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HYBRID EXTRAGRADIENT METHOD WITH REGULARIZATION
FOR TRIPLE HIERARCHICAL VARIATIONAL INEQUALITIES
WITH GENERAL MIXED EQUILIBRIUM AND
SPLIT FEASIBILITY CONSTRAINTS

LU-CHUAN CENG

Abstract. In this paper, we introduce a hybrid extragradient iterative algorithm with
regularization for solving the triple hierarchical variational inequality problem (THVIP)
(defined over the common fixed point set of finitely many nonexpansive mappings and
a strictly pseudocontraction) with constraints of a general mixed equilibrium problem
(GMEDP), a split feasibility problem (SFP) and a general system of variational inequalities
(GSVI). The iterative algorithm is based on Korpelevich’s extragradient method, viscosity
approximation method, Mann’s iteration method, hybrid steepest descent method and
gradient-projection method (GPM) with regularization. It is proven that, under very mild
conditions, the sequences generated by the proposed algorithm converge strongly to a
unique solution of the THVIP. We also give the applications of our results for solving some
special cases of the THVIP. The results presented in this paper improve and extend some
corresponding ones in the earlier and recent literature.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm | - ||, C be a nonempty
closed convex subset of H and P¢ be the metric projection of H onto C. Let S: C — C be a
self-mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of all real
numbers. A mapping « : C — H is called L-Lipschitz continuous if there exists a constant
L =0 such that

le/x—Ayll <Llx-yl, Vx,yeC.
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In particular, if L = 1 then & is called a nonexpansive mapping; if L € [0,1) then < is called
a contraction. A mapping T : C — C is called ¢-strictly pseudocontractive if there exists a
constant ¢ € [0, 1) such that

ITx—Tyl><llx—yI>+&II-Tx—UT-Dyl? Vx,yeC.

In particular, if ¢ =0, then T is a nonexpansive mapping.

Let o« : C — H be a nonlinear mapping on C. The variational inequality problem (VIP)
associated with the set C and the mapping A is stated as follows: find x* € C such that

(Ax*,x—x*)y=0, VxeC. (1.1)

The solution set of VIP (1.1) is denoted by VI(C, «7).

The VIP (1.1) was first discussed by Lions [1] and now is well known; there are a lot of dif-
ferent approaches towards solving VIP (1.1) in finite-dimensional and infinite-dimensional
spaces, and the research is intensively continued. In 1976, Korpelevich [12] proposed an iter-
ative algorithm for solving VIP (1.1) in Euclidean space R":

yn = PC(xn_TeQ{xn),
Xn+1=Pcxp—14y,), Vn=z=0,

with 7 > 0 a given number, which is known as the extragradient method. The literature on
the VIP is vast and Korpelevich’s extragradient method has received great attention given by
many authors, who improved it in various ways; see e.g., [10, 13, 17, 38, 42, 45, 46, 47, 48] and
references therein, to name but a few.

In particular, if C is the fixed point set Fix(T) of a nonexpansive mapping T and S is
another nonexpansive mapping (not necessarily with fixed points), then VIP (1.1) becomes
the following problem: find x* € Fix(T) such that

(T-8)x*,x—x"y=0, VxeFix(T). (1.2)

It is called a hierarchical variational inequality problem (HVIP), also known as a hierarchical
fixed point problem, and it was studied in [20, 21]. It is clear that if S has fixed points, then
they are solutions of VIP (1.2). It is worth mentioning that many practical problems can be
written in the form of a HVIP; see for example [11, 16, 34] and the references therein. Such a
problem is also a bilevel problem, in which we find a solution of the first problem subject to

the condition that its solution is also a fixed point of a mapping.

Moudafi and Mainge [21] introduced and considered the following iterative scheme

Xni1 =AnVxn+ 1 —-A)(anSx,+ 1 —an)Txy),
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where V : C — C is a contraction and {a},{1,} < (0,1). They also proved the strong conver-

gence of the sequence {x,} to a solution of VIP (1.2).

Yao, Liu and Marino [28] introduced and analyzed the following two-step iterative scheme

Vn=0.

Yn= ,Bnan +0 _ﬁn)xny
Xns1=apVxy+(Q—-ay)Tyn,

where V: C — Cis a contraction and {a},{8,} < (0,1).

In this paper, we consider the following general mixed equilibrium problem (GMEP) (see,
also, [26, 27]) of finding x* € C such that

O(x*,y)+h(x*,y) =0, VyeC, (1.3)

where 0, 1 : C x C — R are two bi-functions. We denote the set of solutions of GMEP (1.3) by
GMEP(O, h). The GMEP (1.3) is very general, for examples, it includes the following equilib-
rium problems as special cases:

As an example, in [16, 17, 44] the authors considered and studied the generalized equi-
librium problem (GEP) which is to find x* € C such that

O(x*,y)+(gx", y—x")=0, VyeC.

The set of solutions of GEP is denoted by GEP(®, «7).

In [18, 21, 26], the authors considered and studied the mixed equilibrium problem (MEP)
which is to find x* € C such that

O, M+e(y)—ekx*)=0, VyeC.

The set of solutions of MEP is denoted by MEP(®, ¢).

In [5, 20, 29], the authors considered and studied the equilibrium problem (EP) which is
to find x € C such that
O(x*,y)=0, VyeC.

The set of solutions of EP is denoted by EP(0). It is easy to see that if C = Fix(T) and ®(x, y) =
((I-8)x,y—x), VIP (1.2) can be reformulated as the above EP. It is worth to mention that
the EP is an unified model of several problems, namely, variational inequality problems, op-
timization problems, saddle point problems, complementarity problems, fixed point prob-
lems, Nash equilibrium problems, etc.

Throughout this paper, it is assumed as in [40] that @ : C x C — Ris a bifunction satisfying
conditions (#1)—(03) and h: C x C — Ris a bi-function with restrictions (h1)—(h3), where
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(01) O(x,x)=0forall xe C;

(62) O is monotone (i.e., O(x,y) +O(y,x) <0,Vx, y € C) and upper hemicontinuous in the first
variable, i.e., for each x,y,z € C,

limsup®(tz+ (1-1)x,y) <O(x,y);

t—0+
(03) O is lower semicontinuous and convex in the second variable;
(hl) h(x,x)=0forall xe C;
(h2) his monotone and weakly upper semicontinuous in the first variable;

(h3) his convexin the second variable.
For r >0and x € H, let T, : H— 2¢ be a mapping defined by
1
Trx={zeC:0(z, )+ h(z,y)+—(y—2,z2—x)=0,VyeC}
r

called the resolvent of ® and .

In 2012, Marino, Muglia and Yao [41] introduced a multi-step iterative method that gen-
eralizes the two-step method studied in [28] from two nonexpansive mappings to a finite fam-
ily of nonexpansive mappings, and proved that the sequence generated by this method con-
verges strongly to a common fixed point of the mappings which is also a solution of the GMEP
(1.3). The multi-step iterative method in [41] involves the Mann-type iterative method and
the viscosity approximation method. On the other hand, by combining the viscosity approx-
imation method (see [22, 23]), hybrid steepest-descent method (see [2, 25]) and projection
method, Ceng, Ansari and Yao [8] proposed an iterative algorithm that generates a sequence
via the explicit scheme and proved that this sequence converges strongly to a unique solution

of the following problem.

Problem 1.1. Let F: C — H be x-Lipschitzian and 7-strongly monotone with positive con-
stants x, >0 (i.e., |[Fx—Fyl <«|x—yl and (Fx—Fy,x—y) = 17||x—y||2 for all x,y € C). Let
V:C — H be a p-contraction with coefficient p € [0,1) and S, T : C — C be two nonexpansive

mappings with Fix(T) # @. Let 0 < u < 2n/x? and 0 <y < 7, where 7 = 1 — /1 — u(2n — ux2).
Then the objective is to find x* € = such that

(WF=yV)x*, x—x")=0, VxeE,
where = denotes the solution set of the following HVIP: find z* € Fix(T) such that

(UF-y8)z*,z—2")=0, VzeFix(T).
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Since Problem 1.1 has a triple hierarchical structure in contrast with bilevel programming
problems (see [20, 30]), that is, a variational inequality problem with a variational inequal-
ity constraint over the fixed point set Fix(7T), we also call it a triple hierarchical variational
inequality problem (THVIP), which is a generalization of the triple hierarchical constrained
optimization problem (THCOP) considered by liduka [35, 36].

Motivated the above facts, Latif, Ceng and Ansari [24] introduced and studied the follow-
ing THVIP:

Problem 1.2. Let F: C — H be x-Lipschitzian and n-strongly monotone with positive con-
stants x,11 > 0. Let V: C — H be a p-contraction with coefficient p € [0,1) and S;,S,T:C— C
be nonexpansive mappings for all i € {1,..., N}. Assume that ®, h: C x C — R are two bifunc-
tions satisfying the hypotheses (01)—(03) and (h1)-(h3). Let0 < u < 217/1(2 and 0 <y =T,
where 7 = 1— /1 — u(2n — ux?). Then the objective is to find x* € Z such that

(UF=yV)x*,x—x")=0, VxeE,
where = denotes the solution set of the following HVIP: find z* € Q such that
((UF—=yS)z*,z—2z")=0, VzeQ,
where Q = Fix(T) nn¥_ Fix(S;) \GMEP(®, h) # ¢.
The authors [24] proposed the following multi-step hybrid viscosity iterative algorithm

O(un, y)+h(un y) + %(y— Up,Unp—Xp) =0, VYyeC,
Yn1= ,Bn,lsl Up+ (1 - ﬁn,l)un;

Yni=PniSitun+ 1= PBnidyni-1, i=2,...,N,

Xn+1 = PclAny(@nVxn + (1= an)Sxp) + (I = ApuF) Tyn,N)],

Vn=1. (1.4)

where {1,,},{@,},{Bn,i}, i =1,..., N be sequences in (0, 1) and {r,} be a sequence in (0,00) with
liminf,,_ o r;, > 0.

They proved that, under appropriate conditions, the sequence {x,} converges strongly to
a unique solution of Problem 1.2. It is worth pointing out that Problem 1.1 is a special case of
Problem 1.3 whenever® =h=0and S; = forall i € {1,..., N}.

Furthermore, let C and Q be nonempty closed convex subsets of infinite-dimensional
real Hilbert spaces H and #, respectively. The split feasibility problem (SFP) is to find a point
x* with the property:

x*eC and Ax*€eQ, (1.5)
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where A € B(H, /) and B(H, #) denotes the family of all bounded linear operators from H
to . We denote by I the solution set of the SFP.

In 1994, the SFP was first introduced by Censor and Elfving [4], in finite-dimensional
Hilbert spaces, for modeling inverse problems which arise from phase retrievals and in med-
ical image reconstruction. A number of image reconstruction problems can be formulated as
the SFP; see, e.g., [6] and the references therein. Recently, it is found that the SFP can also be
applied to study intensity-modulated radiation therapy (IMRT); see, e.g., [9, 30] and the refer-
ences therein. In the recent past, a wide variety of iterative methods have been used in signal
processing and image reconstruction and for solving the SFP; see, e.g., [3, 6, 7, 9, 11, 13, 30,
45, 46] and the references therein. A seemingly more popular algorithm that solves the SFP is
the CQ algorithm of Byrne [6, 7] which is found to be a gradient-projection method (GPM) in
convex minimization. However, it remains a challenge how to implement the CQ algorithm
in the case where the projections P¢ and/or P fail to have closed-form expressions, though
theoretically we can prove the (weak) convergence of the algorithm.

In 2010, Xu [3] gave a continuation of the study on the CQ algorithm and its convergence.
He applied Mann’s algorithm to the SFP and proposed an averaged CQ algorithm which was
proved to be weakly convergent to a solution of the SFP. He also established the strong con-

vergence result, which shows that the minimum-norm solution can be obtained.

In addition, let F;, F» : C — H be two mappings. Consider the following general system of

variational inequalities (GSVI) of finding (x*, y*) € C x C such that

viFiy*+x*—y*,x—-x*)=0, VxeC,
{ (viF1y y ) 16

WVoFBx*+y*—x*,x—-y*)=0, VxeC,

where v; > 0 and v, > 0 are two constants. The solution set of GSVI (1.6) is denoted by
GSVI(C, F1, F»).

In particular, if F) = F, = &/, then the GSVI (1.6) reduces to the new system of variational
inequalities (NSVI), which was defined by Verma [39]. Further, if x* = y* additionally, then
the NSVI reduces to the classical VIP (1.1). In 2008, Ceng, Wang and Yao [9] transformed the
GSVI (1.6) into the fixed point problem of the mapping G = Pc(I — v1F;)Pc(I — v F,), that
is, Gx* = x*, where y* = Pc(I — v, F»)x*. Throughout this paper, the fixed point set of the
mapping G is denoted by GSVI(G).

Next, we introduce and study the THVIP (defined over the common fixed point set of
finitely many nonexpansive mappings and a strict pseudocontraction) with constraints of
GMEP (1.3), SFP (1.5) and GSVI (1.6).

Problem 1.3. Assume that
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(i) F:C — H is ax-Lipschitzian and n-strongly monotone with positive constants x,77 > 0
such that 0 <y <7 and 0 < p < 2n/x? with 7:= 1 — /1 — u(2n — ux?);
(ii) Fj:C — His (j-inverse strongly monotone and G := Pc(I —v1F1)Pc(I — voF,) with v; €
(0,2(]-) forj=1,2;
(iii) ®,h:C x C — R are two bi-functions satisfying the hypotheses (1)—(03) and (h1)—(h3);

(iv) T:C — Cis a¢-strict pseudocontraction, S, S; : C — C are nonexpansive mappings for
eachi=1,...,Nand V:C — H is a p-contraction with coefficient p € [0, 1);

v) Q:=Fix(T)n ﬂf.\ilFix(Si) NGMEP(O, h) nGSVI(G) NT # @.
Then the objective is to find x* € = such that
(UF=yV)x*,x—x")=0, Vx€E, (1.7)
where = denotes the solution set of the following HVIP: find z* € Q such that

((UF—yS)z*,z—2z")=0, VzeQ. (1.8)

In this paper, we introduce a hybrid extragradient iterative algorithm with regularization
for solving Problem 1.3, i.e., the THVIP (defined over the common fixed point set ﬁﬁ\i lFix(S N
Fix(T) of finitely many nonexpansive mappings S; : C — C, i = 1,..., N and a strictly pseudo-
contractive mapping T : C — C) with constraints of GMEP (1.3), SFP (1.5) and GSVI (1.6). The
iterative algorithm is based on Korpelevich’s extragradient method, viscosity approximation
method (see [22, 23]), Mann’s iteration method, hybrid steepest-descent method (see [2, 25])
and gradient-projection method (GPM) with regularization. It is proven that, under very mild
conditions, the sequences generated by the proposed algorithm converge strongly to a unique
solution of Problem 1.3. We also give the applications of our results for solving some special
cases of Problem 1.3. It is worth pointing out that Problem 1.1 is a special case of Problem 1.3
whenever T is nonexpansive, Vf =0, F; =F,=0,0=h=0and S; = [ fori € {1,..., N}. More-
over, Problem 1.2 is also a special case of Problem 1.3 whenever T is nonexpansive, Vf =0
and F; = F, =0.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by (-,-) and || - ||, respectively. Let C be a nonempty closed convex subset of
H. We write x, — x to indicate that the sequence {x,} converges weakly to x and x,, — x to
indicate that the sequence {x;} converges strongly to x. Moreover, we use w,, (x;) to denote
the weak w-limit set of the sequence {x,} and ws(x;) to denote the strong w-limit set of the
sequence {x;}, i.e.,

ww(xp) := {x € H: x,, — x for some subsequence {x,,} of {x,}},
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and

ws(xy) :={x € H: x,, — x for some subsequence {x,,} of {x,}}.

