θ_{σ} -SUMMABLE SEQUENCES AND SOME MATRIX TRANSFORMATIONS

VATAN KARAKAYA

Abstract. In this paper we introduce θ_{σ} -conservative and θ_{σ} -regular matrices and also give matrices transformation from almost convergent sequence spaces into lacunary invariant convergent sequence spaces.

1. Introduction

Let ℓ_{∞} and c denote the Banach spaces of real bounded and convergent sequences $x = (x_k)$ normed by $||x|| = \sup_k |x_k|$, respectively.

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on ℓ_{∞} , the space of real bounded sequences, is said to be an invariant mean or σ -mean if and only if (i) $\phi(x) \ge 0$ when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n, (ii) $\phi(e) \ge 0$, where e = (1, 1, 1, ...) and, (iii) $\phi(x_{\sigma(n)}) = \phi(x)$ for all $x \in \ell_{\infty}$. For certain kinds of mappings σ , every invariant mean ϕ extends the limit functional on the space c, in sense that $\phi(x) = \lim x$ for all $x \in c$. Consequently, $c \subset V_{\sigma}$ where V_{σ} is the set of bounded sequences all of whose σ -means are equal.

When $\sigma(n) = n + 1$, the σ -means are the classical Banach limits on ℓ_{∞} and V_{σ} reduces to \hat{c} , the space all almost convergent sequences (see, Lorentz [4]). If $A = (a_{nk})$ is an infinite matrix of complex numbers such that $A_n(x) = \sum_k a_{nk} x_k$ is an almost convergent sequence for every convergent sequence $x = (x_k)$, A is said to be an almost conservative matrix (see, King [3]). When the common value of all Banach limits of $A_n(x)$ is lim x for all $x \in c$, then the almost conservative matrix A is said to be almost regular.

After, Schaefer [8] defined σ -conservative and σ -regular as following:

An infinite matrix A is said to be σ -conservative if and only if $Ax = \{\sum_k a_{nk}x_k\}_{n \in \mathbb{N}} \in V_{\sigma}$ for all $x \in c$. An infinite matrix A is said to be σ -regular if and only if it is σ -conservative and $\sigma - \lim Ax = \lim x$ for all $x \in c$. The necessary and sufficient conditions for a matrix which is σ -conservative or σ -regular were given by Schacfer [8].

After, Mursaleen [5] gave absolute σ -conservative and absolute σ -regular matrices.

By a lacunary sequence $\theta = (k_r)$; r = 0, 1, 2, ..., where $k_0 = 0$, we shall mean an increasing sequence of nonnegative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals

Received May, 12, 2003.

³¹³

VATAN KARAKAYA

determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $h_r = k_r - k_{r-1}$. The space of lacunary strongly convergent sequences N_{θ} was defined by Freedman et al [2] as:

$$N_{\theta} = \left\{ x = (x_k) : \lim_{r} \frac{1}{h_r} \sum_{k \in I_r} |x_k - l| = 0, \text{ for some } l \right\}$$

Recently, the concept of lacunary σ -convergence was introduced by Savas [7], which is generalization of the idea of lacunary strong almost convergence due to Das and Mishra [1].

The sequence $x = (x_k)$ is said to be lacunary σ -convergent if $\lim_r t_{rn}(x)$ exists uniformly in n, where

$$t_{rn}(x) = \frac{1}{h_r} \sum_{k \in I_r} x_{\sigma^k(n)}.$$

After that, the lacunary σ -convergence is going to be called as θ_{σ} -convergent. The spaces of all θ_{σ} -convergent sequence will be denoted by N_{θ}^{σ} .

Quite recently, Nuray [6] introduced the concept θ -almost convergent and defined θ -almost conservative and θ -almost regular as following:

The A is said to be θ -almost conservative if $x \in c$ implies that the A-transform of x is θ -almost convergent. A is said to be θ -almost regular if the A-transform of x is θ -almost convergent to the limit of x for each $x \in c$. Also, the necessary and sufficient for these the matrix gave by Nuray [6].

