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ON SEMI-SYMMETRIC METRIC CONNECTION IN

SUB-RIEMANNIAN MANIFOLD

YANLING HAN, FENGYUN FU AND PEIBIAO ZHAO

Abstract. The authors firstly in this paper define a semi-symmetric metric non-holonomic

connection (in briefly, SS-connection) on sub-Riemannian manifolds. An invariant un-

der a SS-connection transformation is obtained. The authors then further give a result

that a sub-Riemannian manifold (M ,V0, g ,∇̄) is locally horizontally flat if and only if M is

horizontally conformally flat and horizontally Ricci flat.

1. Introduction

In order to formulate a unified field theory, H. Weyl [8] introduced a generalization of Rie-

mannian geometry. Weyl’s theory provides an instructive example of non-Riemannian con-

nections. These non-Riemannian connections are exactly the semi-symmetric metric con-

nection which firstly proposed by K.Yano [10] in 1970. The study of various semi-symmetric

connections on Riemannian or non-Riemannian manifolds has been an active field over the

past seven decades. In particular, since the formidable papers [1, 3, 4, 5, 6, 7] were published

in succession, these works had stimulated such research fields to present a scene of prosper-

ity, and demonstrate the importance of this topic.

In this paper we will do a similar argument on sub-Riemannian manifolds, that is, we will

introduce a semi-symmetric metric connection (SS-connection) on sub-Riemannian mani-

folds, and investigate the geometries of sub-Riemannian manifolds equipped with a class of

SS-connection(defined below) by combining the idea of K. Yano with the work of Zhao and

Jiao [11].

The paper is organized as follows. In Section 2 we collect some necessary definitions and

notations about sub-Riemannian manifolds which will be used later . Then we define a class

of semi-symmetric metric connection(i.e. SS-connection defined below) based on the unique

Received April 29, 2015, accepted March 30, 2016.
2010 Mathematics Subject Classification. 53C20, 53D11.
Key words and phrases. Sub-Riemmannian manifolds, SS-connections, horizontal curvature tensors.
Corresponding author: Peibiao Zhao.
This work is supported by National Natural Science Foundation of China (No. 11371194, No.11526055)

and by Graduate student Innovation Engineering of Jiangsu Province(No.CXZZ130186).

373

http://dx.doi.org/10.5556/j.tkjm.47.2016.1908


374 YANLING HAN, FENGYUN FU AND PEIBIAO ZHAO

SR-connection. Moreover we find that the horizontal Weyl conformal curvature tensors are

kept unchanged under the horizontal projective transformation. A sufficient and necessary

condition that a sub-Riemannian manifold (M ,V0, g ,∇̄) is locally horizontally flat is given at

the end of Section 3. In section 4, we explain our results by Heisenberg group.

2. Preliminaries

Let (M ,V0, g ) be a n-dimensional sub-Riemannian manifold, where V0 is a ℓ-dimensional

sub-bundle, that is the so-called horizontal bundle, g is called the sub-Riemannian metric. In

the paper, we denote by Γ(V0) the C∞(M ) -module of smooth sections on V0. Also, if not

stated otherwise, we use the following ranges for indices: i , j ,k ,h, · · · ∈ {1, · · · ,ℓ}, α,β, · · · ∈

{ℓ+1, · · · ,n}. The repeated indices with one upper index and one lower index indicates sum-

mation over their range.

In order to study the geometry of {M ,V0, g }, we suppose that there exists a Riemannian

metric 〈·, ·〉 and V1 is taken as the complementary orthogonal distribution to V0 in T M , then,

there holds V0 ⊕V1 = T M . Here we call V1 the vertical distribution. Denote by X0 the projec-

tion of the vector field X from T M onto V0, and by X1 the projection of the vector field X from

T M onto V1.