The metric (or nearest point) projection from H onto C is the mapping Pc : H — C which

assigns to each point x € H the unique point Pcx € C satisfying the property

|x—Pcxl|l = inf || x - yll =: d(x, C).
yeC

The following properties of projections are useful and pertinent to our purpose.

Proposition 2.1. Given any x € H and z € C. One has

(i) z=Pcx © (x—2,y—2)<0,Vye(C;
(i) z=Pcx & lx—zl><lx—yl*-ly-zl? VyeC;

(iii) (Pcx—Pcy,x—y)=I|IPcx—Pcyl? Yy e H, which hence implies that Pc is nonexpansive
and monotone.

Definition 2.1. A mapping T: H — H is said to be

(a) nonexpansive if

ITx-Tyl<lx-yl, Vx,yeH,

(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently, if T is 1-inverse strongly
monotone (1-ism),
(x—y, Tx=Ty)=Tx—-Tyl?> Vx,yeH;

alternatively, T is firmly nonexpansive if and only if T can be expressed as
T= L (I+S)
=3 ,
where S: H — H is nonexpansive; projections are firmly nonexpansive.

Definition 2.2. A mapping &« : C — H is said to be

(i) monotone if
(Ax-—Ay,x—y)=0, Vx,yeC;

(ii) n-strongly monotone if there exists a constant n > 0 such that
(Ax-dyx-yyznlx-yl>, VxyeC
(iii) a-inverse-strongly monotone if there exists a constant « > 0 such that

(Ax—dy,x-yyzaldx—odyl|?, Vx,yeC.
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It can be easily seen that if T is nonexpansive, then I— T is monotone. It is also easy to see
that the projection Pc is 1-ism. Inverse strongly monotone (also referred to as co-coercive)
operators have been applied widely in solving practical problems in various fields.

On the other hand, it is obvious that if « : C — H is a-inverse-strongly monotone, then
A is monotone and é-Lipschitz continuous. Moreover, we also have that, for all u, v € C and
A>0,

I(I-A)u—(I-As)vl* = | (u—v) - MAu—Av)|?
= lu-vl?-2MAu—-ALv,u— )+ A Lu—-Av|>
<lu-viI>+ 2 A-2a)|Lu—- L v|>. @.1)

So, if 1 < 2a, then I — A</ is a nonexpansive mapping from C to H.

In 2008, Ceng, Wang and Yao [9] transformed problem (1.6) into a fixed point problem in
the following way:

Proposition 2.2 (see [9]). For given X,y € C, (X, y) is a solution of the GSVI (1.6) if and only if
X is a fixed point of the mapping G : C — C defined by

Gx = Pc(I-viF)Pc(I—-vyF)x, Vxe C,

where jy = Pc(I-voF)X.

In particular, if the mapping F; : C — H is { j-inverse-strongly monotone for j = 1,2, then
the mapping G is nonexpansive provided v € (0,2(] for j = 1,2. We denote by E denote the
fixed point set of the mapping G.

The following result is easy to prove.

Proposition 2.3 (see [45]). Given x* € H, the following statements are equivalent:

(1) x* solves the SFP;

(ii) x* solves the fixed point equation
Pc(I-AVf)x* =x",

where A >0,V f = A*(I - Pq) A and A* is the adjoint of A;

(iii) x* solves the variational inequality problem (VIP) of finding x* € C such that

(Vf(x*),x—x"y=0, VxeC.
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It is clear from Proposition 2.1 that
I' =Fix(Pc(I-AV[))=VI(C,Vf), VA>O0.

Definition 2.3. A mapping T : H — H is said to be an averaged mapping if it can be written as
the average of the identity I and a nonexpansive mapping, that is,

T=1-a)l+aS

where a € (0,1) and S: H — H is nonexpansive. More precisely, when the last equality holds,
we say that T is a-averaged. Thus firmly nonexpansive mappings (in particular, projections)
are %—averaged mappings.

Proposition 2.4 (see [32]). Let T: H— H be a given mapping.

(i) T is nonexpansive if and only if the complement I — T is %-ism.
(i) If T isv-ism, then fory >0, yT is)l;-ism.
(iii) T is averaged if and only if the complement I — T is v-ism for some v > 1/2. Indeed, for
a€(0,1), T isa-averaged ifand only if 1 - T is ﬁ -ism.
Proposition 2.5 (see [32, 50]). LetS, T,V : H— H be given operators.

@) IfT=0-a)S+aV forsomea € (0,1) and if S is averaged and V is nonexpansive, then T
is averaged.

(i) T is firmly nonexpansive if and only if the complement I — T is firmly nonexpansive.

(i) IfT=010—-a)S+aV forsomea € (0,1) and if S is firmly nonexpansive and V is nonexpan-
sive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the
mappings {Ti}ﬁ.\i | Is averaged, then so is the composite T1 - -- Ty. In particular, if Ty is
ay-averaged and T, is ay-averaged, where a1, a; € (0,1), then the composite T\ T is -
averaged, wherea = a1+ a» — a1 a».

(v) Ifthe mappings {Ti}ﬁ\i | are averaged and have a common fixed point, then

N
() Fix(T;) = Fix(Ty - - - Ty).
i=1
The notation Fix(T) denotes the set of all fixed points of the mapping T, that is, Fix(T) =
{xeH:Tx=x}.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.
Lemma 2.1. Let X be a real inner product space. Then there holds the following inequality

lx+yI? < llxl®+2¢p,x+y), Vx,yeX.
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Lemma 2.2, Let H be a real Hilbert space. Then the following hold:

@ llx—yl*>=lxI*=llyl*-2¢x—y,y) forallx,y € H;

(b) ||/1x+py||2 =l x|? +,u||y||2 —Aullx— y||2forall x,yeHand A, pe (0,1l withA+pu=1;
(c) If{xy} is a sequence in H such that x,, — x, it follows that

limsup [ x, — ylI? =limsup || x, — x|I> + |x— ylI>, VyeH.
n—o00 n—o00

It is clear that, in a real Hilbert space H, T : C — C is ¢-strictly pseudocontractive if and
only if the following inequality holds:

1-¢

(Tx=Ty,x=y) < |lx=ylI* = —=1U - Dx=U=-Dyl*, VxyeC.

This immediately implies that if T is a ¢-strictly pseudocontractive mapping, then I — T is
1T_“(-inverse strongly monotone; for further detail, we refer to [37] and the references therein.
It is well known that the class of strict pseudocontractions strictly includes the class of nonex-
pansive mappings and that the class of pseudocontractions strictly includes the class of strict

pseudocontractions.

Lemma 2.3 (see Proposition 2.1 of [37]). Let C be a nonempty closed convex subset of a real
Hilbert space H and T : C — C be a mapping.

() IfT is a¢-strictly pseudocontractive mapping, then T satisfies the Lipschitzian condition

1+¢&

Tx-Tyl=s —
IT= Tyl = =

lx—yl, Vx,yeC.

(i) IfT is aé-strictly pseudocontractive mapping, then the mapping I — T is semiclosed at 0,
that is, if {x,} is a sequence in C such that x,, — X and (I - T)x,, — 0, then (I - T)X = 0.

(iii) IfT is¢-(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is closed and
convex so that the projection Prix(r) is well defined.

Lemma 2.4 (see [38]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C — C be a¢-strictly pseudocontractive mapping. Lety and § be two nonnegative real
numbers such that (y + 6)¢ <y. Then

ly(xx=y»)+6(Tx-Tyl<y+dlx-yll, Vx,yeC.

Lemma 2.5 (see Demiclosedness principle [43]). Let C be a nonempty closed convex subset of
areal Hilbert space H. Let S be a nonexpansive self-mapping on C with Fix(S) # @. Then I - S
is demiclosed. That is, whenever {x,} is a sequence in C weakly converging to some x € C and
the sequence {(I — S) x,,} strongly converges to some y, it follows that (I — S)x = y. Here I is the
identity operator of H.
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Lemma2.6. Letof : C — H be a monotone mapping. In the context of the variational inequal-
ity problem the characterization of the projection (see Proposition 2.1 (i)) implies

ueVliiC,«f/) © u=Pcu-Asu), VA>0.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some
notations. Let A be a number in (0,1] and let u > 0. Associating with a nonexpansive mapping
T: C — C, we define the mapping T*: C — H by

Thx:= Tx—AuF(Tx), VxeC,

where F : C — H is an operator such that, for some positive constants x,n > 0, F is k-Lipschitzian
and n-strongly monotone on C; that is, F satisfies the conditions:

IFx—Fyl<xllx—yll and (Fx—Fyx-y)=nlx-y|?
forall x,yeC.

Lemma 2.7 (see Lemma 3.1 of [25]). T is a contraction provided 0 < u < 12(—127 ; that is,
IT*x-T'yl < A-ADlx-yl, Vx,yeC,

wheret =1-+/1—pu@2n - ux?) € (0,1].
Remark 2.1.

(i) Since F is x-Lipschitzian and n-strongly monotone on C, we get 0 < n < x. Hence, when-
ever0< pu< i—z, we have
0<(1—pm?=1-2un+p*n’
=1-2un+ ,u21<2
<1-2un+ i—gukz =1,

0<1—4/1-2un+pu2x2<1.
So,7=1-+/1—-pu2n—ux?) e 0,1].

(ii) In Lemma 2.7, put F = %I and p =2. Then we know thatx =7 = %, O<pu=2< i—g =4 and

1 1
T=1—\/1—,u(2n—,u1<2)=1—\/I—Z(ZXE—ZX(E)Z):I.

Lemma 2.8 (see Lemma 2.1 of [49]). Let{a,} be a sequence of nonnegative real numbers satis-

fying

which implies

an+1 = (1- ,Bn)an + ﬁn)/n +6, VYn=0,

where {B,},{yn} and {6 ,} satisfy the following conditions:



HYBRID EXTRAGRADIENT METHOD WITH REGULARIZATION 465

(@) {Bnt<10,1] and 3.5 Bn = 0o;
(i) eitherlimsup, .., vn <0 0r Y52, Bulynl <oo;

(iii) 6,20 foralln=0,and 5,6, <oo.

Then, lim,,_.oc a, = 0.

In the sequel, we will indicate with GMEP(®, h) the solution set of GMEP (1.3).

Lemma 2.9 (see [40]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
O : C x C — R be a bifunction satisfying conditions 01)—03) and h : C x C — R is a bi-function
with restrictions (h1)—(h3). Moreover, let us suppose that

(H) for fixed r > 0 and x € C, there exist a bounded K c C and % € K such that for all z €
C\K, -©(&,2) + h(z,%) + 1% —z,2— x) <0.

Forr >0 and x € H, the mapping T, : H — 2° (i.e., the resolvent of ® and h) has the following
properties:

D) Trx#@;
(i) Trx is a singleton;
(iii) Ty is firmly nonexpansive;

(iv) GMEP(O, h) = Fix(T,) and it is closed and convex.

Lemma 2.10 (see [40]). Let us suppose that (01)—(03), (h1)—(h3) and (H) hold. Let x,y €

H, r,r2>0. Then

ro—r

1T,y —Trxll<lly—xIl +] NT,y—-yl.

r2
Lemma 2.11 (see [41]). Suppose that the hypotheses of Lemma 2.9 are satisfied. Let {r,} be a
sequence in (0,00) with liminf,,_.., r, > 0. Suppose that {x,} is a bounded sequence. Then the

following statements are equivalent and true:

@ ifllxy—Tr,xpll — 0 as n — oo, each weak cluster point of {x,} satisfies the problem
O(x,y)+h(x,y)=0, VyeC(C,

ie., wy(x,;) € GMEP(O,h).

(b) the demiclosedness principle holds in the sense that, if x, — x* and || x, — Ty, xnll — 0 as
n— oo, then (I - T, )x* =0 forallk = 1.

Recall that a set-valued mapping T : D(T) ¢ H — 2 is called monotone if for all x,y €
D(T), fe Txand ge Ty imply
(f-gx—y=0.
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A set-valued mapping T is called maximal monotone if T is monotone and (I + AT)D(T) = H
for each A > 0, where I is the identity mapping of H. We denote by G(T) the graph of T. It is
known that a monotone mapping T is maximal if and only if, for (x, f) e HxH, {(f—-g,x—y) =0
for every (y, g) € G(T) implies f € Tx. Next we provide an example to illustrate the concept of
maximal monotone mapping.

Let « : C — H be a monotone, k-Lipschitz-continuous mapping and let Ncv be the nor-

malconetoCatve(C,i.e.,
Ncv={ue H:{v—-p,u)=0, Vpe C}.
Define

~ Av+ Ncv, ifvecC,
Tv=
@, ifvegC.

Then, it is known in [19] that T is maximal monotone and

0eTv & veVI(C,<). (2.2)

3. Main Results

Throughout this paper, assume that the SFP is consistent, that is, the solution set I' of the
SFP is nonempty. Let f : H — R be a continuous differentiable function. The minimization

problem

1
min f(x) := = | Ax — Po Ax|>
xecf() 2|I QAX||

is ill-posed. Therefore, Xu [3] considered the following Tikhonov regularization problem:
min f, (x) := 1||Ax PoAx|? + 1a||x||2
xeC 1T Q 2 ’

where a > 0 is the regularization parameter.