In the sequel the following notation is used: C denotes the complex numbers and N denotes positive integers. The linear spaces of all continuous linear functional on c is denoted by c^* . We use the special sequences, $e = (1, 1, 1, ...), e_k = (0, 0, 0, ..., 1, ..., 0, 0, 0, ...)$ (with 1 in rank k) and $\Delta = \{e, e_0, e_1, ...\}$.

Now we give the definitions of θ_{σ} -conservative and θ_{σ} -regular matrices and characterize the class $A \in (\hat{c}, N_{\theta}^{\sigma})$.

2. Main Results

The following notations are used throughout this paper. Let

$$t_{rn}(x) = T_{rn}(Ax) = \sum_{k=0}^{\infty} a(r, n, k) x_k,$$

where

$$a(r,n,k) = \frac{1}{h_r} \sum_{j \in I_r} a_{\sigma^j(n),k}$$

Definition 2.1. The matrix A is said to be θ_{σ} -conservative if $x \in c$ implies that the A-transform of x is θ_{σ} -convergent. A is said to be θ_{σ} -regualr if the A-transform of x is θ_{σ} -convergent to the limit of x for each $x \in c$.

Theorem 2.1. Let $A = (a_{nk})$ be an infinite matrix and let $\theta = (k_r)$ be a lacunary sequence. Then the matrix A is θ_{σ} -conservative if and only if

- (i) $\sup_{r,n} \left\{ \sum_{k=0}^{\infty} |a(r,n,k)| \right\} < \infty$
- (ii) there exists an $\alpha \in C$ such that $\lim_r \sum_{k=0}^{\infty} a(r, n, k) = \alpha$ uniformly in n, and
- (iii) there exists an $\alpha_k \in C$, k = 0, 1, 2, ... such that $\lim_r a(r, n, k) = \alpha_k$ uniformly in n.

Proof. Suppose that A is θ_{σ} -conservative for all n. Let

$$t_{rn}(x) = \sum_{k=0}^{\infty} a(r, n, k) x_k$$

We can write

$$|t_{rn}(x)| \le \sum_{k=0}^{\infty} |a(r,n,k)| ||x||$$

Since $t_{rn}(x)$ is the linear functional on c, hence $t_{rn} \in c^*$. Since A is θ_{σ} -conservative $\lim_{r\to\infty} t_{rn}(x) = t(x)$ uniformly in n. It follows that $\{t_{rn}(x)\}_{r\in N}$ is bounded for $x \in c$ and all n. Hence $\{\|t_{rn}\|\}$ is bounded by uniform boundedness principle. For each $p \in N$, define the sequence $u = (u_k)$ by

$$u_k = \begin{cases} sign \, a(r, n, k); \ 0 \le k \le p \\ 0; \qquad p > k \end{cases}$$

Then $u \in c$, ||u|| = 1 for all n, and

$$t_{rn}(u) = \sum_{k=0}^{p} |a(r, n, k)|.$$

Hence $|t_{rn}(u)| \leq ||t_{rn}|| ||u|| = ||t_{rn}||$. Therefore $\sum_{k=0}^{\infty} |a(r, n, k)| \leq ||t_{rn}||$, so that (i) follows.

Since e and e_k are convergent sequences, $k = 0, 1, 2, ..., \lim_{r \to \infty} t_{rn}(e)$ and $\lim_{r \to \infty} t_{rn}(e_k)$ must exist uniformly in n. Hence (ii) and (iii) must hold.

