we have $x_{2} \neq y_{1}$ and $x_{2} \neq y_{2}$. Moreover, the point q_{0} is the first point of L_{1} belonging to $C_{q_{0}}$, since it is the first point of L_{1} belonging to cl G_{0}. Hence $L_{1} \backslash\left\{q_{0}\right\}$ is contained in one of the components of $\mathbb{R}^{2} \backslash C_{q_{0}}$. By the definition of $J(p)$ we have $J(p) \subset F_{0} \cup C_{q_{0}}$. Since $p \in F_{0}$ and F_{0} is invariant, we get from the assumption $q \in J(p)$ that $q \in F_{0} \cup C_{q_{0}}$. Consequently $L_{1} \backslash\left\{q_{0}\right\} \subset F_{0}$. Hence $x_{2} \in K_{2} \backslash\left\{y_{1}, y_{2}\right\}$, where K_{2} is the arc of fr B_{2} having y_{1} and y_{2} as its endpoints which is contained in F_{0}. Since this arc is a subset of G_{0}, we have $x_{2} \in G_{0}$. But this contradicts the fact that q_{0} is the first point of L_{1} belonging to $\mathrm{cl} G_{0}$. Thus $q=q_{0}$, and consequently $q \in \operatorname{cl} G_{0}$.

Corollary 2.2. Let G_{0} be an equivalence class which does not consist of just one orbit. Let H_{0} be the component of $\mathbb{R}^{2} \backslash C_{p}$ which contains $\operatorname{cl} G_{0} \backslash C_{p}$. Assume that $p \in \operatorname{fr} G_{0}, q \in H_{0}$ and $q \in J(p)$. Then $q \in \operatorname{fr} G_{0}$.

Proof. By Theorem 2.1, we have that $q \in \operatorname{cl} G_{0}$. On account of Proposition 1.3 the point q cannot belong to int G_{0}. Thus $q \in \operatorname{fr} G_{0}$.

3. Properties of Boundary Orbits

In this section we prove that if two points lying on two different boundary orbits of a class are contained in the same component of the complement of an orbit of this class, then each of these two points is contained in the first prolongational limit set of the other one.

Proposition 3.1. Let G_{0} be an equivalence class which does not consist of just one orbit. Let $p \in \operatorname{fr} G_{0}, q \in \operatorname{fr} G_{0}$ and $C_{p} \neq C_{q}$. Assume that p and q belong to the same component of $\mathbb{R}^{2} \backslash C_{r_{0}}$ for an $r_{0} \in G_{0}$. Then p and q belong to the same component of $\mathbb{R}^{2} \backslash C_{r}$ for every $r \in \operatorname{int} G_{0}$.

Proof. Fix an $r \in \operatorname{int} G_{0} \backslash C_{r_{0}}$. Denote by H_{0} the component of $\mathbb{R}^{2} \backslash C_{r_{0}}$ which contains p and q. If $r \notin H_{0}$, then p and q belong to the component of $\mathbb{R}^{2} \backslash C_{r}$ which contains r_{0}. Now assume that $r \in H_{0}$. Then by Proposition 1.6 neither p nor q belongs to $D_{r r_{0}}$, since $p \notin$ int G_{0} and $q \notin \operatorname{int} G_{0}$. Thus p and q belong to the same component of $\mathbb{R}^{2} \backslash C_{r}$, since $p, q \in H_{0} \backslash\left(D_{r r_{0}} \cup C_{r}\right)$.

Theorem 3.2. Let G_{0} be an equivalence class which does not consist of just one orbit. Let $p \in \operatorname{fr} G_{0}, q \in \operatorname{fr} G_{0}$ and $C_{p} \neq C_{q}$. Assume that p and q belong to the same component of $\mathbb{R}^{2} \backslash C_{r}$ for an $r \in G_{0}$. Then $p \in J(q)$.

Proof. First we prove that $p \notin G_{0}$ and $q \notin G_{0}$. Suppose, on the contrary, that one of the points p, q belongs to G_{0}. Let $p \in G_{0}$. By Proposition 1.5, q and r are contained in the same component of $\mathbb{R}^{2} \backslash C_{p}$. On the other hand, by our assumption, q and p are contained in the same component of $\mathbb{R}^{2} \backslash C_{r}$. Thus $q \in D_{p r}$. Hence by Proposition $1.6 q \in \operatorname{int} G_{0}$, since $p \in G_{0}$. But this contradicts the assumption that $q \in \operatorname{fr} G_{0}$.