For arbitrarily given xy € C, we now propose the following hybrid extragradient iterative

scheme with regularization:

O(up, y)+h(uy,y) + %(y— Up,Up—Xp) =20, VyeC,

Yn1 = Pn1S1un+ 1= Bu1)un,

] Ini= Bn,iSitun+ Q= Pndyni-1, i=2,...,N, 3.1)
}7n,N = PC(J’n,N_Anvfan (J/n,N));

Yn = BnXn +YnGPc(yn,N = AnV fa, Fn,N)) + 0 n TGPc(yn,n — AnV fa, (Fn,8),

Xn+1 = Pcleny@nVxn+(1=6,)8xp) + (I —€puF)ynl, Yn=0,

where
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F: C — H is a x-Lipschitzian and n-strongly monotone operator with positive constants
x,1>0and V:C — H is a p-contraction with coefficient p € [0, 1);

Fj: C — H is (j-inverse strongly monotone and G := Pc(I — v F1)Pc(I —v2F) with v; €
(0,2¢;) for j =1,2;

T: C— Cis a¢-strict pseudocontraction and S, S; : C — C are nonexpansive mappings for
eachi=1,...,N;

0, h: C x C — R are two bi-functions satisfying the hypotheses of Lemma 2.9;
0<p<2n/x?>and0<y<7with7:=1-+/1-pu2n-ux?);
{a,} is a sequence in (0,00) with }-77 ( ay, < oo;

{A,} is a sequence in (0, ) with 0 < liminfy,—.co A, < limsup,,_.., An < W;

1
| AlI?
{en}, {Bn} are sequences in (0, 1) with 0 < liminf,, .. B, <limsup,,_, Bn <1;

{ﬂn,i}ﬁ\il, {6} are sequences in (0, 1);

{yn}, {0} are sequences in [0,1] with B, +y,+0,=1and (y,+0,)E <Yy, VR =0;

{rn} is a sequence in (0,00) with liminf,,_.., r, > 0 and liminf,,_.., 0, > 0.

{Sx,} is bounded, limn_,ooe,l/(S?1 = 0 and max;<;<py |x — S; x|l = k-d(x,Q),Vx € C for some

k>o.

We start our main result from the following series of propositions.

Proposition 3.6. Let us suppose that Q = Fix(T) N mﬁ.\i L Fix(§;) NGMEP(®, h) nGSVI(G) NT # .
Then the sequences {xp}, {yn}, {yn,i} for all i, {u,} are bounded.

Proof. Since 0 <liminf,,.co A, <limsup,_,An < W and 0 < liminf,, .. B, < limsup,,_.
Br < 1, we may assume, without loss of generality, that {1,} < [a, b] < (0, W) and {f,} c
[c,d] < (0,1). Now, let us show that Pc(I — AV f,) is o-averaged for each A € (0, 2__) where

a+[ Al?

24+ Aa+ A%
o=——"+—

, 1. 2
1 €(0,1) (3.2)
Indeed, it is easy to see that Vf = A*(I — Pg)A s W-ism, that is,
1
(VD) =Vfy)x=y) 2 G IV =V () 7. (3.3)

Observe that

(@ + APV fo (x) =V fo (1), x = p)
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= (@+ AP [allx - yI* +(VF(x) - VF@),x— ]

= a?|x-yI*+a(Vf(x) - Vf(y),x—y)+alAl*lx -yl
+IAIP(VFx) =V (), x—y)

= a?lx-yI* +2a(Vfx) =V (), x= )+ IVFx) -V (I

=lalx—y) +Vf(x) -V I?

= IV fa) =V fa I (3.4)
Hence, it follows that Vf, = al+ A*(I — Pg)Ais a+”A”2 -ism. Thus, AVfy is m-ism ac-
cording to Proposition 2.4 (ii). By Proposition 2.4 (iii), the complement I — AV f, is M‘”T”A”z)-

averaged. Therefore, notlng that Pc is 5 -averaged and utilizing Proposition 2.5 (iv), we known
that for each A € (0, a+||A||2 ), Pc(I—AVfy) is o-averaged with

1 Aa+lAI>) 1 Ma+lAI>) 2+Aa+]Al%)

=—+ - = = € (0,1). 3.5
775 2 2 2 4 1 (8-5)
This shows that Pc(I — AV f,) is nonexpansive. Furthermore, for {1,} < [a, b] < (0, m), we
have
a<1nf7t ssupA,<b<——=Ilim ——. 3.6
20 =5 S TS AR T e a, + 1412 (36
Without loss of generality, we may assume that
a<1nf/l ssupl,<b< ! Vn=0 (3.7
S =S A AR o '

Consequently, it follows that for each integer n =0, Pc(I — A,V fg,) is 0 ,-averaged with

1 A +AI5 1 A +AI% 2+A + | AJ1?
o=ty n(@n+ 1A% 1 An(an+1AI%) _ n(an+ Al )5(0,1). 3.8)
2 2 2 2 4

This immediately implies that Pc(I — A,V fg,) is nonexpansive for all n = 0.

For simplicity, we write t,, = Pc(¥n,n — AnV fa, (Fn,n)) and
Un=€pY(0nVxy+(1-06,)Sxp) + (U —-€,uF)Gyy

forall n=0. Then x,,4+1 = Pcvpand y, = Buxn+Yntn +0nTty.

First of all, take a fixed p € Q arbitrarily. We observe that
1Yn1 = pll < llup—pl < llx, = pll.
For all from i =2 to i = N, by induction, one proves that

1yn,i =PI < Bn,illun = pl+ Q= Brd | Yni-1 =PIl < lup = pll < llxn - pl.
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Thus we obtain that for every i = 1,..., N,
1 Yn,i = pll < llup = pll < llx, = pll. 3.9)

For simplicity, we write p = Pc(p—v2Fap), Iy = Pc(ty—v2Foty) and z,, = Pc (3 —v1F1 )
for each n=0. Then z,, = Gy, and

p=PcI-viF1)p=Pc(I-viF1)Pc(I-vaF2)p=Gp.

Since F; : C — H is { j-inverse strongly monotone and 0 < v; < 2(; for each j = 1,2, we know
thatforalln=0,

lzn = plI* = 1Gt, — plI?
= |Pc(I=v1F))Pc(I=v2Fa) ty — Pc(I—viF) Pc(I - v2E) pll
< |(I=viF)PcI —vaEy) ty — (I = v1F1)Pc(I - v2 Fa) pl?
= I[PcU = v2F2) ty = Pc(I = v2F2) pl = vi[F1 Pc(I = va Fa) ty — Fy Po(I = vo Fo) pl I
< |Pc(I = voFo)ty — Pc(I - vo Fo) plI®
+v1(vi — 20D | FiPcI = V2 Fo) ty — Fy Pc(I = v2 Fo) p1?
< U =v2F)ty— (I =v2F) pll* +vi(vi — 20D | Fy Ty — Fy 1P
= (ta = p) = V2 (ot — Fap)I* +v1(v1 = 20D | Fy B — F1 P
< lltn— pI* +v2(v2 = 202) | Fatn — FplI* + v (v = 201) | Fy T, — F1 pII?
< lltn - pl*. (3.10)

From (3.1), (3.9) and the nonexpansivity of Pc(I — A,V fy,), it follows that

I 7n,n =PIl = IPc( = AnV fa,)yn,n — Pc( = 1,V f)pll
< 1Pc = ApV fa,)Yn,Nn —PcU = A,V fo,)pll
+IPcI=AnV fo,)p— PcI - A,V )pl
< ynn—PI+ 1T =2AnV fa,)p— T =21,V )pl
< llxp = pll+Ananlpl. (3.11)

Utilizing Lemma 2.1, we also have

175 =PI = 1P = AnV fa,)ynN — Pc = AnV ) pll?
= 1Pc( = AnV fa,)YnN = Pc = AV fa,)p
+Pc(I=AnVfa,)p—Pc(I = A,V )pl?
< IPcU = AnV fa,)yn,n = Pc = AV fo,) pI?
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+2(Pc(I = AV fo,)p = PcUI = AuV )P, Yn.n — P)
< lynn = pI*+21Pc = A,V fa,)p = Pc( = AuV ) plll Fn,n — P
< lxn = pI*+201UI = AV fa,)p = U= AnV ) pll Fun — Pl
< llxn = pI? +2Anan | plll Fun - pII. (3.12)

Furthermore, utilizing Proposition 2.1 (ii), we have

Itn = pIZ < 1yn,N = AV fa, GnN) = PIP = 1 Y0, = AnV fa, Gn,n)) = tall®

= 1ynn = PIZ = 1yn,n = tall® + 2404V fa, (Fn,n), P = En)

= lynn = PIZ = 1yn,n = tall* + 240 (Y fo, Frn) = V fa, (D) P = TN
HV fa, (D), p=InN) + Vo, TnN), YnN— tn)

< lynn = PIZ = 1ynn = tall® + 200GV fa, (P), P = FnN) + <V fa GNP — )

= ynn = PI? = 1Ynn = tall® + 220 ((@n I + V)P, p = Fn,N) + <V fa, T, TN — )]

< lynn = PI? = 1Ynn = tall® + 2An[@n(p, P = Fn,N) + <V fa TN TN — )]

= lynn = PIZ = 10N = I l? = 2008 = Fn,no Ty = tnd = | Fnn — tnll?
+2Anlanlp, p = FnN) + <V fa, TnN), In,N — t)]

= ynn =PI =1 ynn = Fu. NI = 1PN — tall?

+2{yn,N — }anfa,, (Fn,N) = InN> tn — In,N) + 2Ananip, p— In,N)- (3.13)

In the meantime, by Proposition 2.1 (i), we have

Yn,N = AnV fa,(Fn,N) = Vn,N, tn = Yn,N)
=Y, N — AV fa,(Yn,N) = In,N» tn = In,N) + ARV fa, (Yn,8) = AnV fa, (Fn,N), T — n,ND
< AV fa, Yn,N) = AnV fa, Tn,N)s tn = In,N)
< nlVfa, YnN) =V fa, Fnn) 1t = Jn,N ]l
< An(an + 1A N yn,n = Fan 0 = Fnw - (3.14)

So, from (3.9) and (3.11), we obtain

Itn = pI* < 1ynn = PIP = Y08 = a1 = 1 G0N = 1l
+2(¥n,N = AnVfa, In,N) = In,N» tn — In,N) + 2200 0nip, P — Yn,N)

< lynn = pI* = ynn = FnNIZ = 1 Fn,n = tal®
+2An (@ + 1AP 1 Yn,N = Fun I tn = Fr,n |+ 2400 (P, P = Tn N
< 1ynn = PI* = 1ynn = FuNIZ = 1 Fn,n = tal®

+A2 (an + 1A 1 YN = FuNI + 1 TN = tall® + 2400 (p, P = Fn.n)
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= lynn—plI*+205aulpllip = Fnn|
+(A5 (@n + 1 AID? = Dl yn,n — Fnnll?

< lynn = PI*+2Ananlplll Fn.n - pll

< | ynn = PIP +2A0an Pl ynn = Pl + Ana,lpll]

< ynn — pIZ+2V2A0anll plllynn — pll+ 2455 1 pII?

= (lynn = Pl +V24nanl pl)?

< (10— pll + V2A,anl pl)?. (3.15)
Since (y, + 0,)¢ < v, for all n = 0, utilizing Lemmas 2.4 and 2.2 (b), from (3.9)—(3.11) and
(3.15), we conclude that

lyn =PI = 1BnXn+Ynzn+0,Tz,— pl*

[Yn(zn—Pp) +0n(Tz, — PII°

= ”ﬁn(xn —P) + (Yn"’a'n)’)/n Yo,

= Bullxn = pI*+ (yn+ o)l [Yn(zn—p) +0n(Tzy — p)I?

n+0on
~Pulyn+ ol Un[yn(zn—xn)+an(Tzn—xn)1||2
< Ballxn = plI* + A = B)llzn - plI* - 1%,, 10 = xnll?
< Bullxn—plI>+ A=)l tn— pl* - P Iy — xnll®
1-Bn
< Bullxn = plI*+ 1= B)Iynn — PIZ + 205l plll p = Fn,n |
+An(@n + 1AIY = DIlynn = Fanl*1 = 7 f’; 1yn = Xnll?
< Bullxn = plI*+ (1= Bp) I xn — pI* +2Ananlplllp = Funll
+An(@n + 1AIDY = DIlynn = Fanl*1 = 7 f’; 1yn = Xnll?
< lxn = pI? +2Ananl pllllp = Fu Nl
+(1 = Br) A% (@n + 1 AIP? = Dl yn,n = FanI? - 1%,, 1yn = xnl?
< %0 = pI? + 220 @l pll (1 X0 = pll + Ana,llpll)
+(1 = Br) A (@n + 1 AIP? = Dl yn,n = FanI* = 1—%,, 1yn = xnll?
< lxn = plI? +21x5 = pIl (V240 pI) + (V22 nan I p1)?
+(1 = Bn) A5 (@n + 1 AIP? = Dl yn,n = FnnI* - lf’;nnyn—xnnz
= (Ixn = pl+ V24 5a,llpl)?
+(L= B A% (an + 1 AIP? = Dl yn,n — Fnnll? - B Iy — xnll®

1-6,
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< (lxn = pll+ V24, a,lipID?. (3.16)

Noticing the boundedness of {Sx;,}, we get sup,,-; lySx, — uFpll = M for some M > 0. More-
over, utilizing Lemma 2.7 we have from (3.1)

1 Xn+1 — pll
= I1Pcleny(@nVxn+ (1 —06p)Sxn) + (I —€uuF)ynl — Pcpll
< leny(OnVxn+(1=56,)8xn) + (I —€puF)yn —pl
= lleny(@nVxn+ 1 =56,)8xn) —€nuFp+ (I —€puF)yn— (I -€xuF)pll
< lleny(6nVxn+(1—06,)Sx0) —€nuFpll+ I —€npF)yn — (I —€nuF)pll
=€nllon(yVxn—puFp)+ (1 —06,)(ySxn—uFp)l+ (I —€npuF) yn — (I —€nuF) pll
< enlbnllyVxn—pFpll+ Q=6 lySxn—pFpll+ 1 —€xDllyn—pl
< enl6nlyVxy —yVpll+IyVp—uFpl)+ (1 -8,) M+ (1 —€,0)llyn - pll
< enl8nypllxn—pl+8,llyVp—pFpl+1-8,)M+ (1 —€,D)lx, — pll + V25, pll]
< €n[8nypllxn — pll+ maxiM, IlyVp — uFpll} + A — e, D)%, — pl + V24l pll]
< enypllxn— pll+€,maxiM, |yVp - uFpl}+ 1 - €, D)X, — pl + V24, pl
= [1- (T —yplenlllxn— pll +€pmax{M, |yVp — uFpl}+ V2Ananllpl

M  |lyVp-puFpl
=[1-(r- -pl+@- , +V22
1= @ —yplenlln = pll+ (T ~yplenmax(——, = "=} V2Ananlpl
M |yVp-puFpl
< max{lx, - pll, ——, L PRy L Vo, anlpll. (3.17)
T-yp  T-Yp
By induction, we can derive
M lyVp-pFpl, &
[ Xn+1 = pll < max{llxo - pl, , b+ Y V2Aiaglpl, Yn=o0.
" -y T-yp kzzo

Since {1,,} < [a, b] < (0, W) and .07, a, < oo, we know that {x,} is bounded, and so are the

sequences {un}, {tn}, {Tn}, {¥n}, {Fn,n}, {¥n,i} foreach i = 1,..., N. Since | TGt, - pll < g”an -

1+

pl < lT::II tn— pl, {TGt,} is also bounded. O

Proposition 3.7. Let us suppose that Q) # @. Moreover, let us suppose that the following hold:

(HO) limy o6, =0, lim, o€, =0 and}. €16, = 00;

(H1D) limp—oo 53:1 =1andlim,_ % =0;
(H2) limnﬂw% =0 foreachi=1,...,N;
(H3) limy,.oo =il = 0 andllimy oo 11— €222 = 0;

(H4) limy,_..o L=2e=tl = 0;

6716}1
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(H5) limy—oo % —0;

n“n

(H6) limy—co 5| 705 — 1051 =0

Iflup—up—1ll = 0(€,8y), thenlim,—.o [ Xp4+1 — X5l = 0.