Assume that {ei } is a basis of V0, then the formulas ∇ei e j = Γ
k
i j ek , define ℓ3 functions

as Γ
k
i j , we call Γk

i j the connection coefficients of the non-holonomic connection ∇. It is well

known that the Lie bracket [·, ·] on M is a Lie algebra structure of smooth tangent vector fields

Γ(T M ), then it is easy to see that the following formula

[ei ,e j ]0 =Ω
k
i j ek ,

determine ℓ3 functions Ωk
i j .

Theorem 2.1 ([2, 9]). Given a sub-Riemannian manifold (M ,V0, g ), then there exists a unique

non-holonomic connection satisfying

(∇Z g )(X ,Y ) = Z (g (X ,Y ))− g (∇Z X ,Y )− g (X ,∇Z Y ) = 0, (2.1)

T (X ,Y ) = ∇X Y −∇Y X − [X ,Y ]0 = 0. (2.2)

Definition 2.1. A non-holonomic connection is said to be metric if it satisfies (2.1) and sym-

metric if it satisfies (2.2). A non-holonomic connection satisfying (2.1) and (2.2) is called a

sub-Riemannian connection, in short, SR-connection.

Remark 2.1. For given sub-Riemannian metric g , it is extended to Riemannian metric ḡ in

T M . If we denote D by the Levi-civita connection associated with ḡ , then the SR-connection
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is exactly the projection of Levi-civita connection D on the horizontal bundle, namely, for any

horizontal vectors X ,Y , there holds

∇X Y = (DX Y )0.

Theorem 2.1 is the counterpart of the existence and uniqueness of the Levi-Civita con-

nection in Riemannian geometry. It can be regarded as the projection of Levi-Civita connec-

tion on the horizontal bundle. We will use this SR-connection to build the relative transfor-

mative theories of the semi-symmetric metric connection.

For sub-Riemannian manifolds, J. A. Schouten first considered the curvature problem of

non-holonomic connections(see [2]), he defined a curvature tensor as follows:

Definition 2.2. A horizontal curvature tensor is a mapping R H : Γ(V0)×Γ(V0) → Γ(V0) defined

by

R H (X ,Y )Z =∇X∇Y Z −∇Y ∇X Z −∇[X ,Y ]0
Z − [[X ,Y ]1, Z ]0, (2.3)

where X , Y , Z ∈Γ(V0).

Proposition 2.2. For any horizontal vector fields X ,Y , Z ,V ,W ∈Γ(V0),

(1) R H (X ,Y )Z +R H (Y , X )Z = 0;

(2) R H (X ,Y )Z +R H (Y , Z )X +R H (Z , X )Y = 0;

(3) R H (X ,Y , Z ,W )+R H (Y , X , Z ,W ) = [Z ,W ]1g (Y , X )−g ([[Z ,W ]1, X ]0,Y )−g ([[Z ,W ]1,Y ]0, X ).

where R H (X ,Y , Z ,W ) = g (R H (X ,Y )Z ,W ).

Proof. (1), (2) follow from Definition 2.2 and the Jacobi identity. One need to show formula

(3).

R H (X ,Y , Z ,W )+R H (Y , X , Z ,W ) = g (R H (Z ,W )Y , X )+ g (R H (Z ,W )X ,Y )

= g (∇Z∇W Y , X )− g (∇W ∇Z Y , X )− g (∇[Z ,W ]0
Y , X )− g ([[Z ,W ]1,Y ]0, X )

+g (∇Z∇W X ,Y )− g (∇W ∇Z X ,Y )− g (∇[Z ,W ]0
X ,Y )− g ([[Z ,W ]1, X ]0,Y )

= Z g (∇W Y , X )− g (∇W Y ,∇Z X )−W g (∇Z Y , X )+ g (∇Z Y ,∇W X )− g ([[Z ,W ]1,Y ]0, X )

+g (∇Z∇W X ,Y )− g (∇W ∇Z X ,Y )− g (∇[Z ,W ]0
X ,Y )− g ([[Z ,W ]1, X ]0,Y )

