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θσ-SUMMABLE SEQUENCES AND SOME

MATRIX TRANSFORMATIONS

VATAN KARAKAYA

Abstract. In this paper we introduce θσ-conservative and θσ-regular matrices and also give ma-

trices transformation from almost convergent sequence spaces into lacunary invariant convergent

sequence spaces.

1. Introduction

Let ℓ∞ and c denote the Banach spaces of real bounded and convergent sequences

x = (xk) normed by ‖x‖ = supk |xk|, respectively.

Let σ be a mapping of the set of positive integers into itself. A continuous linear

functional φ on ℓ∞, the space of real bounded sequences, is said to be an invariant mean

or σ-mean if and only if (i) φ(x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n,

(ii) φ(e) ≥ 0, where e = (1, 1, 1, . . .) and, (iii) φ(xσ(n)) = φ(x) for all x ∈ ℓ∞. For certain

kinds of mappings σ, every invariant mean φ extends the limit functional on the space

c, in sense that φ(x) = lim x for all x ∈ c. Consequently, c ⊂ Vσ where Vσ is the set of

bounded sequences all of whose σ-means are equal.

When σ(n) = n + 1, the σ-means are the classical Banach limits on ℓ∞ and Vσ

reduces to ĉ, the space all almost convergent sequences (see, Lorentz [4]). If A = (ank)

is an infinite matrix of complex numbers such that An(x) =
∑

k ankxk is an almost

convergent sequence for every convergent sequence x = (xk), A is said to be an almost

conservative matrix (see, King [3]). When the common value of all Banach limits of

An(x) is limx for all x ∈ c, then the almost conservative matrix A is said to be almost

regular.

After, Schaefer [8] defined σ-conservative and σ-regular as following:

An infinite matrix A is said to be σ-conservative if and only if Ax = {
∑

k ankxk}n∈N
∈ Vσ

for all x ∈ c. An infinite matrix A is said to be σ-regular if and only if it is σ-conservative

and σ− limAx = limx for all x ∈ c. The necessary and sufficient conditions for a matrix

which is σ-conservative or σ-regular were given by Schacfer [8].

After, Mursaleen [5] gave absolute σ-conservative and absolute σ-regular matrices.

By a lacunary sequence θ = (kr); r = 0, 1, 2, . . . , where k0 = 0, we shall mean an

increasing sequence of nonnegative integers with kr−kr−1 → ∞ as r → ∞. The intervals
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determined by θ will be denoted by Ir = (kr−1, kr] and hr = kr − kr−1. The space of
lacunary strongly convergent sequences Nθ was defined by Freedman et al [2] as:

Nθ =

{

x = (xk) : lim
r

1

hr

∑

k∈Ir

|xk − l| = 0, for some l

}

Recently, the concept of lacunary σ-convergence was introduced by Savas [7], which is
generalization of the idea of lacunary strong almost convergence due to Das and Mishra
[1].

The sequence x = (xk) is said to be lacunary σ-convergent if limr trn(x) exists uni-
formly in n, where

trn(x) =
1

hr

∑

k∈Ir

xσk(n).

After that, the lacunary σ-convergence is going to be called as θσ-convergent. The spaces
of all θσ-convergent sequence will be denoted by Nσ

θ .
Quite recently, Nuray [6] introduced the concept θ-almost convergent and defined

θ-almost conservative and θ-almost regular as following:
The A is said to be θ-almost conservative if x ∈ c implies that the A-transform of x is

θ-almost convergent. A is said to be θ-almost regular if the A-transform of x is θ-almost
convergent to the limit of x for each x ∈ c. Also, the necessary and sufficient for these
the matrix gave by Nuray [6].

In the sequel the following notation is used: C denotes the complex numbers and N

denotes positive integers. The linear spaces of all continuous linear functional on c is
denoted by c∗. We use the special sequences, e = (1, 1, 1, . . .), ek = (0, 0, 0, . . . , 1, . . . , 0, 0,

0, . . .) (with 1 in rank k) and ∆ = {e, e0, e1, . . .}.
Now we give the definitions of θσ-conservative and θσ-regular matrices and charac-

terize the class A ∈ (ĉ, Nσ
θ ).