Proof. First, it is known that {1,} < [a, b] < (0, W) and {B,} < [c,d] < (0,1) as in the proof of
Proposition 3.6. Taking into account liminf,_.., r,, > 0, we may assume, without loss of gener-
ality, that {r,} c [¥,00) for some 7 > 0. First, we write y,_1 = Bp-1Xp-1+(1=Bp-1Dwp-1, VYn=

1, where w,_; = Yur=Pur¥nr ¢ go]1ows that for all 72> 1

1_,Bn—l
Wy — W1 = Yn—BnXn _Yn1 —Pn-1Xn-1
1_/311 l_,Bn—l
_ Ynzn+tonTzy, _ Yn-12n-1 +0p-1Tzp
1 _,Bn 1 _,Bn—l
_ Ynzn—2zp-1)+0,(Tzp— Tzp-1) Yn Yn-1
= + ( - )Zn-1
1_ﬁn 1_,311 1_ﬁn—1
On On-1
+( - )Tzy—1. (3.18)
1_,Bn 1_/311—1 "
Since (y, +0,)¢ <y, forall n =0, utilizing Lemma 2.4 we have
1Yn(zn—2n-1) +on(Tzp—Tzp- DI = (Yn+0)llzn—zp-1ll. (3.19)

Next, we estimate ||y, — ¥»-1l. Indeed, according to A, (a, + 1A% <1

ltn — tn-1ll
<N n,N = AV fa, Fn,N) = (Yn-1,8 = An-1V fa,_, (Fn-1,8)
< ynN = Yn-1,NI +IA0V fa, FnN) = An-1V fa,_, (Fn-1,8)
< WynN = Yn-1,8 1 +1An = A1V fa, Gn, I+ An-1 IV fa, (Fn,N) =V fa, -, (Fn-1,8)
< NynN = Yn-1.81+1An = An-1 IV fo,, (Fn,N)
FAn-1UIV fa, Fn,N) =V fa, I+ IV o, (Fn,N) =V o, (Fn-1,8) 1)
< NynN=Yn-1.81+1An = An-1 IV fo,, (Fn,N)
+An-1llan = @n 1l NI+ (@1 + TAID I Fnn = Fr-1,n11]
= MynN = Yn-1,N1+1An = A1V fa, (NI
+An-1lan = Al Fnnl + Ano1(@n1 + LA Fnn = Fn-1, ]
<N ynn = Yn-1,80 +1An = A1V fa, (Fn, M+ An-1lan — @n—1ll PN I+ 1 7n,N — Pn-1,811(3.20)
and
1 Vn,N — In-1,Nl

= 1Pc(¥n,n = AnV fa, ¥n,N) = Pc(Yn-1,N = An-1V fa,, Yn-1,8)l
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< 1Pc(yn,N = AnV fa, ¥n,N) = Pc(Vn-1,8 = AnV fa, Zn-1,N)
+IPc(Yn-1,8 = AnV fa, Yn-1,8) = Pc Vn-1,8 = An-1V fa,, (Yn-1,8)|l
< lyn,N = Yn-1,nl + 1 (Vn-1,8 = AV fa, ¥n-1,N) = Yn-1,N = An-1V fa,, Yn-1,8)
= lynN = Yn-1,NI +IAaV fa, Yn-1,8) = An-1V fa,, (Yn-1,N)
SN ynN=Yn-1nl HAnan = Ap—1@n-1llyn-1, N1+ 1A = Ap—a IV f (Yn-1,8) I
< ynN = Yn-1,nl+ (@nlAn = Ap-1l+ An-1lan = an—1D 1 yn-1,Nl

+An = A1V f(Yn-1,8)1. (3.21)
In the meantime, by the definition of y, ; one obtains that, foralli = N,...,2,

| yn,i—Yn-1,ill = ﬁn,i len—vnall+I1Sittn-1—yn-1,i-1ll |,Bn,i _ﬁn—l,i|+ (1_,6n,i)|J/n,i—1 —¥n-1,i-1ll.
(3.22)

In the case i = 1, we have

l¥n1—Yn-1,1 < Builltn — up—1ll +I1S1Up—1 — Up-111Bn1 = Pu-1,11+ A = Bp, D1y, — up_1ll

= lup—up—1l +I1S1un—1— un-111Bn1 — Brn-1,1l. (3.23)

Substituting (3.23) in all (3.22)-type one obtains for i =2,..., N

i
”J/n,i - }/n—l,i” < llup—up-1ll+ Z ISkun—1— Yn-1,k-1 |||ﬁn,k - ﬁn—l,k'

k=2
+IS1Un—1—un-1llBn1 — Pn-1,11 (3.24)
which together with (3.21), implies that
| ¥n,N = Vn-1,Nl
€n0n
lynN—Yn-1,nl [An—An-1l lay — ap-1l [An—An-1l
<= (gt Ao ——— ) YnNl + ———— IV f(yn
s (an 5, n-1 5, yn—1,nl 5, IVf(yn-1,M
lup— up-1ll N |,6nk_ﬁn—1 kl |,Bn1_ﬁn—11|
< ——"—+ ) ISktn-1—Yn-1 k1l ————"+S1Up-1 — Up_1 | —————
e kX::z” kUn-1—Yn-1,k-1l 5, 1S1un—1— un-ll e,
[Ap—=An-1l lay — an-1l [Ap—=An-1l
+a,———+ Ay —————— _ +— |V _ . 3.25
(an o, n-1 5, Nyn—1,nll 5, IVf(yn-1,n ( )

Since ||uy, — un—1 |l = 0(€,6,) and the sequences {u;,}, {yn,i}g\il are bounded, we know that

. MynN—=Fn-,nl
lim ———————— =

n—oo €nln

0.
Combining (3.18)—(3.20) and (3.24) we conclude from the nonexpansivity of G that

lwn—wp-1ll
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< WnEn=2n-) 4 0nT2p = T2n- 00 | Y Yner
1- B 1-fn 1-Pn
g (07
g - 1_’76”1_1 1 Tzn1
_ O w’f)ﬂisnn_ ol )< f’;n - f’;;:_l [0z 1l+ 1 T2 1 1)
< Utn= tral 17 = T Nzl + 1 T2
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< 1yn,N = Yn-1,NIl +1An = A1 IV fa, Fn, NIl + An-11@n — @n-1ll Fn, NIl + | Fn,N — Fn-1,Nl

Yn Yn-1

- [Ulzn-1l + 1 Tzp-1 1)
1_ﬁn l_ﬂn—l " "
N

+l

< ltn = un-1l+ Y ISktn-1= Yn-1,k=1 1Bk = Br1,kl + 1S1Un-1 = Un-111Bn,1 = Bn-1,11

k=2
+A,— An—llnvfan (J~’n,N)” +An-1la, — an—ll”?n,N” + ||J7n,N - yn—l,N”

Yn Yn-1
— _ Tzu,-11D.
L = Tzl + 1 T2

Moreover, by Lemma 2.10, we know that

+l

'n-1

1,

Ny —vpall <l xp— xp-1l + LI -
n

where L = sup,,.( || 4, — x,|. Further, we observe that

Yn=Pnxn+ A= Pr)wy,
Vn=1.

Yn-1=Pn1xp1+ Q= PBu-1wp_1,

Simple calculations show that

Yn—Yn-1=Q1 _ﬁn)(wn - Wp-1)+ (ﬁn _,Bn—l)(xn—l - Wp-1) +ﬁn(xn - Xn-1).

Consequently, passing to the norm we get from (3.26) and (3.27)
Iyn = yn-1ll
< A -Bllwp = wy-1ll+18n = Brn-1l1xXn-1 — wp-1l + Brll Xp — X1l

N
=sA-B)lllug—up-1ll+ Z (N Yn-1,k-1 I |.6n,k - ﬁn—l,k|
k=2

(3.26)

(3.27)

+1S1uUpn—1—un-1 ”|,6n,1 - ﬁn—1,1| +An— /1n—1|||vfa,, (Vn,N) | +An—1la, — an—1|||)7n,N||

Yn  VYn-1
1_,3n l_ﬁn—l

+1Bn— Pu-1lxp-1— wn-1ll + Brllxp — xp-1ll

|(Izn-11l + 1 TZpp-11D]

+Yn,N = Vn-1,n1l + |

'n-1

= A =PBn)|lxn—xp-all+ LI1-

n

N
|+ Y 1Sktn—1 = Yn-1,k=111 Bnk = Bn-1,kl
k=2

+1S1un-1 = un-11Bn1 = Pr-111+1An = An-1 IV fa, T, N + Ap-1la@n — ap-11l n, N
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- - Yn Yn-1
+ — V- + - Zn-1l+ 1 Tzy,-
| ¥n,n—Pn-1,nl |1—ﬁn 1—ﬁn_1|(|| n-1ll+ 1 Tzp-11)

+|ﬁn _ﬁn—1|||xn—1 — Wp-1ll +,6n||xn —Xp-1l

[rp—Tp-1l
< |lxp — Xp—1ll + Lr— + Z ISkun-1— Yn-1,k-1 |||ﬁn,k - ﬁn—l,k|
n k=2

+1S1up—1—un-1ll |ﬁn,1 - ﬁn—l,l' +|A, - An—1|”vfa,, (Vn,N) |+ bla, - an—1|||J7n,N||

- - Yn Yn-1
+¥n,N — Vn-1,nl +| - [Ulzp-1 Il + 1 Tzp—11) +1B8n = Br-1llXp-1 — wp-1ll
1-Bn 1-PBna
|rn—rp-1l N
< lxp — xXp-1ll + LT + Y 1Skun-1— Yn-1,k-111Bnk — Brn-1,kl

k=2

+1S1upn—1—un-1ll |ﬁn,1 - ﬁn—l,l' + A, - An—1|”vfa,, (Vn,N) |+ bla, - an—1|||J7n,N||

~ ~ Yn Yn-1
+¥n,N — Vn-1,n1 +| - [Ulzp-1 Il + 1 Tzp—1 1) +1B8n = Br-1lllXn-1 — wp-1ll
1-Bn 1-Pna
—~ 1lrp—rp-1l N
< lxp — Xp-1ll + Mo f + Z |,Bn,k _,Bn—l,kl +1An = Ap-1l
k=1

Yn Yn-1 - -
+lay —An1|+ 18, — Bril + - + — P ,
lan—an-1l+1Bn—Pn-1l ll—ﬁn 1—,3n—1| | ¥n,n—Fn-1,nl

where there exists a constant M, > 0 such that

N
sup {L+ 1+ Y ISkttn = Y11+ 1Sttt = un
n=0 k=2

+ IV fa, Tn, N+ DUFn, NI + 1 20l + 1 T2nll + |1 X0 — wh II} < M.

On the other hand, putting A;, =6, Vx, + (1 —-6,)Sx;,, we get

Vp=€pyYNy+ U —-€yuF)yn,
Vn=1.
Un-1=€p1YAn 1+ —€p 1 puF)yn1,

Simple calculations show that

and

Np—Ap1 =6, (VX =Vxp1) +(1=0,)(Sxp—Sxp-1) + (0, —0n-1) (VXp—1 — Sxpn-1),

(3.28)

Un—=VUn1=U—equF)ypn— U —€puF)yn-1+(€n—€n_1)(YAp_1 — pFyp_1) +€,y(Ap — Ap_1)

Then, passing to the norm we obtain from (3.28) that

AL =Apill <OullVxy = VXp_al+ Q=6 1Sx0 = Sxp-1ll +16, =6 n-111VXp—1 = Sxp-1l

=< 6np||xn —Xpo1l+ A =0 )xn —Xp-1ll +16n =0 -1l VX1 — Sxp-1 |l

=(1-6,01 —oNxp = xp-1ll + 0, —=6n-1lIVxp—1—Sxp-1l,
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and hence

lxn+1—Xnll < lvp— vyl
S U —-epptF)yn— U —eppuF)ypall tl€n —€n1llyAn—1—puFynll +€ny Ay — Ayl

< (A -€enD)yn—yn-all +len—€n-1lllyAn—1 — pFyn-1ll + €nyllAn — Ap-1ll

— =t
< (1—enDillxn — Xp1ll +Mo[% + Y 1Bk = Br-v,kl + 140 — An_1l
k=1

Yn-1
1- ﬂn 1_,Bn—l
+en—€n—1lllyAp-1 — uFyn-all+€,y[(1 - On(l- oNxn = xp-1ll

+65n=0n-1lllVXp_1—Sxp-1lll

+an—an—1l+1Bn—Pn-1l+] |+ 1 Yn,N — Vn-1,n1}

<(I-ep(T—y)—€nbn(1—pPIV)IxXp — Xp- 1||+Mo[ +Zlﬁnk Br-1,kl
+|/1n_/1n—1|+|an_a’n—l|+|,5n ﬁn 1+ Yn-1 |+||J7n,N_J7n—1,N”]
1- ﬁn 1_,Bn—l
+len—€n-1lllyApn—1 — pFyn-1ll +€nY|5n —0n-1lIVxp—1 = Sxp-1ll
Irn—rnoal | &
< (1= €301 = P10 — X1 | + D[220 +Z|ﬁnk Bkl
#An = Ant |+ 16 = @not + 1B — ol +] Tnl |
1- ,Bn l_ﬁn—l
+lep—€p-1l+€pl6pn—0p-1l+ | ¥n,n = Vn-1,n1], (3.29)

where sup,,{Mo + YAy — LEyull + Y1V Xy, — Sxpll} < M, for some M, > 0. Noticing lim,, .

”j;n,N_j;nfl,N”
€n0n

= 0 and using hypotheses (H0)—(H6) and Lemma 2.8, we obtain the claim. Oa

Proposition 3.8. Let us suppose that Q # @. Let us suppose that {x,} is asymptotically regular.
Then || xp — unll = | xp = Ty, Xpll = 0 and | yp,N — n,Nl — 0 as n — oo.