On account of the Whitney-Bebutov theorem (see [2], p. 52) there exists a neighbourhood V_{1} of p which is a union of orbits such that $\left\{\left.f^{t}\right|_{V_{1}}: t \in \mathbb{R}\right\}$ is conjugate with the flow of
translations, i.e. there exists a homeomorphism ψ_{1} of V_{1} onto $(-\infty,+\infty) \times(-1,1)$ such that $\psi_{1}(p)=(0,0)$ and for every orbit C contained in V_{1} the image of C under ψ_{1} is a horizontal straight line in the open set $(-\infty,+\infty) \times(-1,1)$. Without loosing of generality we can assume that $r \notin V_{1}$. Since $p \in \operatorname{fr} G_{0}$, there exists a point $s_{1} \in V_{1}$ such that $s_{1} \in G_{0}$. Then by Proposition $1.5 s_{1}$ and r are contained in the same component of $\mathbb{R}^{2} \backslash C_{p}$.

Take as K_{0} the image under ψ_{1}^{-1} of the segment in $(-\infty,+\infty) \times(-1,1)$ from $\psi_{1}\left(s_{1}\right)$ to $\psi_{1}(p)$. Then K_{0} has just one common point with every orbit contained in $D_{p s_{1}} \cap V_{1}, K_{0} \backslash\left\{p, s_{1}\right\} \subset D_{p s_{1}}$ and $C_{p}\left|C_{x}\right| C_{s_{1}}$ for all $x \in K_{0} \backslash\left\{p, s_{1}\right\}$. Then by Proposition 1.4 we have $K_{0} \backslash\{p\} \subset G_{0}$. In the same way we can find a neighbourhood V_{2} of q which is a union of orbits such that $\left\{\left.f^{t}\right|_{V_{2}}\right.$: $t \in \mathbb{R}\}$ is conjugate with the flow of translations and $r \notin V_{2}$, a point $s_{2} \in V_{2} \cap G_{0}$ and an arc L_{0} from s_{2} to q such that L_{0} has just one common point with every orbit contained in $D_{q s_{2}} \cap V_{2}$, $L_{0} \backslash\left\{q, s_{2}\right\} \subset D_{q s_{2}}$ and $L_{0} \backslash\{q\} \subset G_{0}$.

Fix $\varepsilon_{1}, \varepsilon_{2}>0$ such that $\operatorname{cl} B\left(p, \varepsilon_{1}\right) \cap \operatorname{cl} B\left(q, \varepsilon_{2}\right)=\varnothing, s_{1}, s_{2} \notin \operatorname{cl} B\left(p, \varepsilon_{1}\right), s_{1}, s_{2} \notin \operatorname{cl} B\left(q, \varepsilon_{2}\right)$, $\mathrm{cl} B\left(p, \varepsilon_{1}\right) \cap C_{r}=\phi, \operatorname{cl} B\left(q, \varepsilon_{2}\right) \cap C_{r}=\varnothing, \operatorname{cl} B\left(p, \varepsilon_{1}\right) \cap C_{q}=\phi$ and $\mathrm{cl} B\left(q, \varepsilon_{2}\right) \cap C_{p}=\phi$. Denote by p_{0} the last point of K_{0} which belongs to $\operatorname{fr} B\left(p, \varepsilon_{1}\right)$ and let K_{1} be the subarc of K_{0} having p_{0} and p as its endpoints. Then $K_{1} \backslash\{p\} \subset G_{0}$ and $K_{1} \backslash\left\{p_{0}\right\} \subset B\left(p, \varepsilon_{1}\right)$. Take a positive $\varepsilon_{3} \leq \varepsilon_{2}$ such that $\operatorname{cl} B\left(q, \varepsilon_{3}\right) \cap C_{p_{0}}=\varnothing$. Denote by q_{0} the last point of L_{0} which belongs to $\operatorname{fr} B\left(q, \varepsilon_{3}\right)$. Let L_{1} be the subarc of L_{0} having q_{0} and q as its endpoints. Then $L_{1} \backslash\{q\} \subset G_{0}$ and $L_{1} \backslash\left\{q_{0}\right\} \subset B\left(q, \varepsilon_{3}\right)$.