Now suppose that (i)-(iii) hold. Put

$$t_{rn}(x) = \sum_{k=0}^{\infty} a(r, n, k) x_k.$$

Then we can write, for all n,

$$|t_{rn}(x)| \le \sum_{k=0}^{\infty} |a(r, n, k)| ||x||.$$

Therefore $|t_{rn}(x)| \leq R_n ||x||$ by (i), where R_n is a constant independent of r. Hence $t_{rn} \in c^*$ and the sequence $\{||t_{rn}||\}$ is bounded for each n. So, (ii) and (iii) imply that $\lim_{r\to\infty} t_{rn}(e)$ and $\lim_{r\to\infty} t_{rn}(e_k)$ exist for $n, k = 0, 1, 2, \ldots$ Since $\{e, e_0, e_1, \ldots\}$ is a

VATAN KARAKAYA

fundamental set in c, it follows that $\lim_{r\to\infty} t_{rn}(x) = t_n(x)$ exists and $t_n \in c^*$. Therefore t_n has the form

$$t_n(x) = \lambda \left[t_n(e) - \sum_{k=0}^{\infty} t_n(e_k) \right] + \sum_{k=0}^{\infty} x_k t_n(e_k)$$

where $\lambda = \lim_k x_k$. But $t_n(e) = \alpha$ and $t_n(e_k) = \alpha_k$, k = 0, 1, 2, ..., by (ii) and (iii), respectively. Hence $\lim_{r\to\infty} t_{rn}(x) = t_n(x)$ exists for each $x \in c$, n = 0, 1, 2, ..., with

$$t(x) = \lambda \left[\alpha - \sum_{k=0}^{\infty} \alpha_k \right] + \sum_{k=0}^{\infty} x_k \alpha_k$$
(2.1)

Since $t_{rn} \in c^*$ for each r and n, it has the form

$$t_{rn}(x) = \lambda \left[t_{rn}(e) - \sum_{k=0}^{\infty} t_{rn}(e_k) \right] + \sum_{k=0}^{\infty} x_k t_{rn}(e_k)$$
(2.2)

It is easy to see from (2.1) and (2.2) the convergence of $\{t_{rn}(x)\}$ to t(x) is uniform in n, since $\lim_{r\to\infty} t_{rn}(e) = \alpha$ and $\lim_{r\to\infty} t_{rn}(e_k) = \alpha_k$, uniformly in n. Therefore A is θ_{σ} -conservative. This completes the proof.

Theorem 2.2. Let $A = (a_{nk})$ be an infinite matrix and let $\theta = (k_r)$ be a lacunary sequence. Then the matrix A is θ_{σ} -regular if and only if

a) $\sup_{r,n} \{ \sum_{k=0}^{\infty} |a(r,n,k)| \} < \infty$

b) $\lim_{r} \sum_{k=0}^{\infty} a(r, n, k) = 1$ uniformly in n, and

c) $\lim_{r} a(r, n, k) = 0$ uniformly in n, k = 0, 1, 2, ...

Proof. Suppose that A is θ_{σ} -regular. Then A is θ_{σ} -conservative so that (a) must hold by Theorem 2.1. (b) and (c) must hold since the A-transform of the sequences e_k and e must be θ_{σ} -convergent to 0 and 1, respectively.

Now suppose that (a), (b) and (c) hold. Then A is θ_{σ} -conservative by Theorem 2.1. Therefore $\lim_{r\to\infty} t_{rn}(x) = t_n(x)$ uniformly in n for each $x \in c$. The representation (2.1) gives $t(x) = \lim_{k \to \infty} x_k$. Hence A is θ_{σ} -regular.

We are going to give that the results concerning the theorems 2.1 and 2.2.

If $\sigma(n) = n + 1$, the theorems 2.1 and 2.2 reduce to the results of Nuray [6]. When $\theta = 2^r$, the theorems above reduce to the results of Schaefer [8], and if $\sigma(n) = n + 1$ and $\theta = 2^r$, then the theorems (2.1) and (2.2) reduce to the results of King [3]. We characterize the matrix transformation $A \in (\hat{c}, N_{\theta}^{\sigma})$. We have

Theorem 2.3. Let the matrix A be θ_{σ} -regular. $A \in (\hat{c}, N_{\theta}^{\sigma})$ if and only if

$$\lim_{r \to \infty} \sum_{k=0}^{\infty} |a(r, n, k) - a(r, n, k+1)| = 0$$
(2.3)

uniformly in n.