Proof. Take a fixed p € Q arbitrarily. We recall that, by the firm nonexpansivity of T;,, a stan-
dard calculation (see [33]) shows that for p € GMEP(O, h)

ln — plI® < llxn — plI® = llxn — unll?. (3.30)

Since (y, +6,)¢ <y, for all n =0, utilizing Lemma 2.4 we have from (3.10), (3.15), (3.16) and
(3.30) that

1yn—pI% < Bullxn—pl>+ A= Bu)llzn— pl* - 1ﬂﬁ Y0 — Xnll*
n
< Bullxn = plI* + (1= Bty — plI? +v2(va —202) | Eaty, — Fopll?
+vitvi =20 Fi E, — bn — xnll?
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< Bullxn — plI*+ (1= B lyan — pIZ +24nanlpllp = Funl
+A2(@n + 1A = DI YN — Fanl? +v2(va = 20) | Faty — Fa plI®

B
1-6,
< Bullxn—plI*+ (L= Bu)llun — pI? + 240, plllip = Fu Nl

+(A3 (an + AP = DI YN — FunlI? +v2(va = 20) | Faty — Fapll?

B
1-6,
< Bullxn — plI? + (1= B X0 — pI* = X — unll* + 2Ananlplllp — fnnl

+(A (@n + 1A = DIl ynn — Funl® +v2(va = 200) | Faty, — FaplI*

Bn
l_ﬁn
< lxn = pl* = (A = B I xn = unll> + A = A% (@n + LAID) | ynn = Fnn I

+v2(202 — Vo) | Eaty — Fapll* +v1 (201 = v)IIF1 T — Fy pII°]

B

l_ﬁn

Utilizing Lemmas 2.1 and 2.7, we obtain from 0 < y < 1, (3.1) and the last inequality that

+v1 (v =20 DIIFy Ty — Fy B2 - Y0 — Xnll*

+vi (v = 20) |1 Fy B — Fy pli2] - I1yn = xnll?

+vi (v = 20) |1 Fy By — Fy pli2] - 1n — xnll?

1yn = Xnll® +2Ananl plllp = Fnnll.

Ixp+1 = plI? < v - plI®
= 1T —enpiF)yn — (I —€quF) p+ €,y (6, VXn + (1= 8,)Sxn) — Fpl|*
< 1T = enputF)yn — I —€npuF) pll + €xlly (6, Vxn + (1 - 8,)Sxp) — uFpl]°
< [(1=enDllyn - pll+enlly@,Vxy+ (1 =8,)Sxn) — uFpll1?
= [1-€xD)llyn—pl +€nT%”Y(5nvxn +(1=8,)Sxn) — uFpll1?

1
<(1-exD)lyn— p||2+enr;||y(6ann+ (1-8,)Sx,) — uFpl?

< (1 —en){lxn = pI* = (1= Bl xn — unll* + (1 = A3 (@n + 1 AP yn,n = n, N 112
Bn
1-6,

1
+2Ananlplllp = Fu NI} +€nT?“Y(6nvxn +(1-8,)Sx,) — uEp|?

+v2 (202 = Vo) | Faty — Eapll* +v1 (20, —v) |1 Fy By — Fy plI%] - I1n — xnll?

< lxn = plI* = (L =enD{1 = B 20 — unll* + (1 = A3 (@n + 1 AID) N Yn,n = N 112

+v2 (202 = Vo) | Faty — Eapll* +v1 (20, —v) | Fy By — Fy pII%] + - ﬁ’; 1V — xnll?}
- n
1
+2Ananlpllip = unNl +€n;lly(5ann +(1-68,)Sx,) — uFpll?, (3.31)

which together with {1,} c [a, b] < (0, W) and {f} c[c,d] < (0,1), implies that

(1 —e, DA =) xy = upll> + A= b*(an + 1A YN — Funl?
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~ _ Cc
V2202 = V2) | ot = Fop|I* +v1 201 = VDI il = FLpIP + T lyn = %al}

< (1-€e,)1A = B lxn — unll® + (1= A2 (ap + 1A Yun — Fun P
Bn
l_ﬁn

1
< lxn = plI* = lxps1 = plIZ + 240l pllp = Funl +en—lly(@nVxn+(1-0,)5xn) — uFpl?

+v2 (200 = Vo) | Eaty — Eapll? +v1 (20, —v) | Fy Ty — Fy pli2] + Iyn— xnll?}

< 1xn = Xne 11Ul xXn = pll+ X1 = pI) + 2bayliplllp = 7Nl
1 2
+€n;||7(5ann +(1-6,)Sx,) —uFpll©.

By Proposition 3.6 we know that the sequences {x,} and {j, n} are bounded. Therefore, from

the asymptotical regularity of {x,}, @, — 0 and €¢,, — 0 we obtain that

lim ||x,—upll = lim |Fot,—Fopll = lim |Fif,—Fipll = lim |yp,n—Fn Nl = lim [lx,—y,l =0.
n—oo n—oo n—oo n—oo n—oo

(3.32)

Oa

Remark 3.1. By the last proposition we have w,, (x;) = 0w, (u,) and ws(x,) = ws(uy), i.e., the
sets of strong/weak cluster points of {x,} and {u,} coincide.

Of course, if B,,; — B; # 0 as n — oo, for all indices i, the assumptions of Proposition 3.7
are enough to assure that

X1 — Xl _

n,i

lim

n—oo

0, Viefl,...,N}.

In the next proposition, we estimate the case in which at least one sequence {5, x,} is a null
sequence.

Proposition 3.9. Let us suppose that Q) # @. Let us suppose that (HO) holds. Moreover, for an
index ko € {1,..., N}, limy,_.oo By, k, = 0 and the following hold:

(H7) for eachindexi€{1,...,N},

. |,Bn,i_ﬁn—l,i| . lap—apl . |,6n_ﬁn—1| . rp=rp-l . 10 =0n-1l
lim ————— = ]lim ——— = lim ———— = lim = lim
n—oo €n6n,3n,k0 n—oo €n5nﬁn,k0 n—oo €n5nﬁn,k0 n_’ooenanﬁn,ko n—oo 5n,6n,ko
. len—€nal . 1 a1 . 1A =Anl
= lim —2== = lim Y Y = lim 2222 —;

n—oo en(snﬁn,ko n_’ooen(snﬁn,ko 1- ,Bn 1- ,Bn—l n—oo en(snﬁn,ko

(H8) there exists a constant § > 0 such that - 15 Iﬁ lk a; llk |<é foralln=1.
nPn " Pn,ky n—1,kp
If”un —Up-1ll= O(En(snﬁn,ko), then

[ Xn+1— Xnll

}’l,ko

lim

n—oo

0.
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Proof. It is clear from (3.25) that

70,8 = Fn-1,n|

€n6nPn,k,
< DN = Vurnl ’;%;Z’:kt”" + (an—'jjé;g:;' +Ano —'fa_gkl' M yn-1nl+ —'jé_g‘kl' IV W10l
< —”2‘6_;; L, énskun_l — Ynr gLk = Proril Zfa_ngﬁ;i’k' 181ty — 1ty P2t = Bntal ::6;?:;;'1'
+(Qn% + An—l%)”}’n—l,N” + %IIVJC(M—LN) I
According to (H7) and [[uy, — tp-1ll = 0(€16 1B k), We get
lim 1Fn,n = Fn-1nll _ 0. (3.33)

n—=00 €6 nPn,k,

Consider (3.29). Dividing both the terms by §,, x, we have

| Xpn+1 — Xl lxp—Xpn-1l  —~ [lrn—"rn-1l N |Bn,k — Bn-1,kl
e < (1-€,6,1-p)Y) 1| — +y — ’
ﬁn,k[) ﬁn,ko rﬁn,kg k=1 ﬁn,ko
+|/1n_An—1| n lan—an-1l  1Bn—Bn-1l 1 | Yn  Yn-1 |
:Bn,ko ﬁn,ko ﬁn,ko ,Bn,ko 1 _ﬁn 1 _ﬁn—l
len—€n—1l €nldn—0,-1l ||)7n,N_}7n—1,N|| J
ﬁ}’l,ko ﬁn,ko ﬁn,ko
So, by (H8) we have
| Xn+1 — Xnll lXn — Xp-1ll 1 1
T < (1-€ndp(1 - p)Y) ———— + (L= €20 (L= P)P) | Xp — Xl — — |
ﬁ}’l,k() ﬂl’l—l,k() ﬂl’l,ko ﬂn—l,k()
+Ml |rn__rn—1| + i |ﬁn,k‘ﬁn—l,k| + [An—An-1l + lay — ap-1l + 1Brn— Bn-1l
Buke =1 Pnk B,k B,k B ko
+ 1 | Yn _ Yn-1 I+ l€n —€n-1l + €nldpn—0pn-1l + | 7nN—Vn-1,n
,Bn,ko 1- ﬁn 1- ,Bn—l ,Bn,ko ﬁn,ko ﬁn,ko
| xXn — Xp-1ll 1 1
< (1-€nbn(1—pP)y)—————+ x5 — Xp1ll - |
ﬁn—l,ko ﬁ}’l,k@ ﬁn—l,ko
+Ml |rn__rn—1| + N |ﬁn,k_ﬁn—l,k| + An—=An=1l  lan—ap-1l |,Bn_,3n—1|
rﬂn,ko k=1 ﬁn,k() ﬁn,kg ﬁn,k() ﬁn,ko
+ 1 | Yn  Yn-1 |+ len—€n—1l €nldn—0n-1l | ¥n,n—Fn-1,nl
ﬁn,k() l_ﬁn l_ﬁn—l ﬂn,ko ﬁ}’l,k() ﬁ}’l,k()
lXn — Xp-1ll
<(1-€,6,(1- p))’)# +€n0nbllxXn — Xp-1ll
ﬁn—l,k()

+M |1y —Tp-1l + N |ﬁn,k_ﬁn—l,k| + IAn—An-1l + lan—an-1l  |Bn—PBn-1l
1 -
rﬂn,ko k=1 ﬁn,k() ﬂn,kg ﬁn,k() ﬁn,k()
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" 1 | Yn  Tn-1 |+ len—€n—1l €nldn—0,-1l 170N = Fn-1,n
ﬁ}’l,ko 1 _:Bn l_ﬁn—l ;Bl’l,ko ﬁﬂ,k@ ﬁﬂ,k@
1 = xp-1ll
=(1-€,0,0-p)y)——+€,0,1-p)y- Ollxn — xn-1ll
nOn Py ﬁn—l,kg nOn Py (l—p)y{ n n-1
+Ml lrn —I'p-1] + IXV: |ﬁn,k _,Bn—l,kl " [An—An-1l + @y —ap-1l + |,5n _,Bn—ll
renanﬁn,ko k=1 enanﬁn,ko €n5nﬁn,k0 enanﬁn,ko €n5n.5n,k0
+ 1 | Yn _ Yn-1 |+|€n_€n—1|+ 107 —0n-1l + ||J7n,N_J7n—1,N”]}'
enanﬁn,ko 1-pn 1-PBna 6'n(‘)\nﬁn,ko 5nﬁn,ko €n5nﬁn,ko

Therefore, utilizing Lemma 2.8, from (3.33), (H0), (H7) and the asymptotical regularity of {x,}
(due to Proposition 3.7), we deduce that

. X541 — X5l
lim —— =

n—oo

0. O

n,k(]

Proposition 3.10. Let us suppose that Q # @. Let us suppose that (H0)—(H6) hold. If |lu, —
Up_1ll = 0(€,0,), then ||z, — ty|| — 0 as n — co.

Proof. Let p € Q. In terms of the firm nonexpansivity of P¢ and the {;-inverse strong mono-
tonicity of F; for j = 1,2, we obtain from v; € (0,2(;), j = 1,2 and (3.10) that

15, — BlI* = IPc( = v2Fo) ty — Pc(I - v2 Fo) plI?
< (U =v2F)ty—(I=Vv2F)p, b — P)
= %[uu—sznn— I=v2E)pl® + 117, - pII°
I =v2E) ty— (I =v2Fo)p— (Tn — P)II°]

=

ity — I+ 10— pIiZ = I (ty — En) = Va(Faty — Fap) — (p = P)II?]

=N~

= 2[||rn—p||2+||in—ﬁn2— I(tn— ) — (p— PI?

+2vo{(tn = In) = (p = P), Faty — Fap) = V5| Fat — FaplI?],
and
Izn = plI* = IPc(I =v1F1) B — Pc(I = v1F1) pII?
<(UI-viF)t,—T-viF)p,z,—p)

1 -
= S0 =viF)E, - (I—=viF)pI* +llzn— pl?
(I =viF)Ey — (I = viF) P~ (2 — P)II*]

l Z =N _ 2 W7 _ =2
sz[lltn ple+llzp—pl©=II(t, —zn) + (p =P
+2vi(Fi iy — F1p, (T — zn) + (p = P)) = Vi Fr By — F1 1%

=

1ty — plI> + llzn— pI? = 1(Fn = 20) + (p = P) I

DN |~
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+2vi(Fit, —Fip, (tn— zn) + (p — P)I.
Thus, we have

12— PIZ < llta— pI* = Ity — E) — (p— P)II®
+2vo{(tn — Tn) = (p = P), Pty — F2p) = V3| Pty — Eopl1?, (3.34)
and
lzn = pI* < I1ta = pI* = 1(Fr = 20) + (p = PIIZ + 2v1 1| Fy By — F1 pllll (B — 20) + (p— P)II. (3.35)

Consequently, from (3.10), (3.15), (3.31) and (3.34), it follows that

lyn = plI* < Bullxn—plI*+ Q= Bp)llzn — plI®

< Bullxn = plI* + (1= B 17— pII?

< Ballxn—pI*+ Q= Bl tn—pI* = 1ta—T) — (p— DI
+2v2ll(tn = Tn) = (= P F2ty — Fapll]

< Bullxn — plI* + (1= B [(1xn — pll + V2A,anl pl)?
~l(tn = 1) = (p = PII* +2v2ll(tn — ) — (p = P | Fatn — F2pll]

< (lxn = pll + V2050, pI)* = (1 = Bl (tn = E0) = (p = P)I*
+2v2|(tn — Tn) = (p = P F2tn — Fopll,

which yields

A=ty =) - (p-PI?
< A-Blltn—E) - (p-PI?
< (Ixn = pll + V245anlp)® = lyn = pI? +2v2 )l (tn — T) = (p = P Fatn — Fapll
< (1xn = yull + V2Ananl p) Uxn = pll + lyn = pll + V2Ananl pl)
+2v2[(ta — Tn) — (p— P P2ty — Fapl.

Since lim,,—.oo @, = 0 and {x,}, {y,}, {t,} and {7,} are bounded, we deduce from (3.32) that
lim ||(t, — ) — (p—P)I =0. (3.36)
n—00

Furthermore, from (3.15), (3.31) and (3.35), it follows that

lyn = pI? < Bullxn— plI*+ 1= Bn)llzn — plI®
< Ballxn—pI*+ Q= Bl tn = plI* = 1(Fn—z0) + (p - PI?
+2v1 | Fy B = Fpll (B = 2) + (p = P)I]
< Ballxn— plI* + (1= B Ulxn — pll + V245, pID? = 1(Fn — 20) + (p — P)II?
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+2v1 | Fy By — FL I (n = 20) + (p = D) 1]
< (12 = pll + V24 nanl pl)? = (1= Bl (Fn— z) + (p— P)I?
+2v1 | Fy By — FL pl (0 — z0) + (p = P,

which leads to

A-Dl(En—zn) +(p-PI°
< (1= Bll(Fn—z0) + (p— PII?
< (Ixn = pll + V2Ananlp)® = lyn = pI? +2v1 | F Ty — F1 Pl — 20) + (p = P
< (1xn = yull + V2Ananl p)Ulxn = pll + lyn = Pl + V2Anasli pl)
+2v1 | Fy B = Fy plll (B — z) + (p = P)II.

