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EXACT AND UNIQUE SOLUTION OF A TRANSPORT
EQUATION IN A SEMI-INFINITE MEDIUM BY LAPLACE
TRANSFORM AND WIENER-HOPF TECHNIQUE

Z. ISLAM, A. MUKHERJEE AND S. KARANJAI

Abstract. The equation of radiative transfer in non-conservative case for diffuse reflection
in a plane-parallel semi-infinite atmosphere with axial symmetry has been solved by Laplace
transform and Wiener-Hopf technique. We have determined the emergent intensity in terms of

Chandrasekhar’s H-function and the intensity at any optical depth by inversion.

1. Basic Equation and Solution for Emergent Intensity

A parallel beam of radiation of net flux HF per unit area nomral to itself is incident on
a plane parallel atmosphere of semi-infinite thickness in some specified direction (—p, ¢g).
The equation appropriate to the problem (Chandrasekhar [2]; DasGupta [3]) is

dI(t, 1 [t F _+
(dtu) =1I(t,p) — 5/ Pl )t w')dp" = e 70 plp, —po) (1)
1

"

where I(t,u) is the intensity characterizing the diffuse radiation field in the direction
cos™! i at the optical depth t. We take (Busbridge [1], art.45; Chandrasekhar [2])

p(p,p) = wo + wipp. (2)

The average intensity Jo(t) and the normal flux J;(t) are defined by

1 /1
Jp(t) = 5/ p It p)dp;  r=0,1. (3)
-1
Boundary conditions are
10,-1) =0, 0<p<1 (4)
and
I(t,u)e_:_i —ooast— oo, |ul<l1. (5)
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Equation (1) takes the form

dI(t, F ~a
(dt 4 _ I(t, 1) = woJo(t) —wnpda(t) = 7 (wo — wipsgro)e .

"

Laplace transform of equation (6) gives

oS

* * * F
(us = 1)I"(s, ) = psI(0, 1) — woJg (s) —wipJi(s) = - (wo — wippio)

The formal solution of equation (6) gives, setting u = %, is

1 % W1 oy F
I (0, g) = woJj§(s) + ?Jl (s)+ I (wo -

w1,u0) HoS
s /14 pgs

1+ pos’

(8)

Multiplying equation (8) by %du and 2 —g_Ll successively and integrating between —1 and

2 p
1 and eliminating J§(s), J5(s) l

Fpo
T(2)1(0,2) = GT(2) + —————[wo — (w110 — wow z
(2)1(0.2) = GH() + g 0 o = (wapo = wowr o)
where
' U()
T(z):lszQ/O zQ—xQd:C
1
Ulz) = glwo +wi(l — wo)z?]
! 1
/U(x)dx<—
0 2
and

Gt(z) = % /0 . f Z[wo + w1 (1 —wo)xz]I(0,x)dx.

We now proceed to solve the integral equation (9).
Following Busbride [1] we have

I(O’Z)(er )k—z =co+c1z + cp2?
H(z) Ho E 0 1 2
where L
U(x)H
H(z)=1+ zH(z)/ Mdm.
0 r+z
Equation (14) gives the emergent intensity as
k 2
10, 2) = Mot eaztes) g

(k= 2)(z + po)

9)

(10)
(1)

(12)

(13)
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2. Intensity at any Optical Depth

The radiation intensity at any optical depth ¢ is given by

1 c+1i6 I* )
I(t,p) = =— lim Me“ds, c>0. (17)

21t 6—00 Jo_ys 5
The integrand of equation (17) has simple poles at s = fu—lo and s = +k; s = 0 is not a
pole. Again

1\ I*

lim (s — —> Me“ =0 (18)

s—>% 1% S
Therefore, s = %f is not a pole of the integrand of equation (17). The pole s = fu—lo is

on the singular line and the residue must be calculated there. Hence the integrand of
equation (17) is regular for (—oo, —1)¢. Therefore, by Cauchy’s residue theorem, equation
(17) gives

1 I* 1 I*
L) = R+ Ry + Ryt —— [ DM g L[ IS ey (g
21 JuyE s 21 Jpa S

where

_ .t
ke 70wy —wi(l —wo)ppo co — cipo + copy X (—po)

Ry = -2 20
! ptpo  wotwi(l—wo)pd  H(po)k+po)  Z(—po) (20)
wo—l—wl(l —wo)k'/.t CQ+61]€+02]€2 t
Ry = . -kH(k)e*® 21
2 wo+w1(1 70)())](32 (k‘l’ﬂo)(ﬂfk’) ( ) ( )
k2 —wi(1l —wo)k -k k? 1
Ry = = o—# %0 wi(l —wo) gt Co — 1k + Cok™ _— (22)
2 wo +wi(l —wo)k? (k4 p)(po — k) H(k) [T ()] e=1
where
d 1 K3
Lr(= =" —[(3k*-1)(1—
k2 kE—1
+ {wo +3wi(1 — wp)k? In o (23)
3. Determination of the Constants cg, ¢1, c2
We rewrite the equation (9) in the form
k—z k—=z F k—=z
(557) P00+ = 2 ok 2)6 )+ T4 - (1-wohosl 1 (20)
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where )
hy = / 2"U(x)H (z)dx; r=0,1,2,....
0

(25)

We substitute the expression for (0, z) from equation (16) in equation (24) and equating

the coefficients of 20, z and 22 from bothsides we obtain

k
|:(1 — ho) + %wl(l — wo)a1 + (k‘ — MO)dl — d2:| Co

k
+ |:h1 + %wl(l — wo)ag + (k’ — uo)dg — d3:| C1

k 1
+ |:h2 + %uﬂ(l — wo)a3 + (k’ — Mo)dg — d4:| Cy = ZFWQMO

| =

E(k — o) (1 — wo)as — dl} co + {—(1 —ho) +

W
?O + wl(l — wO)‘LL()}

N

Fu}()

=

1
+ [h1 + 5(143 — po)wi (1 — wo)az + ds] Cy =

1 1 1
—w1(1 — wo)a100 + 5&)1(1 — wQ)OéQCl + |:§W1(1 — wo)ag — (1 — ho):| Co

2
1 2
= ZF%wl(l — wp)
where .
"H
a,«z/ x—(x)dac; r=1,2,3.
o (k—x)(po +2z)

and

Y a"U(z)H (z)
dT:/ Yy r=1,2,3,4.
o (k—2)(uo +x)

Equations (26), (27) and (28) determine the constants cg, ¢1, c2 explicitly.
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