= Z {W g (Y , X )− g (Y ,∇W X )}−W g (Y ,∇Z X )+ g (Y ,∇W ∇Z X )−W {Z g (Y , X )− g (Y ,∇Z X )}

+Z g (Y ,∇Z X )− g (Y ,∇Z∇W X )− [Z ,W ]0g (Y , X )− g ([[Z ,W ]1,Y ]0, X )

+g (∇Z∇W X ,Y )− g (∇W ∇Z X ,Y )− g (∇[Z ,W ]0
X ,Y )− g ([[Z ,W ]1, X ]0,Y )

= −g ([[Z ,W ]1,Y ]0, X )− g ([[Z ,W ]1, X ]0,Y )+ {Z W −W Z − [Z ,W ]0}g (Y , X )
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= [Z ,W ]1g (Y , X )− g ([[Z ,W ]1, X ]0,Y )− g ([[Z ,W ]1,Y ]0, X ).

This finishes the proof. ���

Let {ei } be a basis of V0, we denote by

R H (ei ,e j )ek = (R H )h
i j k eh ,∇ei e j =Γ

k
i j ek , [ei ,e j ]0 =Ω

k
i j ek ,

[ei ,e j ]1 = Mα
i j eα, [[ei ,e j ]1,ek ]0 = Mα

i jΛ
h
αk eh .

Then we know that

(R H )h
i j k = ei (Γh

j k )−e j (Γh
i k )+Γ

e
j kΓ

h
i e −Γ

e
i kΓ

h
j e −Ω

e
i jΓ

h
ke −Mα

i jΛ
h
αk . (2.4)

Since ∇ is torsion free, then we get

∇ei e j −∇e j ei − [ei ,e j ]0 = 0,

so we arrive at

Γ
k
i j −Γ

k
j i =Ω

k
i j , (2.5)

we further have

[ei ,e j ]−Ω
k
i j ek = Mα

i j eα. (2.6)

In this basis, the identity (1) and (2) in Proposition 2.2 can be rewritten, respectively, as

(R H )h
i j k =−(R H )h

j i k , (2.7)

(R H )h
i j k + (R H )h

j ki + (R H )h
ki j = 0. (2.8)

We call (2.8) the first Bianchi identity of the SR-connection ∇.

In (2.8), by taking j = h = e and using (2.7), we get

(R H )e
ki e = (R H )e

kei − (R H )e
i ek . (2.9)

It is clear that (R H )e
ki e is an anti-symmetric (0,2) tensor , which is different from Riemannian

case. So

0= (R H )e
ki e g ki

+ (R H )e
i ke g ki

= (R H )e
ki e g ki

+ (R H )e
i ke g i k

= 2(R H )e
ki e g ki .

Now multiplying g ki at both side of (2.9), then g ki (R H )e
kei − (R H )e

i ek g i k = 0. Similar to the

case of Riemannian manifolds, we call R H = g i k (R H )e
i ek the horizontal scalar curvature, and

(R H )e
i ek the horizontal Ricci curvature tensor of horizontal curvature tensors.
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3. Main theorems and proofs

In view of the unique SR-connection in sub-Riemannian manifolds, we firstly introduce

a very important non-holonomic connection-semi-sub-Riemannian connection. Roughly

speaking, a semi-sub-Riemannian connection is a non-holonomic connection with non-

vanishing torsion tensor which is compatible with sub-Riemannian metric. Now we give a

new definition below

Definition 3.1. A non-holonomic connection is called a semi-sub-Riemannian connection,

in short, a SS-connection, if it satisfies







(∇̄Z g )(Y , Z ) = Z g (X ,Y )− g (∇̄Z X ,Y )− g (X ,∇̄Z Y ) = 0,∀X ,Y , Z ∈V0,

T̄ (X ,Y ) = ∇̄X Y −∇̄X Y − [X ,Y ]0 =π(Y )X −π(Y )X ,∀X ,Y , Z ∈V0.
(3.1)

where π is a smooth 1-form defined on the horizontal bundle.