Since limy,—.oo @, = 0 and {x,,}, {yn},{z,} and {7} are bounded, we deduce from (3.32) that
nli_l}goll(fn—zn)+(l7—ﬁ)|l =0. (3.37)
Note that
2 —znll < 1(2n — zn) - (P—ﬁ)” + ”(in —2zZp) + (P—ﬁ)ﬂ
Hence from (3.36) and (3.37) we get
lim ||¢, -zl = lim |t, — G¢,ll =0. (3.38)
n—oo n—oo
Proposition 3.11. Let us suppose that Q # @. Let us suppose that

0 <liminfB,; <limsupf,,; <1
n—oo n—oo

foreachi=1,...,N. Moreover, suppose that | u,—u,_1 |l = 0(€,0,) and (HO)—(H6) are satisfied.
Then, limy,—.o |Siuy —uyll =0 foreachi=1,..., N as n — oo.

Proof. First of all, it is clear that

Itn = FnNl = IPc(Yn,N = AnV fa, Fn,N) = Pc(Vn,n — AnV fa, YNl
< 1N = AnV fa, G, N) = YN = AV fa YD)l
= AllV fa, Gn,N) = V fa, Y,
< An(an + 1A Fn,n = YN |

< 1VnN—=Ynnll.

By Proposition 3.8, we get

Tim 16, = 7n,v1 =0,
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which together with (3.31), implies that
lim ||z, — yn,nll = 0. (3.39)
n—oo

Let us show that for each i € {1,..., N}, one has ||S;u, — yn,i-1ll = 0as n — co. Let p € Q.
When i = N, by Lemma 2.2 (b) we have from (3.9), (3.10), (3.15) and (3.31)

lyn—=pl% < Ballxn— plI*+ (1= Bl zn— plI®

< Ballxn—plI*+ (1= Bl ta - plI®

< Bullxn = pl* + (L= Bu) 1 ynn — PIZ + 245l plll v — Pl

= Bullxn = pII* + (1= B [BuNISNUn =PI+ A = B, i) ynn-1— PI?
~BuN (L= B ISNUn = Ynn-117 + 24 nan | Pl T = plI]

< Bullxn = pI* + (L= B) (BN lltn — pI* + (1 = B i) lun — pIi?
—Bu, N1 = BrISNUn = Ynn-117 + 24 0an Pl Ty — Pl

= Bullxn = pII* + (1 = B)llltn — pII* = Bu,n(L = B, n) I Sntin = Yun-1 117
+2An | Il Fn,n = Pl

< Bullxn = pl*+ (1= Bu)1xn = pI* = Bu,n (= B, I SN U = Y N-1 117
+2An @l Il n,n = PII)

< 10 = pII* = (1= B) BN (L = B, I SN Un = Y, n=1 1 + 2@l Pl Iy — PII,

which together with {A,} < [a, b] < (0, W) and {fB,} c[c,d]l < (0,1), leads to

A= d)BnN1=Bun)ISNUL = Vn,n-11I°
< (1= Bw)Bun1 = BN SN tn — Ynn-11I7
< llxn = pII* = llyn — pI* + 2Ananl pllll n,n - pli
< xp = ynllllxn = pll+ 1 yn — pI) +2bayll plll yn,n — P

Since a, — 0, 0 < liminf,, .o Bp,n < limsup,_, Bnn < 1 and lim, .o X, — 5l = 0 (due to

(3.32)), it is known that {||Sy u,, — ¥, n-11} is a null sequence.

Letie{l,...,N—1}. Then one has

yn=pI? < Bullxn— plI* + A = B, — plI®
< Bullxn— pl* + (L= B) 1 yn,n — PIZ + 25l Pl Fun — P
< Bullxn = pl*+ (1= B [Bun I Snun = pI*+ (1 = B Ynn-1 — I
+20@n Pl 7,3 — pII]
< Ballxn—plI*+ A= B Banlxn— plI* + (L= Bu,n) | yn,N-1— PI°
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+20nan Pl Fn,n = Pl

< Bullxn = pII° + (1 = B 1Bunlxn = pI* + (A= BN [Br,n-11SN-11n — pII°
+(L= B n-DynN-2— PIPT+ 245l plll Fn,n — pII}

< Bullxn = pII* + (L= B)1Bn,n + A= BN BrN-Dlxn — plI?

N
+ [T =Buollynn-2—pI*+2Ananl plliFnn - pli},
k=N-1

and so, after (IV —i + 1)-iterations,

170 =PI < Bullxn = pl2+ (1= B){ (Bn + 3 (ﬁ(l—ﬁn,z))ﬁn,,-_l)||xn—p||2

jEit2 =]

N
+ [T 0= Bulyni—pI* +2An@nllplll 7y - pl}
k=i+1

N N
= Bnllxn—plI*+ Q= BB+ Y, (A= Bu)Bnj-Dlxn— pl*

j=i+2 I=j
N 2 2
+ H (1- ,Bn,k) [,Bn,i”Si up—pl~+Q1Q- ﬁn,i)”)’n,i—l -pl
k=i+1
~Bni(1= B ISitty = Vi1 121+ 24l plll Fn — PII}
N
< Bullxn — plI*+ = B lxn — pI* = By [ ] A = B ISithn = Ymyi111?
k=i
+2Apanllpllln,n —pll
N
= ”xn_pnz_(l_ﬁn)ﬁn,i H 1- ,Bn,k) 1Sitn —yn,i-1 ”2 +2Ananlpl 0,8 —pl. (3.40)
k=i

Again we obtain that

N
A=) [1A=Bri)ISittn— yn,i-11?
k=i
N

< (1= B)Bni [[ Q= BulSittn — yni-11l*
k=i

< |lxpn = plI? = lyn = pIZ + 24 nanl plll Fnn — P
< xn = yul (20 = Pl + lyn = pID +2bay | pll Fn,n — Pl

Since a;, — 0, 0 <liminf,, .o B,,; <limsup,,_.,Bni<lforeachi=1,..., N-1, and lim,_.
lx; — ¥nll =0 (due to (3.32)), it is known that

lim ||S;un = yn,i-1ll =0.
n—oo

Obviously for i = 1, we have ||S1u, — uyll — 0.
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To conclude, we have that

IS2un — unll < 1S2ttn = ynall + 1yn1 — tnll = 1S2un = Yu,1 ll + Bra I S1ttn — unll

from which ||Sou;, — uy |l — 0. Thus by induction [|S;u, — u,ll — 0 forall i =2,..., N since it is
enough to observe that

I1Sivn—unll < |IS;up _J/n,i—ln + ”J/n,i—l =Sic1unll +IISi—1un — ugll

SISiun—Yni-1l+ A= Bri—DNSi—1un — Yni—2ll + 1Si—1un — uyll. (]

Remark 3.2. As an example, we consider N =2 and the sequences:

(a) ﬁn:%+%, ynzon:;ll—%, Vn>4;

(0) An =g — 2 V> 1A

() an=#, €n=ﬁ, 6n=#, rn=2—%, Vn>1;
(d) ,5}1,1:%_%, ﬁn,2=%—#, vn>2.

Then they satisfy the hypotheses on the parameter sequences in Proposition 3.11.

Proposition 3.12. Let us suppose that Q # ¢ and f,,; — B for all i as n — co. Suppose there
exists k€ {1,..., N} such that B, — 0 as n — co. Let ko € {1,..., N} the largest index such that
Bnk, — 0 as n — oo. Suppose that

. ap+€y .
(i) g —0asn— oo,

(ii) ifi < ko and B,,; — 0 then ﬁﬁ"f;’ —0asn— oo;
(iii) if Bn,i — Bi #0 then f; liesin (0,1).
Moreover, suppose that |u, — up-1ll = 0(€,0,Pn,k,) and (HO), (H7) and (H8) hold. Then,

lim—.oo ISitty, — uyll =0 foreachi=1,...,N as n — oco.

Proof. First of all we note that if (H7) holds then also (H1)—(H6) are satisfied. So {x,,} is asymp-

totically regular.

Let kg be as in the hypotheses. As in Proposition 3.11, for every index i € {1,..., N} such
that B,,,; — B; # 0 (which leads to 0 <liminf,, .. B,,; <limsup,,_.., Bni <1), one has ||S;u, —

Yn,i-1ll — 0 as n — oo.

For all the other indices i < ky, we can prove that ||S; u,—yp,i-1ll — 0 as n — coin a similar
manner. By the relation (due to (3.31) and (3.40))

1
Ixns1—plI? < A=enDllyn - p||2+enr;||y(5ann+ (1-8,)Sx,) — uFpl?

1
< ||yn—p||2+en;||y(6ann+(1—5n>an) — uFpl?
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N
< 2y = plI* = (1= B Bni [ 11 = B 1S thyy = Vi1 I
k=i

1
+2Ananllplllynn— pll + €n Y8,V xn+ (1 —8,)Sx,) —uFpl®. (3.41)

we immediately obtain that

N
A-ad) ] =BullSitin — yn,i-1lI?
k=i

N
<A-B)[]Q=BunlSittn—yni-1l?

k=i
X = plIZ = 1 Xp41 — plI?
< M PL I T PL oA ol P -
,Bn,i ,Bnl
—|I)f(6 Vixn+(1=8,)Sx,) — uFpl?
ﬁ}‘ll
lxn = Xnerll
< 2T Gy = pll + 1%ns1 = PID + 22 pl I Ty - P
ﬂn,l ﬁnl
—IIY(6 Vixn+(1=8,)Sx,) — uFpl?.
ﬁnl
By Proposition 3.9 or by hypothesis (ii) on the sequences, we have
% = Xt _ 1= Zna | Py
ﬁn»i ﬁn,k() ﬁn,l ’
So, the conclusion follows. Od

Remark 3.3. Let us consider N =3 and the following sequences:

1 2 1 1 .
@ Pn=35+7% Yn=0pn=3—72, Yn>2;
_ 1 .
(b) /’l/ 2”A”2 2n2v Vn > ”A”)
( ) _ 1 _ 1 5, = 1 =92 1 % 1:
C) &n=173 €n=3m n=ym Tn=2- 37 n>1;
_ 1 _1 1 _ 1
(d) Bui=7m PBn2=5-7 Pnz=5m Vn>L

It is easy to see that all hypotheses (i)—(iii), (H0), (H7) and (H8) of Proposition 3.12 are satis-
fied.

Remark 3.4. Under the hypotheses of Proposition 3.12, analogously to Proposition 3.11, one
can see that

lim |S;uy—yn,i-11=0, Vie{2,...,N}.
n—oo

Corollary 3.1. Let us suppose that the hypotheses of either Proposition 3.11 or Proposition 3.12
are satisfied. Then ) (x,) = Wy (Up) = W (Yn1), Ws(Xn) = wWs(Uy) = Ws(Yn,1) and v, (x,) < Q.
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Proof. By Remark 3.1, we have w,,(x5) = 0wy, (4,) and ws(x;) = ws(u,). Note that by Remark
3.4,

lim [|Syup — yu,n-11=0.
n—oo

In the meantime, it is known that
lim [|Syu, —ugll = lim |u, — x5l = lim [ x, — y,ll =0.
n—oo n—oo n—oo

Hence we have

lim [|Sy 1y — Yull = 0. (3.42)
n—oo

Furthermore, it follows from (3.1) that
r}I—I»Ic}o ”,Vn,N — Yn,N-1 = r}i_IEO,Bn,N”SNun — VYn,N-1 =0,
which together with lim;,—.o ISy Un — Yn,n-11l = 0, yields
lim [|Syu, —ynnl=0. (3.43)
n—oo
Combining (3.42) and (3.43), we conclude that
m [yn = ynnl =0,

which together with lim,_., || x, — ¥, =0, leads to

lim ||x;, - ynnll =0. (3.44)
n—oo
Combining (3.39) and (3.44), we get
lim ||#, — x,| =0. (3.45)
n—oo

Note that

Yn—Xn =Yn(zp—xp) +0,(Tzp — Xp)

=Yn(zn—ty) +Yu(tn —Xp) + 0n (T2 — Tty) + 0 (T 1y — Xp).

Passing to the norm and using Lemma 2.4 we get

OnllTty=Xull = \Yn—Xn—Yn(zn—tn) —0pn(Tzp— Tty) —Yn(tn — Xp)ll
= ”yn_xn” + ”')/n(zn_ tn) +on(Tz;, - Ttn)”"')/n”tn_xn”
Slyn—xull+ntodlzn—tull +yullty — xull

S lyn—xull + 1 2n = tall + 1 87 — x5l
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So, from (3.32), (3.38), (3.45) and liminf,, ., 0, > 0 it follows that
lim | Tt, - x,l =0,
n—oo

which together with (3.45), yields

lim || Tt, - t,l =0. (3.46)
n—00
Now we observe that
lxn _J/n,ln < llxp—unl+lyn1— unll = lxn— uxll +ﬁn,1||slun — Upll.

By Propositions 3.8 and 3.11, ||x, — u,ll — 0 and || Sy u,, — uyll — 0 as n — oo, and hence
lim Jlxn = ypll=0.

So we get Wy, (xX5) = Wy (¥n,1) and ws(x,) = ws(yn1).

Let p € wy(x,). Then there exists a subsequence {x,,} of {x,} such that x,, — p. Since
p € wy(uy,), by Proposition 3.11 and Lemma 2.5 (demiclosedness principle), we have p €
Fix(S;) foreach i =1,...,N, ie, p € mﬁlFix(S,-). Taking into account p € w(t;) and | t, —
Gtyll — 0 (due to (3.38) and (3.45)), by Lemma 2.5 (demiclosedness principle) we know that
p € Fix(G) =: GSVI(G). Also, since p € w(t;) and | Tt, — t;|| — 0 (due to (3.45) and (3.46)),
by Lemma 2.3 (Demiclosedness principle) we get p € Fix(T). Moreover, by Lemma 2.11 and
Proposition 3.8 we know that p € GMEP(O, h). Next we prove that p € I'. As a matter of fact,
from (3.32) and (3.44) we know that y,, n — p and y,, n — p. Let

- Vf(v)+Ncv, veC,
Tv =
@, v¢gC,

where Ncv=1{ue H:(v-p,u) =0,Vp € C}. Then, T is maximal monotone and 0 € Tv if and
only if v € VI(C, V f); see [19] for more details. Let (v,u) € G(T). Since u—Vf(v) € Ncv and
Vn,n € C, we have

(V=FnN,u—=Vf()=0.