2. Main Results

The following notations are used throughout this paper. Let

trn(x) = Trn(Ax) =

∞
∑

k=0

a(r, n, k)xk,

where

a(r, n, k) =
1

hr

∑

j∈Ir

aσj(n),k

Definition 2.1. The matrix A is said to be θσ-conservative if x ∈ c implies that the
A-transform of x is θσ-convergent. A is said to be θσ-regualr if the A-transform of x is
θσ-convergent to the limit of x for each x ∈ c.

Theorem 2.1. Let A = (ank) be an infinite matrix and let θ = (kr) be a lacunary

sequence. Then the matrix A is θσ-conservative if and only if
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(i) supr,n {
∑

∞

k=0 |a(r, n, k)|} < ∞

(ii) there exists an α ∈ C such that

limr

∑

∞

k=0 a(r, n, k) = α uniformly in n, and

(iii) there exists an αk ∈ C, k = 0, 1, 2, . . . such that

limr a(r, n, k) = αk uniformly in n.

Proof. Suppose that A is θσ-conservative for all n. Let

trn(x) =

∞
∑

k=0

a(r, n, k)xk

We can write

|trn(x)| ≤

∞
∑

k=0

|a(r, n, k)| ‖x‖

Since trn(x) is the linear functional on c, hence trn ∈ c∗. Since A is θσ-conservative
limr→∞ trn(x) = t(x) uniformly in n. It follows that {trn(x)}r∈N is bounded for x ∈ c

and all n. Hence {‖trn‖} is bounded by uniform boundedness principle. For each p ∈ N ,

define the sequence u = (uk) by

uk =

{

sign a(r, n, k); 0 ≤ k ≤ p

0; p > k

Then u ∈ c, ‖u‖ = 1 for all n, and

trn(u) =

p
∑

k=0

|a(r, n, k)|.

Hence |trn(u)| ≤ ‖trn‖ ‖u‖ = ‖trn‖. Therefore
∑

∞

k=0 |a(r, n, k)| ≤ ‖trn‖, so that (i)
follows.

Since e and ek are convergent sequences, k = 0, 1, 2, . . ., limr→∞ trn(e) and limr→∞

trn(ek) must exist uniformly in n. Hence (ii) and (iii) must hold.
Now suppose that (i)-(iii) hold. Put

trn(x) =

∞
∑

k=0

a(r, n, k)xk.

Then we can write, for all n,

|trn(x)| ≤

∞
∑

k=0

|a(r, n, k)| ‖x‖.

Therefore |trn(x)| ≤ Rn‖x‖ by (i), where Rn is a constant independent of r. Hence
trn ∈ c∗ and the sequence {‖trn‖} is bounded for each n. So, (ii) and (iii) imply that

limr→∞ trn(e) and limr→∞ trn(ek) exist for n, k = 0, 1, 2, . . .. Since {e, e0, e1, . . .} is a
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fundamental set in c, it follows that limr→∞ trn(x) = tn(x) exists and tn ∈ c∗. Therefore

tn has the form

tn(x) = λ

[

tn(e) −

∞
∑

k=0

tn(ek)

]

+

∞
∑

k=0

xktn(ek)

where λ = limk xk. But tn(e) = α and tn(ek) = αk, k = 0, 1, 2, . . ., by (ii) and (iii),

respectively. Hence limr→∞ trn(x) = tn(x) exists for each x ∈ c, n = 0, 1, 2, . . . , with

t(x) = λ

[

α −

∞
∑

k=0

αk

]

+

∞
∑

k=0

xkαk (2.1)

Since trn ∈ c∗ for each r and n, it has the form

trn(x) = λ

[

trn(e) −

∞
∑

k=0

trn(ek)

]

+

∞
∑

k=0

xktrn(ek) (2.2)

It is easy to see from (2.1) and (2.2) the convergence of {trn(x)} to t(x) is uniform in

n, since limr→∞ trn(e) = α and limr→∞ trn(ek) = αk, uniformly in n. Therefore A is

θσ-conservative. This completes the proof.