Remark 3.1. It’s obvious that the SS-connection is a metric connection. It is also called a SS-

connection transformation from the transformation’s theory. We denote a sub-Riemannian

manifold (M ,V0, g ) admitting a SS-connection ∇̄ by (M ,V0, g ,∇̄).

By a straight forward calculation, one can derive that the SS-connection ∇̄ is necessarily

of the form,

∇̄X Y =∇X Y +π(Y )X − g (X ,Y )P, (3.2)

where P is a horizontal vector field defined by g (P, X ) = π(X ) for any X ∈ V0. In local frame

{ei }, denote by π(ei ) =πi , πi = g i jπ j , then we know

Γ̄
k
i j =Γ

k
i j +δk

i π j − gi jπ
k , (3.3)

and the horizontal curvature tensor of the SS-connection ∇̄ is

(R̄ H )h
i j k = ei (Γ̄h

j k )−e j (Γ̄h
i k )+ Γ̄

e
j k Γ̄

h
i e − Γ̄

e
i k Γ̄

h
j e − Ω̄

e
i j Γ̄

h
ke − M̄α

i j Λ̄
h
αk , (3.4)

where

[ei ,e j ]0 = Ω̄
k
i j ek , [ei ,e j ]1 = M̄α

i j eα, [[ei ,e j ]1,ek ]0 = M̄α
i j Λ̄

h
αk eh ,

then by using (2.5), (2.6) and (3.3), we have

Ω̄
k
i j =Ω

k
i j , M̄α

i j = Mα
i j ,Λ̄h

αk =Λ
h
αk . (3.5)

Substituting (3.3) and (3.5) into (3.4) and by straightway computation, we can get the relation

between the horizontal curvature tensor of ∇̄ and ∇ as follows

(R̄ H )h
i j k = (R H )h

i j k +δh
j πi k −δh

i π j k +πh
j gi k −πh

i g j k , (3.6)
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where

πi k =∇iπk −πiπk +
1

2
gi kπhπ

h ,π
j
i =πi k g j k ,∇iπ j = ei (π j )−Γ

k
i jπk . (3.7)

It is not hard to derive that (R̄ H )h
i j k satisfy the following properties,







(R̄ H )h
i j k + (R̄ H )h

j i k = 0;

(R̄ H )h
i j k

+ (R̄ H )h
j ki

+ (R̄ H )h
ki j

= δh
j (πi k −πki )+δh

i (π j k −πk j )+δh
k

(πi j −π j i ).

The second formula is called the first Bianchi identity of the SS-connection. Contracting j

and h in (3.6), we have

(R̄ H )e
i ek = (R H )e

i ek + (ℓ−2)πi k +αgi k , (3.8)

where α = πi j g i j = πi
i . It is no longer symmetric about the two indexes unless πi k = πi k ,

namely π is closed on the horizontal bundle. Now when multiplying (3.8) by g i k we get

(R̄)H
=R H

+2(ℓ−1)α. (3.9)

We call R̄ H the horizontal curvature, and hence (R̄ H )e
i ek the horizontal Ricci curvature tensors

w.r.t. the SS-connection.

For the SS-connection ∇̄, we define the horizontal Weyl conformal curvature tensors by

C̄ h
i j k = (R̄ H )h

i j k −
1

ℓ−2
{δh

j ((R̄ H )e
i ek −

1

ℓ
(R̄ H )e

i ke −
R̄ H

2(ℓ−1)
gi k )−δh

i ((R̄ H )e
j ek

−
1

ℓ
(R̄ H )e

j ke −
R̄ H

2(ℓ−1)
g j k )+ gi k ((R̄ H )e

j e f g f h
−

1

ℓ
(R̄ H )e

j f e g f h
−

R̄ H

2(ℓ−1)
δh

j )

−g j k ((R̄ H )e
i e f g f h

−
1

ℓ
(R̄ H )e

i f e g f h
−

R̄ H

2(ℓ−1)
δh

i )}+
1

ℓ
δh

k (R̄ H )e
i j e . (3.10)

Remark 3.2. The horizontal Weyl conformal curvature tensors C̄ h
i j k will degenerate into the

sub-conformal Weyl curvature tensors defined by [11], if the 1-form π vanishes. It is natural

to assume ℓ> 2 from now.