On the other hand, from y, y = Pc(I -1,V fg,) yn,n and v € C, we have
(V=FnN>In,N— (Yn,N— Anvfa,,(J/n,N)» =0,
and hence

Vn,N = Yn,N

+ Vfa,, (,Vn,N» =0.
An

<V_J7H,NJ

Therefore we have

<U_J7ni,N7u>



490 LU-CHUAN CENG

= (v~ Jn,N, V()
Vni,N = ¥n;,N
An:

1

2V =Fn, N, VW) =V =Fn;, N, +Vfa,,i (Yn;, N
Vni,N = ¥n;,N
An:

= <U_J7n,‘,erf(v) _Vf(f/n,-,N))+(U_yni,N;Vf(j/n[,N)—Vf(,Vni,N)>
Vni,N = Yni,N
A

1

= W=, N, V() = V= In;,N, +Vf(Vn, N — @n (V= Py, N> Y, N

_<V_J7ni,N; >_ani<V_J7ni,N;yni,N>

yni:N — Yn;,N

2<V_J7ni,N»Vf(J7ni,N)—Vf(J/n,-,N»_(V—f/ni,N, A
n;

Y= n V= Vn;, N> Yn;,N)-

From (3.32) and since Vf is Lipschitz continuous, we obtain that lim, .. |V f (7, N)

=V f(¥n;, NI =0. From y,, y — p, {An} < la, b] < (0, m) and (3.32), we have

(v—p,u)=0.

Since T is maximal monotone, we have p € T-'0 and hence p € VI(C,Vf), which
implies p € I'. Consequently, it is known that p € Fix(T) n ﬂf.\i , Fix(§;) N GMEP(O, h) n
GSVI(G)nT =: Q. (]

Theorem 3.1. Let us suppose thatQ # @. Let{a,},{fn,i}, i =1,...,N, be sequences in (0,1) such
that 0 < liminf,, .o Bp,; < limsup,,_. . Bn,; <1 for each index i. Moreover, let us suppose that
(HO0)— (H6) hold. Then the sequences {x,},{yn} and {u,} defined by scheme (3.1), all converge
strongly to the unique solution x* € Q of Problem 1.3 provided | x,, — X1l + a, = 0(6‘,15%).

Proof. First of all, let us show that w,,(x;) € Z. As a matter of fact, we note that F: C — H

is n-strongly monotone and «x-Lipschitzian and V : C — H is a p-contraction with p € [0, 1).

Observe that
un=1 < un=1-/1-pu2n— ux?)
o\ /1-uCn—ux?) =1-pun

= 1—2yn+u2K221—2pn+u2n2
s k=’

S K=1).

Take a fixed w € w,,(x,) arbitrarily. Then there exists a subsequence {x,} of {x;} such that
xn; — w. Hence, according to Corollary 3.1, we get w € Q. Since x,4+; = Pcvpand0<y <7,
from (3.1) and (3.16), it follows that for all p € Q

||-7Cn+1_p||2 =(Vp— P, Xp+1—p) +{Pcvn—vn, Pcvy,—p)
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S (Un=PXp+s1—P)

= (I -enuF)yn— U~ eguF)p, Xn+1~ P)
+€n0nYVxn —Vp, Xns1— pP) +€n(1=8n)yY(Sxn — SP, Xp+1— P)
+€n0n{(yV = uF)p, Xp+1— p) + €0 (1= 6)(yS — uF) p, Xp+1 — p)

= (I-€xDllyn—pllxp+1 —pl
+enbnyPlxn — pllixne1 — pll+€n(1 =6yl xn — Pl Xp+1 — Pl
+€n0n{(yV = uF)p, Xp+1— p) + €0 (1 =6 )(yS — uF) p, Xp+1 — p)

< A—exD)(1xn = pl+ V2Ananll pDlIXns1 = pl
+€n0ny Pl xXn — plllxXns1 — pll+€n(1=8)yllxn — pllllXn+1 — Pl
+€n0n{(yV = uF)p, Xp+1 — p) + €0 (1= 6)(yS — uF) p, Xp+1 — p)

< [1-enT+€n8nyp+€n(1—=8)Y11xn = pll+ V25l pI) 1 X1 - pll
+€n0n{(yV = uF)p, Xp+1— p) + €0 (1= 6)(yS — uF) p, Xp+1 — p)

< [1-€n8,y A= PIUIxXn = pll + V22,0 P X1 = pll
+€n0n{(yV = uF)p, Xp+1 — p) + €0 (1= 6)(yS — uF) p, Xp+1 — p)

< (Ixn = pl+ V2Ananll pDllxXnsr — pl
+€n0n{(YV = uF)p, Xp+1 — p) + €0 (1 =0 )(yS — uF)p, Xp+1 — p).  (3.47)

Thus, we have

(UF=yS)p, Xn+1— p)
_ Uxn—plli+ V2Ananllpll = 1 xn+1 = pIDIXps1 = pl N On

((yV—-uF)p,Xp+1—p)

(1%n = Xpe1l + V2ba, pDlxner = pll - 6p
- V —uF —l.
= e 1-6,) + oIV )Pl — pl

Since Z—: -0, ”x%f”“” —0, 6, — 0 and x,, — w, we conclude from the boundedness of {x,}
that for all p e Q

(uF=yS)p,w—p)
= iliTo«“F —-yS)p, Xn, — p)
< limsup((uF —yS)p, X, — p)

n—oo

= limsup(((uF = yS)p, Xn+1— p) +{(LF =y S)p, Xpn — Xn+1))

n—o0
= limsup{(uF —yS)p, Xn+1 — p)
n—oo
. (10 = Xperl +V2Zhanl pD I xpir - pll 6
< limsup|[——2— 2+ nIPOTnl “ PRy 0%y V = uF)plllxpsr — plll =0,
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That is,
(WF=yS)p,p—w)=0, VpeQ.

Since 0 <y =<7 < unand
(UF =yS)x— (UF —=yS)y,x—y) = (un—-Y)lx—yl? Vx,yeC,

we know that uF—7yS is monotone and (uk +7y)-Lipschitz continuous with constant ux +7y > 0.
Thus, by Minty’s lemma [43], we have

(WF=yS)w,p—w)=0, VpeQ,
which yields w € E. This shows that w,, (x;) c =. Furthermore, it is clear that
(WF=yV)x—=(WF-yV)y,x—-yy = un-yp)llx—yl*>, Vx,yeC.

So, it follows that uF —yV is (un —yp)-strongly monotone with constant un —yp > 0. In the
meantime, it is easy to see that uF —yV is (ux + yp)-Lipschitz continuous with constant px +

Yp > 0. Thus, there exists a unique solution x* in = to the VIP
(WF=yV)x*,p—x*)=0, VpekZE. (3.48)

Next, let us show that [|x,, — x*|| — 0 as n — oo. In fact, we now take a subsequence {xnj}
of {x,} satisfying
limsup{(yV — pF)x", x, = x*) = Uim ((yV — pF)x", xp; = x*).
n—oo J—o©

Without loss of generality, we may further assume that x,, — X; then X € E according to the
conclusion w, (x) < E proved as above. So, it follows from (3.48) that

limsup{(yV — uF)x*, xp, — x*) ={(yV —uF)x*, X —x*) < 0. (3.49)

n—oo

Putting p = x* in (3.47), we obtain from 0 <y <7

11 —x* 1%
< A —ep0) (1% = X"+ V225 | X D1 X1 — %7
+€n0nY Pl Xn — X" M Xps1 = x" 1 + €21 = 80) Yl X — X" 1 X741 — X7
+€n0n{(yV —puF) X", Xps1 = X") + €0 (1= 8)(yS — uF) x*, Xpp1 — x°)
< A =enD)lxn = X M Xns1 = XN+ €08yl X — X" Xp41 — X7
+en(1=08)YI1x0 = X" M Xp11 = X" + €40 (yV = pF)X™, Xpp41 — X™)

+en(1 =8 (S — wF)x*, Xpi1 — XY + V2An@u I [ X511 — x* |
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=[1-enT+€,0,Yp+€n(1=0)YXn — X" 1 Xp11 = X" | + €20 (Y V = UF)X™, Xpp1 — x*)
+en(L=8){(yS— WF)X*, Xps1 — X°) + V2Anan | x* [ xpa1 — x* |

<1 -€x0nyQ=PIXp = x" M Xn41 — X" | + €28, ((YV = pF)X™, X1 — x™)
+en(1 =8 )((S — WF)x*, Xpi1 — X + V2 panll X X511 — X7

<[l-€,8,y1- p)]%(llxn = x* P+ 12041 = X 1P) + €205 (Y V = pF)x*, Xpi1 — x*)
+en(1 =8 (S — WF)x*, Xpi1 — X+ V2bay | x* || Xps1 — x 1.

It turns out that

* 1—€n5n)/(l—p) %2 2 * *
[ Xns1—x*I% < 2, — x* 1| [€n8n{(YV — uF)X*, Xpe1 — x*)
n+l 1+€,0,y(1-p) . 1+€,0,y(QA-p) nOntly H it
1
+€,(1-6 S—uF)x*, x4+ ————2V2b * —x*
en(L=0n Ay S—HEX", X1 =X N+ e V2ballx* [ X1 ="
* 12 2 * *
S M =€0nyA=p)llx, —x" 17+ [€n0n{(YV = pF)x™, Xp41 —X7)

1+e€nbny(1-p)
+€n(1=8){(yS— uF)X*, Xpe1 — XY +2V2ba || x* | Xpe1 — x|
2
YA -p)A+€,6,y(1-p))
N (1 =6 ){(yS—puF)x*, Xps1 —X*) }
On
+2v2bay | x* || X1 — x*I. (3.50)

= [1-€,8ny(1 = p)llxy—x** +€,8,y(1 - p)-

X{((YV—'UF)X*»xn+1 -x")

On the other hand, we notice the assumptions on the scheme (3.1) that lim,_. (€5 +
an)/6% =0 and max;<;<y llx — S; x| = k- d(x,Q),¥x € C for some k > 0. Then, for x* € =, we
obtain

((YS—puF)X", Xp11—x") = {(yS— uF)x*, Xp41 — Paup) +{(yS— uF)x*, Pou, — x*)
<{(yS—uF)x", xps1 — Poup)
< 1yS = uF) x* [l Xps+1 — Paunll
< 1yS—uP)x" l(1xn+1 = unll + ln — Paunl)
= 1 (yS = pF)x* | Xp41 = tnll + d 1y, Q)
< 1yS—puPR) x* 11 Xp41 = Xpll + | Xp — tpll + %lrsné)]ivllun = Siunl
1 N
< 1(yS=pE)x* 1 Xp41 = Xnll + 1 — tpll + E;II Un —Siunll). (3.51)

From (H1), (H3) and || x, — x,-11l = 0(¢,6%) we have

2
. xn=xp-ll . Mxn=xpo1ll €n 65
lim —————— = lim

n—00 €n—15n_1 n—00 €n6%z €n-1 5%_1

=0. (3.52)
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From (3.27), (H4) and ||x,, — X1l = 0(€,6%) we get

ey — upn-1ll < X = xp-1ll +L|rn_rn—1|
€ndn B €ndn Tn€ndn
1 Xn — Xn-1l [Tn = Ip-1l

< 1 +L2 """ .0 asn—oo.

€01 ey
Thatis, ||u; — us—1ll = 0(€,6,). Also, from (3.31) we obtain
IxXne1=pI% < 120 = pI? = A = €n A = B [l X0 — tnll* + (1 = A3 (@n + 1 AN Yn,N = TN 112

Bn
1-6,

1
+2Ananllplllp = yunl + €n Iy (8, Vxn+ (1 —8,)Sx,) — uFpl?

+v2 (200 = Vo) Faty — Fapll® +v1 201 = v I Fy By — F1 plI*T + 1yn = X 11%}

< |lxn = pl? = (1 =€, 7)A = Bl Xy — tnll* +2bayl pllp — Fnnl
1 2
€n;||7(5ann +(1-6,)Sx,) —uFpl~,

which leads to
”xn_un”2
6%
”xn_unllz
62
I xn = plI% = 1 xp41 — pII?
s P F +2b6—2||pllllp Funll+ 7 170V 0+ (1=00)5,) ~ HEPI
n
x5 — Xp+1ll

< T (lx p||+||xn+1—p||)+2b pllp =yl
52 &%

€
+# 1Y (S Vxy+ (1 —8,)Sx,) — uFpl.

n

(I1-€epn)(1-d)

= -€ex1)(1-Bn)

-0, & >0and ”x’”g—x"” — 0 (due to (3.52)), we have

Since %2 5 =5 , 62

lim =2 """ . (3.53)

n

Repeating the same argument process as in (3.40), we obtain that (noting that y,, o = u,)
1yn—=pI? < lxn—pl* = (1= ) Bu,n A= Bu ISV Un = Vi N-1 1P + 240 @ | P Fr,n — P, (3.54)

andforief{l,..., N-1},

N
lyn=plI* <l = plI2 = A= B Bri [ | A= Bri) 1Sittn = Y i1 17 +2Anan I plll Fn,n = pll. (3.55)
k=i

Substituting (3.54) and (3.55) in (3.31), respectively, we have

1
IXps1—pl? < A—exT)lyn - pI? +€n— Iy (GnVxn +(1-6,)5xy) —uFp|?
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< ||yn—p||2+en$||y(6ann+(1—6n)8xn)—qun2
< lxn = pI* = A= ) Bu,n A = B, ISntn = Yun-11 + 24 nan ] Il Fan — Pl
En 1Y@V + (18,0550 - I,
andforiefl,...,N—1},

I Xn41—pII*
1
< Iy, - pl? +en— 18, Vxy+ (1 —=8,)Sx,) — uFpl?

N
< 1xn = plI> = A= B)Br,i [ 1A = B, )N Sittn = yn,i-1 17 + 22| pll oy = P

k=i
1
€n—IY(@nVxn +(1-6,)Sxp) - UFpl2.
So, it follows that

ISntn — Ynn-111?
(1= d) By (1 — B n) ot~ VmN-1

%
ISntn = yn.n-1 P

< (1= ) B n (= B ) L2 52y”N !

%, = pI? =l Xns1 = pI®
< > 200 2 P T, = P+ 2y BV 6 + (1= 8,) S) — HE I

52 52 162

lXn — Xp+1ll

< T (= pl -+ I Xnes = pI) + 262 Pl P = P
o5 &7

+ ==Y,V Xy + (1= 8,)Sxp) — puFpll?,

n

andforief{l,...,N—1},

IS;un— Yn,i-1 ”2
2
5%
ISitin— yn,i-111?