316

Proof. Suppose that (2.3) holds. Let (x_k) be almost convergent and $\lim x_k = L$. For any arbitrary $\varepsilon > 0$ we can find a natural number p such that

$$\frac{1}{p}(x_k + x_{k+1} + \dots + x_{k+p-1}) = L + \alpha_k, \quad |\alpha_k| < \varepsilon, \ k = 0, 1, 2, \dots$$

the term above, multiplying by a(r, n, k) and adding we have

$$\frac{1}{p}\sum_{k=1}^{\infty}a(r,n,k)(x_k+x_{k+1}+\dots+x_{k+p-1}) = LA_{rn} + \sum_{k=1}^{\infty}a(r,n,k)\alpha_k$$
(2.4)

Since $A_{rn} = \sum_{k=1}^{\infty} a(r, n, k) \to 1$ and $a(r, n, k) \to 0$ as $r \to \infty$, uniformly in n, respectively, we have

$$\frac{1}{p}\sum_{k=1}^{\infty} a(r,n,k)(x_k + x_{k+1} + \dots + x_{k+p-1})$$

$$= \frac{1}{p}\left(\sum_{k=1}^{\infty} a(r,n,k)x_k + \sum_{k=2}^{\infty} a(r,n,k-1)x_k + \dots + \sum_{k=p-1}^{\infty} a(r,n,k-p+1)x_k\right)$$

$$= \frac{1}{p}\sum_{k=1}^{p-2} a(r,n,k)(x_k + x_{k+1} + \dots + x_{k+p-2})$$

$$+ \frac{1}{p}\sum_{k=p-1}^{\infty} x_k(a(r,n,k) + \dots + a(r,n,k-p-1))$$

$$= o(1) + \frac{1}{p}\sum_{k=p-1}^{\infty} x_k(a(r,n,k-p-1) + \dots + a(r,n,k))$$

In this case, we have

$$\frac{1}{p}\sum_{k=1}^{\infty}a(r,n,k)(x_k+x_{k+1}+\dots+x_{k+p-1})$$

= $o(1) + y_{rn} + \frac{1}{p}\sum_{k=p-1}^{\infty}x_k[(a(r,n,k-p+1)+\dots+a(r,n,k)) - a(r,n,k)]$ (2.5)

where $y_{rn} = \sum_{k=1}^{\infty} a(r, n, k) x_k$. Now the absolute value of the sum on the right hand side of (2.5) is not larger than

$$\left| \frac{1}{p} \sum_{k=p-1}^{\infty} x_k [(a(r,n,k-p+1)+\dots+a(r,n,k)) - pa(r,n,k)] \right|$$

$$\leq \frac{1}{p} \sum_{k=p-1}^{\infty} |(a(r,n,k-p+1)+\dots+a(r,n,k)) - pa(r,n,k)| ||x||$$

$$\leq \frac{\|x\|}{p} \sum_{p=0}^{p-1} \sum_{k=1}^{\infty} |(a(r,n,k-p) - a(r,n,k))|$$

$$\leq \frac{p-1}{2} \|x\| \sum_{k=1}^{\infty} |(a(r,n,k) - a(r,n,k+1))|$$

.

for all n. From (2.4) and (2.5), we have

$$y_{rn} = LA_{rn} + \sum_{k=p}^{\infty} a(r, n, k)\alpha_k + o(1).$$

Since $\sup_{r,n} \sum_k |a(r,n,k)| = M$, we can write $|\sum_k a(r,n,k)\alpha_k| \le M\varepsilon$. Taking $LA_{rn} =$ L + o(1). From here, we have, for all n,

$$|y_{rn} - L| = \left| LA_{rn} - L + \sum_{k=p-1}^{\infty} a(r, n, k)\alpha_k + o(1) \right|$$
$$\leq \left(\left| \sum_{k=p-1}^{\infty} a(r, n, k)\alpha_k \right| + o(1) \right) \leq (M+1)\varepsilon$$

Therefore $\lim_{r\to\infty} y_{rn} = L$ uniformly in n. This means that the condition (2.3) is sufficient.