Theorem 3.1. The horizontal Weyl conformal curvature tensors are invariants under the SS-

connection transformation.

Proof. In virtue of Equation (3.6), one has

(R̄ H )h
i j k + (R̄ H )h

j i k = 0,

and

(R̄ H )h
i j k + (R̄ H )h

j ki + (R̄ H )h
ki j =δh

j (πi k −πki )+δh
i (πk j −π j k )+δh

k (π j i −πi j ).
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Let k = h = e , one gets

(R̄ H )e
i j e = (R̄ H )e

i e j − (R̄ H )e
j ei + (ℓ−2)(π j i −πi j ).

Considering (3.8), one further obatins

(R̄ H )e
i j e = (R H )e

i e j − (R H )e
j ei = (R H )e

i j e . (3.11)

The substitution of Equations (3.6), (3.8),(3.9) and (3.11)into (3.10) implies

C̄ h
i j k = (R̄ H )h

i j k −
1

ℓ−2
{δh

j ((R̄ H )e
i ek −

1

ℓ
(R̄ H )e

i ke −
R̄ H

2(ℓ−1)
gi k )−δh

i ((R̄ H )e
j ek

−
1

ℓ
(R̄ H )e

j ke −
R̄ H

2(ℓ−1)
g j k )+ gi k ((R̄ H )e

j e f g f h
−

1

ℓ
(R̄ H )e

j f e g f h
−

R̄ H

2(ℓ−1)
δh

j )

−g j k ((R̄ H )e
i e f g f h

−
1

ℓ
(R̄ H )e

i f e g f h
−

R̄ H

2(ℓ−1)
δh

i )}+
1

ℓ
δh

k (R̄ H )e
i j e

= (R H )h
i j k +δh

j πi k −δh
i π j k +πh

j gi k −πh
i g j k

−
1

ℓ−2
δh

j [(R H )e
i ek + (ℓ−2)πi k +αgi k −

1

ℓ
(R H )e

i ke −
R H +2(ℓ−1)α

2(ℓ−1)
gi k ]

+
1

ℓ−2
δh

i [(R H )e
j ek + (ℓ−2)π j k +αg j k −

1

ℓ
(R H )e

j ke −
R H +2(ℓ−1)α

2(ℓ−1)
g j k ]

−
1

ℓ−2
gi k [g f h((R H )e

j e f + (ℓ−2)π j f +αg j f )−
1

ℓ
g f h(R H )e

j f e −
R H +2(ℓ−1)α

2(ℓ−1)
δh

j ]

+
1

ℓ−2
g j k [g f h(Re

i e f + (ℓ−2)πi f +αgi f )−
1

ℓ
g f h(R H )e

i f e −
R H +2(ℓ−1)α

2(ℓ−1)
δh

i ]

+
1

ℓ
δh

k (R H )e
i j e

= (R H )h
i j k −

1

ℓ−2
{δh

j ((R H )e
i ek −

1

ℓ
(R H )e

i ke −
R H

2(ℓ−1)
gi k )−δh

i ((R H )e
j ek

−
1

ℓ
(R H )e

j ke −
R H

2(ℓ−1)
g j k )+ gi k ((R H )e

j e f g f h
−

1

ℓ
(R H )e

j f e g f h
−

R H

2(ℓ−1)
δh

j )

−g j k ((R H )e
i e f g f h

−
1

ℓ
(R H )e

i f e g f h
−

R H

2(ℓ−1)
δh

i )}+
1

ℓ
δh

k (R H )e
i j e

= C h
i j k .