N
Q=d)Bni [T - Bni)
k=i

N
<(1-B)Bni[[ Q- Bni)

k=i 5%
Xn—plI? = Xne1 —
= 1% =P ! w1~ PI” +2A5 2IIpIIIIynN p||+ " y@nVxn+ 1 =8,)Sx,) — uFpl?
7 5% 521
lxn — xp+1l
< = (= o+ 1 X p||)+2b ||p||||ynN pll

[
€
+# Y62V + (1 —=8,)Sxn) — uEpl?.

n
Since ';2” 0, g’z’ -0, ”x”;—zx"” — 0 (due to (3.52)) and 0 < liminfy,—o B,,; < limsup,_., Bn.i
<1foreachie€{l,...,N}, we deduce that (noting that y, o = u,)
SiUp— Vni-
fim 101 = Ymiztl o g N (3.56)

n—oo On
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Obviously for i = 1, we have ||S; uy,, — u,ll/6, — 0.
To conclude, we have that
IS2un —unll _ 1S2un = yn1l N 1yn1—unll _ 1S2un = ynall N BnillS1un — unll
On n On On On
from which w — 0. Thus by induction W —O0foralli=2,..,N since it is
enough to observe that

ISitn —unll _ 1Sittn = yn,i-1l N | Yn,i-1 = Si-1unll N I1Si—1tn— unll

< ISitn— yn,i-1ll (1= Bri) I1Sicitn — yni—2ol  1Si—c1un— un”.
On On On
Furthermore, it is clear from (3.51) that
N
(yS - pF)x* *) I Il I 2 un = Sitin]
YO —HUL)X , Xp+1 — X < %y N Xn+1 — Xn Xp— Un i=1
< (yS—uF)x"|I( + + = ).
5, yorH B B k6,
Hence, from (3.52), (3.53) and W —0,Yi{l,..., N}, that
S_ F *’ _ *
limsup (S = pIYX7, Xp1 = X7 <0. (3.57)
n—o0 On

Thus, from (HO0), (3.49), (3.57) and Y7, @, < oo it can be readily seen that }_7 ;€,6 ,y(1—p) =
00, X502V 2bayllx* I xp+1 — x* || < 0o and

2
limsu <( V- F)x*,x _x*>
n*oopy(l—p)(l +€n5n7(l—p)){ YVoH n+l

1-6 S—uF)x*, -x*

L A=00){(yS ~ pF) X", Xpsy — X >}50.
6n

Consequently, applying Lemma 2.8 to (3.50), we infer that the sequence {x,} converges strongly

to x*. This completes the proof. O

In a similar way, we can conclude another theorem as follows.

Theorem 3.2. Let us suppose thatQ # @. Let{a,},{Bn,i},i =1,...,N, be sequences in (0,1) such
that B,,,; — B; for each index i as n — oco. Suppose that there exists k € {1,..., N} for which
Pnik — 0asn— oo. Let ko € {1,..., N} the largest index for which p, x, — 0. Moreover, let us
suppose that (HO), (H7) and (H8) hold and

6} ﬁfl—f;co—>0asn—>oo;

(i) ifi< ko and By; — B; then l;"r‘l'i_" —0asn— oo,

(i) if Bn,i — Bi #0 then B; liesin (0,1).

Then the sequences {x,},{yn} and {u,} defined by scheme (3.1), all converge strongly to the
unique solution x* € Q of Problem 1.3 provided || x, — X1l + ay, = 0(6,16%,5”’]60).
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Remark 3.5. Theorems 3.1 and 3.2 improve, extend, supplement and develop [8, Theorem
4.1], [24, Theorem 3.2], [31, Theorems 3.1 and 3.2] and [41, Theorems 3.12 and 3.13] in the

following aspects.

(i) The multi-step iterative scheme in [24, Theorem 3.2] is extended to develop a hybrid ex-
tragradient iterative scheme (3.1) with regularization by virtue of Korpelevich’s extragradient
method, Mann’s iteration method [25] and gradient projection method (GPM) with regular-
ization. The iterative scheme (3.1) is based on Korpelevich’s extragradient method, viscos-
ity approximation method (see [22, 23]), Mann’s iteration method, hybrid steepest-descent
method (see [2, 25]) and gradient-projection method (GPM) with regularization. In the mean-
time, the iterative scheme (3.1) is also the generalization, improvement and development of
the iterative ones in [8, Theorem 4.1], [31, Theorems 3.1 and 3.2] and [41, Theorems 3.12 and
3.13].

(ii) The argument techniques in our Theorems 3.1 and 2? are very different from those tech-
niques in [8, Theorem 4.1], [24, Theorem 3.2], [31, Theorems 3.1 and 3.2] and [41, Theorems
3.12 and 3.13] because we make use of the properties of strict pseudocontractions (see Lem-
mas 2.3 and 2.4), the ones of the resolvent operator associated with ® and & (see Lemmas
2.9-2.11), the fixed point problem x* = Gx* (& GSVI (1.6)) (see Proposition 2.2), the equiv-
alence of inclusion problem 0 € Tv to the VIP v € VI(C,Vf) for maximal monotone oper-
ator T (see (2.2)), the contractive coefficient estimates for the contractions T* associating
with nonexpansive mappings (see Lemma 2.7) and the new argument process in the proof of
Wy (x,) cQand wy, (x,) c E.

(iii) The problem of finding an element of Fix(T) N mﬁ\i ,Fix(§;) nGMEP(®,h) nENT in our
Theorems 3.1 and 3.2 is more general and more subtle than the one of finding a fixed point
of a nonexpansive mapping 7 in [8, Theorem 4.1], the one of finding an element of Fix(T) N
mﬁ.\i ,Fix(S;) nGMEP(8, h) in [24, Theorems 3.2] (where T is a nonexpansive mapping), the
one of finding an element of Fix(7T) n ﬂf.\i 1Fix(Si) N GMEP(®, h) in [41, Theorems 3.12 and
3.13] (where T is a nonexpansive mapping) and the one of finding an element of Fix(T) N
mﬁ.\LIFix(Si) N GMEP(®, h) N E in [31, Theorems 3.1 and 3.2] (where T is a strict pseudocon-
traction).

(iv) Our Theorems 3.1 and 3.2 generalizes [31, Theorems 3.1 and 3.2] and [41, Theorems 3.12
and 3.13] in from the nonexpansive mapping T to the strict pseudocontraction T and extend
them to the setting of the THVIP (1.8) (defined over the set Fix(T) N r‘ni.\i L Fix(8)) with con-
straints of GMEP (1.3), SFP (1.5), and GSVI (1.6). In the meantime, our Theorems 3.1 and 3.2
extend the THVIP (defined over the set Fix(T)) in [8, Theorem 4.1] and the THVIP (defined
over the set Fix(T) N mﬁ\i ,Fix(§;)) in [24, Theorem 3.2] to Problem 1.3, i.e., the THVIP (defined
over the set Fix(T) N nﬁ\ilFix(Si)) with constraints of GMEP (1.3), SFP (1.5), and GSVI (1.6).
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4. Applications

For a given nonlinear mapping « : C — H, we consider the variational inequality prob-
lem (VIP) of finding X € C such that

(A%, y—-%)=0, VyeC. 4.1)

We will indicate with VI(C, &) the set of solutions of the VIP (4.1).

Recall that if # is a point in C, then the following relation holds:
ueVIl(C,of) ©u=Pc(I-Asf)u, VA>0.
In the meantime, it is easy to see that the following relation holds:

GSVI (1.6) with F, =0 < VIP (4.1) with «f = F;. 4.2)

An operator &« : C — H is said to be an a-inverse strongly monotone operator if there
exists a constant & > 0 such that

(,szfx—,szfy,x—y)zallgix—yfyllz, Vx,yeC.

As an example, we recall that the a-inverse strongly monotone operators are firmly non-
expansive mappings if a = 1 and that every a-inverse strongly monotone operator is also
1 _Lipschitz continuous (see [34]).

Let us observe also that, if o is a-inverse strongly monotone, the mappings Pc(I — A</)
are nonexpansive for all A € (0,2a] since they are compositions of nonexpansive mappings
(see p.419 in [34]).

Let us consider Sy, ..., Sy a finite number of nonexpansive self-mappings on C and Ay, ...,
Ap be a finite number of a-inverse strongly monotone operators. Let T : C — C be a ¢-strict
pseudocontraction with fixed points. Let us consider the following mixed problem of finding
x* € Fix(T) n GMEP(®, h) n GSVI(G) N T such that

(I-8)x*,y—x*)=0, VyeFix(T)nGMEP(®, ) nGSVI(G)nT,
(I-8)x*,y—x*)=0, VyeFix(T)nGMEP(®,h) nGSVI(G)nT,

(I=Sy)x*,y—x*)=0, VYyeFix(T)nGMEP(®, h) nGSVI(G) T,
(A1x*,y—x*)=0, VyeC,
(Apx™,y—x*)=0, VyeC,

(4.3)

(Anx*,y—x*)=0, VyeC.

Let us call (SVI) the set of solutions of the (M + N)-system. This problem is equivalent to
finding a common fixed point of T, {PFix(T)nGMEP(@,h)mGSVI(G)nFSi}?/:Ilr {Pc(I— AAi)}é\Ll- So we
claim that the following holds.
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Theorem 4.1. Let us suppose that Q = Fix(T) n (SVI) n GMEP(®, h) n GSVI(G) nT # ¢. Fix
A>0. Let {ay}, {Bni},i =1,...,(M+ N), be sequences in (0,1) such that 0 < liminf,, .. Bn,; <
limsup,,_.o, Bn,i <1 for all indices i. Moreover, let us suppose that (H0)—(H6) hold. Then the
sequences {x,},{yn} and {u,} explicitly defined by scheme

O(up, )+ h(un, y) + 7-(y = Un, un = Xp) 20, Vy€C,

Y1 = B, 1 Prix(1)nGMEP®©, i nGsVI(G) T S1 Uy + (1= B, 1) U,

Yn,i = Brn,i Prix(1)nGMEP®©, ) nGsvIG@nr Sitin + (L= B i) Yni-1, i =2,..., M,

S Ynm+j=PBumrjPcI=AADun+ A = Bpm+ ) Ynm+j-1, j=1,...,N,

Inm+N = Pc(Yn,m+N = AnV fa, (Ynp4N)),

Yn = BnXn+YnGPc(Ynm+N — AnV fa, FnmN) + 0n TGPc(Yn e N — AuV fa, Fnm+N)),
Xn+1 = Pcleny@nVxn+(1=6,)8xp) + (U —€uF)ynl, Yn=0,

(4.4)
all converge strongly to the unique solution x* € Q of Problem 1.3 provided || x, — xp-1ll + ay, =
0(€n62).

Theorem 4.2. Let us suppose that Q # @. Fix A > 0. Let {ay},{Bn,i}, i =1,...,(M+ N), be se-
quences in (0,1) and B,,; — B; for alli as n — oco. Suppose that there exists k € {1,..., M + N}
such that B — 0 as n — oo. Let ko € {1,..., M + N} be the largest index for which B, , — 0.
Moreover, let us suppose that (H0), (H7) and (H8) hold and

i 6" —_— —_— *
@) Brie 0asn— oo;
(i) ifi<koandB,,; — 0 then %‘T"l" —0asn— oo;

(iii) if Bn,i — Bi #0 then B; liesin (0,1).

Then the sequences {x,},{yn} and {u,} defined by scheme (3.1), all converge strongly to the

unique solution x* € Q of Problem 1.3 provided || x;, — X1l + a, = 0(6,15%[5,1,;%).

Remark 4.1. If in system (4.3), Vf =0, F; = F, = A; =---= Ay =0 and T is a nonexpansive
mapping, we obtain a system of hierarchical fixed point problems introduced by Mainge and
Moudafi [20, 21].

On the other hand, recall that a mapping S: C — C is called {-strictly pseudocontractive

if there exists a constant { € [0, 1) such that
ISx=Syl* < llx-yI*+LIUT-)x—UI-9yl? Vx,yeC.

If { =0, then Sis nonexpansive. Put «/ = I-S, where S: C — Cis a {-strictly pseudocontractive

mapping. Then « is 1T_(-inverse strongly monotone; see [37].

Utilizing Theorems 3.1 and 3.2, we also give two strong convergence theorems for finding
a common element of the solution set GMEP(®, i) of GMEP (1.3), the solution set I of the
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SFP (1.5) and the common fixed point set ni.\i L Fix(§;) N Fix(S) of finitely many nonexpansive
mappings S;: C — C,i =1,..., N, and a {-strictly pseudocontractive mapping S: C — C.

Theorem 4.3. Letv, € (0,1-(). Let us suppose that Q = nﬁ\ilFix(S,-) NFix(S)NGMEP(®, h)NT #
@. Let{au},{Pn,it,i=1,...,N, be sequences in (0,1) such that0 < liminf,, .o f,; <limsup,,_
Bn,i <1 forallindices i. Moreover, let us suppose that there hold (H0)— (H6) withy, =0,Yn =0.
Then the sequences {x,},{y,} and {u,} generated explicitly by

O(up, )+ h(uy,y) + %(J’_ Up, Up—Xp) =20, VyeC,

V1= PBu1S1un+ 1= Bp1)un,

Yni=PniSitn+ 1= Bni)yni-1, i=2,...,N,

L In,N=Pc(ynnN—AnV fa, Yn,N), (4.5)
In= 1')C(yn,N_/1nvfoc,l (Fa,N)),

Yn=PBnxn+ A= Pp)((L=v1)tn+v1Sty),

Xn+1 = Pcleny@nVxn+ (1 =6,)8xn) + (U —€puF)yyl, ¥Yn=0,

all converge strongly to the unique solution x* € Q of Problem 1.3 provided || x;, — xp—1 || + ay =
0(en62).

Proof. In Theorem 3.1, put F; =« =I-Sand F, = 0. Then & is 1T_(-inverse strongly mono-
tone. Hence we deduce that Fix(S) = VI(C, «f) = GSVI(G) and

Gty = Pc(I—=viF1)Pc(I—v2F))ty
=Pc(I-viF)ty

=1 -vt, +v15t,.
Thus, in terms of Theorem 3.1, we obtain the desired result. O

Theorem 4.4. Letv, € (0,1—-{). Let us suppose that Q) = mﬁ\ilFix(Si) NFix(S)NGMEP(®, h)NT #
@. Let{an},{Bni},i =1,...,N, be sequences in (0,1) such that B,,; — B; for alli as n — oo.
Suppose that there exists k € {1,..., N} for which B, — 0 as n — co. Let ky € {1,..., N} be the
largest index for which B, i, — 0. Moreover, let us suppose that there hold (H0), (H7) and (H8)
withy,=0,Yn=0 and

(i) == >0asn— oo;
ﬁn,k()

(i) ifi<koandB,;— 0 then ﬁﬁ"r’lki" —0asn—oo;

(iii) if Bn,i — Bi #0 then B; liesin (0,1).

Then the sequences {x,},{yn} and {u,} generated explicitly by (4.5), all converge strongly to the
unique solution x* € Q of Problem 1.3 provided || x,, — Xp—-1 || + a, = 0(€n5§zﬁn,ko)-
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