Theorem 2.2. Let A = (ank) be an infinite matrix and let θ = (kr) be a lacunary

sequence. Then the matrix A is θσ-regular if and only if

a) supr,n {
∑

∞

k=0 |a(r, n, k)|} < ∞

b) limr

∑

∞

k=0 a(r, n, k) = 1 uniformly in n, and

c) limr a(r, n, k) = 0 uniformly in n, k = 0, 1, 2, . . ..

Proof. Suppose that A is θσ-regular. Then A is θσ-conservative so that (a) must

hold by Theorem 2.1. (b) and (c) must hold since the A-transform of the sequences ek

and e must be θσ-convergent to 0 and 1, respectively.

Now suppose that (a), (b) and (c) hold. Then A is θσ-conservative by Theorem 2.1.

Therefore limr→∞ trn(x) = tn(x) uniformly in n for each x ∈ c. The representation (2.1)

gives t(x) = limk xk. Hence A is θσ-regular.

We are going to give that the results concerning the theorems 2.1 and 2.2.

If σ(n) = n + 1, the theorems 2.1 and 2.2 reduce to the results of Nuray [6]. When

θ = 2r, the theorems above reduce to the results of Schaefer [8], and if σ(n) = n + 1

and θ = 2r, then the theorems (2.1) and (2.2) reduce to the results of King [3]. We

characterize the matrix transformation A ∈ (ĉ, Nσ
θ ). We have

Theorem 2.3. Let the matrix A be θσ-regular. A ∈ (ĉ, Nσ
θ ) if and only if

lim
r→∞

∞
∑

k=0

|a(r, n, k) − a(r, n, k + 1)| = 0 (2.3)

uniformly in n.
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Proof. Suppose that (2.3) holds. Let (xk) be almost convergent and limxk = L. For
any arbitrary ε > 0 we can find a natural number p such that

1

p
(xk + xk+1 + · · · + xk+p−1) = L + αk, |αk| < ε, k = 0, 1, 2, . . .

the term above, multiplying by a(r, n, k) and adding we have

1

p

∞
∑

k=1

a(r, n, k)(xk + xk+1 + · · · + xk+p−1) = LArn +

∞
∑

k=1

a(r, n, k)αk (2.4)

Since Arn =
∑

∞

k=1 a(r, n, k) → 1 and a(r, n, k) → 0 as r → ∞, uniformly in n, respec-
tively, we have

1

p

∞
∑

k=1

a(r, n, k)(xk + xk+1 + · · · + xk+p−1)

=
1

p





∞
∑

k=1

a(r, n, k)xk +

∞
∑

k=2

a(r, n, k − 1)xk + · · · +

∞
∑

k=p−1

a(r, n, k − p + 1)xk





=
1

p

p−2
∑

k=1

a(r, n, k)(xk + xk+1 + · · · + xk+p−2)

+
1

p

∞
∑

k=p−1

xk(a(r, n, k) + · · · + a(r, n, k − p − 1))

= o(1) +
1

p

∞
∑

k=p−1

xk(a(r, n, k − p − 1) + · · · + a(r, n, k))

In this case, we have

1

p

∞
∑

k=1

a(r, n, k)(xk + xk+1 + · · · + xk+p−1)

= o(1) + yrn +
1

p

∞
∑

k=p−1

xk[(a(r, n, k − p + 1) + · · · + a(r, n, k)) − a(r, n, k)] (2.5)

where yrn =
∑

∞

k=1 a(r, n, k)xk.
Now the absolute value of the sum on the right hand side of (2.5) is not larger than