This finishes the proof. ���

Definition 3.2. A sub-Riemannian manifold (M ,V0, g ,∇̄) is locally horizontally flat if and only

if the horizontal curvature tensors associated with the SS-connection ∇̄ equal zero, i.e. (R̄ H )h
i j k =

0.

Theorem 3.2. A sub-Riemannian manifold (M ,V0, g ,∇̄) is locally horizontally flat if and only

if M is horizontally conformally flat and horizontally Ricci flat.
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Proof. If (M ,V0, g ,∇̄) is locally horizontally flat, then (R̄ H )h
i j k = 0, w.r.t. the SS-connection,

that is, there holds

(R H )h
i j k = δh

i π j k −δh
j πi k +πh

i g j k −πh
j gi k , (3.12)

let j = h = e , we obtain

(R H )e
i ek = (2−ℓ)πi k −αgi k . (3.13)

Multiplying the Equation (3.13) by g i k we get R H = (R H )e
i ek g i k = 2(1−ℓ)α, so we have

α=
R H

2(1−ℓ)
. (3.14)

Substituting (3.14) into (3.13), we get

πi k =
1

2−ℓ
((R H )e

i ek −
R H

2(ℓ−1)
gi k ). (3.15)

Similarly, we substitute (3.15) into (3.12), we have

(R H )h
i j k = −

1

ℓ−2
(δh

i (R H )e
j ek −δh

j (R H )e
i ek + g j k (R H )e

i e f g f h
− gi k (R H )e

j e f g f h )

+
R H

(ℓ−2)(ℓ−1)
(g j kδ

h
i − gi kδ

h
j ), (3.16)

and (R H )e
i j e = 0, which means C h

i j k = 0. Hence one has C̄ h
i j k = 0 because of Theorem 3.1.

Conversely, since M is horizontally conformally flat, C̄ h
i j k = 0, then C h

i j k = 0 in view of

Theorem 3.1, and

(R H )h
i j k =

1

ℓ−2
{δh

j ((R H )e
i ek −

1

ℓ
(R H )e

i ke −
R H

2(ℓ−1)
gi k )−δh

i ((R H )e
j ek

−
1

ℓ
(R H )e

j ke −
R H

2(ℓ−1)
g j k )+ gi k ((R H )e

j e f g f h
−

1

ℓ
(R H )e

j f e g f h
−

R H

2(ℓ−1)
δh

j )

−g j k ((R H )e
i e f g f h

−
1

ℓ
(R H )e

i f e g f h
−

R H

2(ℓ−1)
δh

i )}−
1

ℓ
δh

k (R H )e
i j e .

By contracting with k and h, one obtains (R H )e
i j e = 0, and hence (R H )e

i e j = (R H )e
j ei because

of the first Bianchi identity of the SR-connection. Therefore πi k =
1

2−ℓ
((R H )e

i ek
−

R H

2(ℓ−1)
gi k ) is

symmetric, and hence one has the first Bianchi identity of the SS-connection

(R̄ H )h
i j k + (R̄ H )h

j ki + (R̄ H )h
ki j = 0,

one further gets by contracting k and h,

(R̄ H )e
i j e = (R̄ H )e

i e j − (R̄ H )h
j ei .
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On the other hand, πi k =
1