We now assume that (2.3) does not hold. We shall construct a sequence (x_k) for which $\lim x_k = 0$ but which is not summable by the matrix A_{rn} . According to our assumption, there is an $\varepsilon > 0$, such that for an infinitely many r

$$\sum_{k=0}^{\infty} |a(r,n,k) - a(r,n,k+1)| > 8\varepsilon$$

For every such r we either have

$$\begin{split} &\sum_{l=0}^\infty |a(r,n,2l)-a(r,n,2l+1)|> 4\varepsilon\\ &\sum_{l=0}^\infty |a(r,n,2l+1)-a(r,n,2l+2)|> 4\varepsilon \end{split}$$

or

for all n. We now construct three increasing sequences of natural numbers
$$(r_j)$$
, (p_j) and (q_j) where $q_{-1} = 0 < p_1 < q_1 < p_2 < \cdots$. We first choose r_1 , p_1 and q_1 such that, for all n ,

$$|a(r_1, n, 0)| < \frac{\varepsilon}{2}$$

318

$$\sum_{\substack{l=0\\k=q_1+1}}^{\frac{q_1-p_1-1}{2}} |a(r_1, n, p_1+2l) - a(r_1, n, p_1+2l+1)| > 2\varepsilon$$

If the numbers (r_v) , (p_v) and (q_v) , v = 1, 2, 3, ..., j - 1, are already known, (r_j) , (p_j) , (q_j) (where $q_{j-1} < p_j < q_j$ and one of the numbers p_j , q_j even. The other, odd) are chosen such that, for all n,

$$\sum_{k=0}^{q_{j-1}} |a(r_1, n, k)| < \frac{\varepsilon}{2}$$

$$\sum_{l=0}^{\frac{q_j - p_j - 1}{2}} |a(r_j, n, p_j + 2l) - a(r_j, n, p_j + 2l + 1)| > 2\varepsilon$$

$$\sum_{k=q_j+1}^{\infty} |a(r_j, n, k)| < \frac{\varepsilon}{2}.$$

We now defined the sequence $x = (x_k)$ as following

$$x_k = \begin{cases} x_{p_j+2l} = (-1)^j sgn(a(r_j, n, p_j + 2l) - a(r_j, n, p_j + 2l + 1)) \\ x_{p_j+2l+1} = -x_{p_j+2l} \\ x_k = 0; \quad q_{j-1} < k < q_j, \ j = 1, 2, \dots \text{ and } l = 0, 1, 2, \dots, \frac{q_j - p_j - 1}{2} \end{cases}$$

Under these conditions, we have for our sequence

$$|y_{r_{j,n}}| = \left|\sum_{k} a(r_j, n, k) x_k\right|$$

$$\geq \sum_{l=0}^{\frac{q_j - p_j - 1}{2}} |a(r_j, n, p_j + 2l) - a(r_j, n, p_j + 2l + 1)| - \frac{\varepsilon}{2} - \frac{\varepsilon}{2}$$

$$\geq \varepsilon$$

and $sign(y_{r_j,n}) = (-1)^j$ for all n. Hence it follows that the sequene y_{rn} for all n, diverges. It is easy to see that $\lim x_k = 0$. This completes the proof.

References

- G. Das and S. Mishra, Banach limits and lacunary strong almost convergence, The J. of the Orissa Math. Soc. 2(1983), 61-70.
- [2] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc. 37(1978), 508-520.

VATAN KARAKAYA

- [3] J. P. King, Almost summable sequences, Proc. Amer. Math. Soc. 16(1966), 1219-1225.
- [4] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80(1948), 167-190.
- [5] Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford 34(1983), 77-86.
- [6] F. Nuray, θ -Almost summable sequences, Internat. J. Math. & Math. Sci. **20**(199), 741-744.
- [7] E. Savaş, On lacunary strong σ -convergence, Indian J. pure appl. Math. **21**(1990), 359-365.
- [8] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36(1972), 104-110.

Yüzüncü Yil University, Education Faculty, Department of Mathematics, Zeve Campus-65080, Van\ Turkey.

E-mail: vkkaya@yahoo.com