On account of Proposition 1.7 the relation $\cdot|\cdot| \cdot$ holds for the orbits $C_{p_{0}}, C_{q_{0}}, C_{r}$, since $p_{0}, q_{0}, r \in G_{0}$. Suppose that $C_{p_{0}}\left|C_{q_{0}}\right| C_{r}$. Then $\operatorname{cl} B\left(q, \varepsilon_{3}\right) \subset D_{r p_{0}}$, since $\operatorname{cl} B\left(q, \varepsilon_{3}\right) \cap C_{p_{0}}=\varnothing$, $\operatorname{cl} B\left(q, \varepsilon_{3}\right) \cap C_{r}=\varnothing$ and $q_{0} \in \operatorname{cl} B\left(q, \varepsilon_{3}\right)$. Hence by Proposition 1.6 we have $q \in \operatorname{int} G_{0}$, which is impossible. Consequently, $C_{q_{0}}\left|C_{p_{0}}\right| C_{r}$, since q_{0} and p_{0} belong to the same component of $\mathbb{R}^{2} \backslash C_{r}$.

From the definition of p_{0} and q_{0} it follows that p, q, p_{0} and q_{0} belong to the same component of of $\mathbb{R}^{2} \backslash C_{r}$. Suppose that $p \in D_{r q_{0}}$. Then by Proposition 1.6 we have $p \in \operatorname{int} G_{0}$, which is impossible. Thus $p \notin D_{r q_{0}}$. Moreover, $p \notin C_{q_{0}}$, since $p \notin G_{0}$ and $q_{0} \in G_{0}$. Consequently p belongs to the component of $\mathbb{R}^{2} \backslash C_{q_{0}}$ which does not contain r. Thus p_{0} and p lies in different components of $\mathbb{R}^{2} \backslash C_{q_{0}}$, which means that $C_{p}\left|C_{q_{0}}\right| C_{p_{0}}$. In the same way we can show that $C_{q}\left|C_{q_{0}}\right| C_{p_{0}}$. Hence L_{1} and p are contained in the same component of $\mathbb{R}^{2} \backslash C_{p_{0}}$. On the other hand, by Proposition 1.5, L_{1} and p_{0} are contained in the same component of $\mathbb{R}^{2} \backslash C_{p}$, since $L_{1} \subset \operatorname{cl} G_{0}, p_{0} \in G_{0}$ and $q \notin C_{p}$. Thus $L_{1} \subset D_{p p_{0}}$.

Take a sequence $\left(q_{n}\right)_{n \in \mathbb{N}}$ such that $q_{n} \rightarrow q$ as $n \rightarrow \infty, q_{n} \neq q$ and $q_{n} \in L_{1}$ for all n. Then $q_{n} \in D_{p p_{0}} \cap G_{0}$, since $L_{1} \subset D_{p p_{0}}$ and $L_{1} \backslash\{q\} \subset G_{0}$. By Proposition 1.4 we have $C_{p_{0}}\left|C_{q_{n}}\right| C_{p}$. Hence $C_{q_{n}} \cap K_{1} \neq \varnothing$ for every n. Since K_{1} has at most one common point with each orbit, the set $C_{q_{n}} \cap K_{1}$ consists of just one point for every n. Denote this point by p_{n}. Thus there exists a sequence $\left(t_{n}\right)$ such that $p_{n}=f^{t_{n}}\left(q_{n}\right)$. Since $\operatorname{cl} B\left(p, \varepsilon_{1}\right) \cap \operatorname{cl} B\left(q, \varepsilon_{3}\right)=\varnothing$, we have $K_{1} \cap L_{1}=\varnothing$. Hence either $t_{n}>0$ for all n or $t_{n}<0$ for all n. We assume without loosing of generality that $t_{n}>0$ for all n.