2−ℓ
((R H )e

i ek
−

R H

2(ℓ−1)
gi k ) means (R̄ H )e

i ek
= 0 based on the fact

(3.8) and (3.9), and C̄ h
i j k = 0 can derive (R̄ H )e

i ke = 0, so one has R̄ H = 0, and hence

(R̄ H )h
i j k = C̄ h

i j k +
1

ℓ−2
{δh

j ((R̄ H )e
i ek −

1

ℓ
(R̄ H )e

i ke −
R̄ H

2(ℓ−1)
gi k )−δh

i ((R̄ H )e
j ek

−
1

ℓ
(R̄ H )e

j ke −
R̄ H

2(ℓ−1)
g j k )+ gi k ((R̄ H )e

j e f g f h
−

1

ℓ
(R̄ H )e

j f e g f h
−

R̄ H

2(ℓ−1)
δh

j )

−g j k ((R̄ H )e
i e f g f h

−
1

ℓ
(R̄ H )e

i f e g f h
−

R̄ H

2(ℓ−1)
δh

i )}−
1

ℓ
δh

k (R̄ H )e
i j e

= 0,

where the second equality follows from Equations (3.11) and Theorem 3.1.

This completes the proof of Theorem 3.2. ���

4. Examples

Let M = H n be a Heisenberg group with the noncommutative law

x ◦ y = (x1 + y1, x2 + y2, · · · , xn + yn +
1

2
Σ

n
i , j=1(xi yn+ j −xn+ j yi )).

for any x = (xi , xn+i , x2n+1), y = (yi , yn+i , y2n+1). The left invariant vectors are given by

ei =
∂

∂xi
−

xn+i

2

∂

∂x2n+1
,en+i =

∂

∂xn+i
+

xi

2

∂

∂x2n+1
,e2n+1 =

∂

∂x2n+1
.

Take the horizontal bundle V0 spanned by ei ,en+i . Consider V1 = span{e2n+1}, and g as the

Riemannian metric which {ei ,en+i ,e2n+1} is an orthonomal basis. We note that the only non-

trivial commutator is

[ei ,en+ j ] =−δi j e2n+1. (4.1)

We construct the Levi-civita connection compatible with the Riemannian metric g via the

usual Kozul formula


















Dei en+ j =−
1
2δi j e2n+1,Dei e2n+1 =

1
2 en+i ,

Den+i e j =
1
2δi j e2n+1,Den+i e2n+1 =−

1
2 ei ,

De2n+1
ei =−1

2
en+i ,De2n+1

en+i =
1
2

ei ,

the left covariant derivatives vanish. So the unique SR-connection is

∇ei en+ j = (Dei en+ j )0 = 0,

and hence for all X ,Y ∈V0 with Y =Σ
n
i=1

(Y i ei +Y n+i en+i ),

∇X Y =Σ
n
i=1(X (Y i )ei +X (Y n+i )en+i ).
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If we denote the horizontal vector field Z by Z = Σ
2n
k=1

Z kek , then the horizontal curvature

tensor can be given exactly as

R H (X ,Y )Z = ∇X∇Y Z −∇Y ∇X Z −∇[X ,Y ]0
Z − [[X ,Y ]1, Z ]0

= Σ
2n
k=1(X Y (Z k )ek −Y X (Z k )ek − [X ,Y ]0(Z k )ek

−[X ,Y ]1(Z k )ek −Z k [[X ,Y ]1,ek ]0)

= Σ
2n
k=1([X ,Y ]− [X ,Y ]0 − [X ,Y ]1)(Z k )ek −Σ

2n
k=1Z k [[X ,Y ]1,ek ]0

= 0, (4.2)

where the last equality follows from Equation (4.1) and

[X ,Y ] = Σ
n
i , j=1(X i ei (Y j )e j +X i Y j ei e j +X n+i en+i (Y j )e j +X n+i Y j en+i e j

+X i ei (Y n+ j )en+ j +X i Y n+ j ei en+ j +X n+i en+i (Y n+ j )en+ j +X n+i Y n+ j en+i en+ j )

−Σ
n
i , j=1(Y j e j (X i )ei +X i Y j e j ei +Y n+ j en+ j (X i )e j +Y n+ j X i en+ j ei