∣

∣

∣

∣

∣

∣

1

p

∞
∑

k=p−1

xk[(a(r, n, k − p + 1) + · · · + a(r, n, k)) − pa(r, n, k)]

∣

∣

∣

∣

∣

∣

≤
1

p

∞
∑

k=p−1

|(a(r, n, k − p + 1) + · · · + a(r, n, k)) − pa(r, n, k)| ‖x‖
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≤
‖x‖

p

p−1
∑

p=0

∞
∑

k=1

|(a(r, n, k − p) − a(r, n, k)|

≤
p − 1

2
‖x‖

∞
∑

k=1

|(a(r, n, k) − a(r, n, k + 1)|

for all n. From (2.4) and (2.5), we have

yrn = LArn +

∞
∑

k=p

a(r, n, k)αk + o(1).

Since supr,n

∑

k |a(r, n, k)| = M , we can write |
∑

k a(r, n, k)αk| ≤ Mε. Taking LArn =

L + o(1). From here, we have, for all n,

|yrn − L| =

∣

∣

∣

∣

∣

∣

LArn − L +

∞
∑

k=p−1

a(r, n, k)αk + o(1)

∣

∣

∣

∣

∣

∣

≤





∣

∣

∣

∣

∣

∣

∞
∑

k=p−1

a(r, n, k)αk

∣

∣

∣

∣

∣

∣

+ o(1)



 ≤ (M + 1)ε

Therefore limr→∞ yrn = L uniformly in n. This means that the condition (2.3) is suffi-

cient.

We now assume that (2.3) does not hold. We shall construct a sequence (xk) for which

limxk = 0 but which is not summable by the matrix Arn. According to our assumption,

there is an ε > 0, such that for an infinitely many r

∞
∑

k=0

|a(r, n, k) − a(r, n, k + 1)| > 8ε

For every such r we either have

∞
∑

l=0

|a(r, n, 2l)− a(r, n, 2l + 1)| > 4ε

or
∞
∑

l=0

|a(r, n, 2l + 1) − a(r, n, 2l + 2)| > 4ε

for all n. We now construct three increasing sequences of natural numbers (rj), (pj) and

(qj) where q−1 = 0 < p1 < q1 < p2 < · · ·. We first choose r1, p1 and q1 such that, for all

n,

|a(r1, n, 0)| <
ε

2
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q1−p1−1

2
∑

l=0

|a(r1, n, p1 + 2l)− a(r1, n, p1 + 2l + 1)| > 2ε

∞
∑

k=q1+1

|a(r1, n, k)| <
ε

2

If the numbers (rv), (pv) and (qv), v = 1, 2, 3, . . . , j − 1, are already known, (rj), (pj),

(qj) (where qj−1 < pj < qj and one of the numbers pj, qj even. The other, odd) are

chosen such that, for all n,

qj−1
∑

k=0

|a(r1, n, k)| <
ε

2

qj−pj−1

2
∑

l=0

|a(rj , n, pj + 2l) − a(rj , n, pj + 2l + 1)| > 2ε

∞
∑

k=qj+1

|a(rj , n, k)| <
ε

2
.

We now defined the sequence x = (xk) as following

xk =







xpj+2l = (−1)jsgn(a(rj , n, pj + 2l) − a(rj , n, pj + 2l + 1))

xpj+2l+1 = −xpj+2l

xk = 0; qj−1 < k < qj , j = 1, 2, . . . and l = 0, 1, 2, . . . ,
qj−pj−1

2

Under these conditions, we havew for our sequence

|yrj,n
| =

∣

∣

∣

∑

k

a(rj , n, k)xk

∣

∣

∣

≥

qj−pj−1

2
∑

l=0

|a(rj , n, pj + 2l) − a(rj , n, pj + 2l + 1)| −
ε

2
−

ε

2

> ε

and sign(yrj,n) = (−1)j for all n. Hence it follows that the sequene yrn for all n, diverges.

It is easy to see that lim xk = 0. This completes the proof.
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