Now we show that $p_{n} \rightarrow p$ as $n \rightarrow \infty$. Fix an $\varepsilon>0$. Let $\varepsilon \leq \varepsilon_{1}$. Denote by z the last point of K_{1} which belongs to fr $B(p, \varepsilon)$. Denote by K_{2} the subarc of K_{1} having z and p as its endpoints. Then $K_{2} \backslash\{z\} \subset B(p, \varepsilon)$. Let $V_{3}:=V_{2} \cap H_{z}$, where H_{z} denotes the component of $\mathbb{R}^{2} \backslash C_{z}$ which contains q. Since V_{3} is a neighbourhood of q and $q_{n} \rightarrow q$ as $n \rightarrow \infty$, there exists an n_{0} such that $q_{n} \in V_{3}$ for all $n>n_{0}$. In the same way as before (taking z instead of p_{0} and q_{n} instead of
q_{0}) we get that $C_{z}\left|C_{q_{n}}\right| C_{q}$ and $C_{z}\left|C_{q_{n}}\right| C_{p}$. Hence $p \in H_{z}$ and consequently $K_{2}=K_{1} \cap H_{z}$. Thus for all $n>n_{0}$ we have $p_{n} \in K_{2}$, since $C_{q_{n}} \in H_{z}$ for all $n>n_{0}$ and $p_{n} \in C_{q_{n}}$. Hence by the fact that $K_{2} \backslash\{z\} \subset B(p, \varepsilon)$ we have $p_{n} \in B(p, \varepsilon)$ for all $n>n_{0}$.

To finish the proof we show that there exists a subsequence $\left(t_{n_{k}}\right)$ of the sequence $\left(t_{n}\right)$ which tends to $+\infty$ as $n_{k} \rightarrow \infty$. Suppose, on the contrary, that there exists a positive integer α such that $t_{n} \leq \alpha$ for all n. Denote by J the Jordan curve which is a union of $L_{1}, f^{\alpha}\left(L_{1}\right)$, the subarc of $C_{q_{0}}$ with endpoints q_{0} and $f^{\alpha}\left(q_{0}\right)$ and the subarc of C_{q} with endpoints q and $f^{\alpha}(q)$. Let $B:=J \cup$ ins J, where by ins J we mean the bounded component of $\mathbb{R}^{2} \backslash J$. Then B is a closed set and $f^{t_{n}}\left(q_{n}\right) \in B$ for every n. Hence by the fact that $p=\lim _{n \rightarrow \infty} f^{t_{n}}\left(q_{n}\right)$ we have $p \in B$. But this is impossible, since $B \subset G_{0} \cup C_{q}$ and $\left(G_{0} \cup C_{q}\right) \cap C_{p}=\varnothing$. Thus there exists a subsequence ($t_{n_{k}}$) of the sequence $\left(t_{n}\right)$ such that $\lim _{k \rightarrow \infty} t_{n_{k}}=+\infty$. Hence $\lim _{k \rightarrow \infty} q_{n_{k}}=q$ and $\lim _{k \rightarrow \infty} f^{t_{n_{k}}}\left(q_{n_{k}}\right)=p$, since $\lim _{n \rightarrow \infty} q_{n}=q$ and $\lim _{n \rightarrow \infty} f^{t_{n}}\left(q_{n}\right)=p$. Consequently $p \in$ $J(q)$.

References

[1] S. A. Andrea, On homeomorphisms of the plane which have no fixed points, Abh. Math. Sem. Hamburg 30(1967), 61-74.
[2] N. P. Bhatia, G. P. Szegö, Stability Theory of Dynamical Systems, Springer-Verlag, Berlin-HeidelbergNew York 1970.
[3] W. Kaplan, Regular curve-families filling the plane I, Duke Math. J. 7(1940), 154-185.
[4] W. Kaplan, Regular curve-families filling the plane II, Duke Math. J. 8 (1941), 11-46.
[5] Z. Leśniak, On an equivalence relation for free mappings embeddeable in a flow, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13(2003), 1911-1915.
[6] Z. Leśniak, On boundary orbits of a flow of free mappings of the plane, Int. J. Pure Appl. Math. 42(2008), 5-11.
[7] Z. Leśniak, On maximal parallelizable regions offlows of the plane, Int. J. Pure Appl. Math. 30(2006), 151-156.
[8] Z. Leśniak, On parallelizability offlows of free mappings, Aequationes Math. 71(2006), 280-287.
[9] R. C. McCann, Planar dynamical systems without critical points, Funkcial. Ekvac. 13(1970), 67-95.

Institute of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland.
E-mail: zlesniak@ap.krakow.pl

[^0]: Received December 25, 2006; revised June 3, 2008.
 2000 Mathematics Subject Classification. Primary 39B12; Secondary 54H20, 37E30.
 Key words and phrases. Free mapping, first prolongational limit set, parallelizable flow.