+Y j e j (X n+i )en+i +Y j X n+i e j en+i +Y n+ j en+ j (X n+i )en+i +Y n+ j X n+i en+ j en+i )

= Σ
n
i , j=1(X i ei (Y j )e j +X n+i en+i (Y j )e j +X i ei (Y n+ j )en+ j +X n+i en+i (Y n+ j )en+ j

−Y j e j (X i )ei −Y n+ j en+ j (X i )e j −Y j e j (X n+i )en+i −Y n+ j en+ j (X n+i )en+i

+X i Y j [ei ,e j ]+X n+i Y j [en+i ,e j ]+X i Y n+ j [ei ,en+ j ]+X n+i Y n+ j [en+i ,en+ j ]),

so

[X ,Y ]1 = Σ
n
i , j=1(X i Y j [ei ,e j ]1 +X n+i Y j [en+i ,e j ]1 +X i Y n+ j [ei ,en+ j ]1

+X n+i Y n+ j [en+i ,en+ j ]1)

= Σ
n
i (X n+i Y i

−X i Y n+i )e2n+1.

Hence the corresponding horizontal Weyl conformal curvature tensors C h
i j k = 0.

Now we define a SS-connection by

∇̄X Y =Σ
2n
i , j ,k=1(X i ei (Y k )+Y jπ j X k

−X i Y j gi jπ
k )ek ,

the horizontal curvature tensors are given, based on Equation (4.2), by,

(R̄ H )h
i j k = δh

j πi k −δh
i π j k +πh

j gi k −πh
i g j k .

By contracting k and h, one obtains (R̄ H )e
i j e = 0, and

(R̄ H )e
i ek = 2(n −1)πi k +αgi k ; (R̄ H )e

j ei − (R̄ H )e
i e j = 2(2n −1)(πi j −π j i ), (4.3)

so if πi j = π j i , one can define the horizontal Ricci tensor and horizontal curvature with re-

spect to the SS-connection.
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To show H n is a horizontal flat manifold, one need to show the horizontal Weyl conformal

curvature tensors C̄ h
i j k equal zero. In fact,

C̄ h
i j k = (R̄ H )h

i j k −
1

2(n −1)
{δh

j ((R̄ H )e
i ek −

1

2n
(R̄ H )e

i ke −
R̄ H

2(2n −1)
gi k )−δh

i ((R̄ H )e
j ek

−
1

2n
(R̄ H )e

j ke −
R̄ H

2(2n −1)
g j k )+ gi k ((R̄ H )e

j e f g f h
−

1

2n
(R̄ H )e

j f e g f h
−

R̄ H

2(2n −1)
δh

j )

−g j k ((R̄ H )e
i e f g f h

−
1

2n
(R̄ H )e

i f e g f h
−

R̄ H

2(2n −1)
δh

i )}+
1

2n
δh

k (R̄ H )e
i j e

= (R̄ H )h
i j k −

1

2(n −1)
{δh

j (2(n −1)πi k +αgi k )−
R̄ H

2(n −1)
gi kδ

h
j −δh

i (2(n −1)π j k +αg j k )

+
R̄ H

2(2n −1)
g j kδ

h
i + gi k (2(n −1)π j f +αg j f )g f h

−
R̄ H

2(2n −1)
gi kδ

h
j

−g j k (2(n −1)πi f +αgi f )g f h
+

R̄ H

2(2n −1)
g j kδ

h
i }

= −
α

n −1
gi kδ

h
j +

α

n −1
g j kδ

h
i +

R̄ H

2(n −1)(n −1)
gi kδ

h
j −

R̄ H

2(2n −1)(n −1)
g j kδ

h
i

= 0,

where the last equality follows from Equation (4.3).

Therefore Heisenberg group H n is a horizontally flat manifold and the horizontal Weyl

conformal curvature tensor is a variant under the horizontal projective transformation.

Remark 4.1. It is not hard to show our results are also true for Carnot group.
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