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WEAK RADICAL CLASSES

HUDA MOHAMMED J. AL-THANI

Abstract. We introduce the concept of weak radical classes and proceed to construct these

classes. In section 2 we define strongly austere semimodules. Theorem 1 characterizes strongly

autere semimodules with respect to modular maximal subtractive ideals. We present an example

of a weak radical class that can be neither a semiradical class nor a radical class. In section 4 we

show that the semiradical class over a certain restricted class of semirings is equivalent to the

weak radical class. We also demonstrate the construction of a semiradical class over this class.

Finally, we show in example 3 that a semiradical class need not to be a radical class.

1. Introduction

Recall (cf. [1], [3] & [4]) the following definitions and facts:

1.1. A non-empty subset N of a left semimodule M is subtractive if and only if for all
m, m′ ∈ M , m + m′ ∈ N and m ∈ N imply that m′ ∈ N .

1.2. An austere semimodule M is a semimodule with only two subtractive semimodules,
0 and M itself.

1.3. Let α : M −→ N be a homomorphism of semimodules. The subsemimodule Im(α)
of N is defined as

Im(α) = {n ∈ N : n + α(m′) = α(m) for some m, m′ ∈ M}.

Then α is i-regular if α(m) = Im(α); α is k-regular if for any m, m′ ∈ M , α(m) = α(m′)
implies m + k = m′ + k′ for some k, k′ ∈ Kerα; and α is regular if it is both i-regular
and k-regular.

1.4. Let µ be a class of semimodules and M be a semimodule. The reject of µ in M and
the strong reject of µ in M are defined as RejM (µ) = ∩{Kerh | h : M −→ U for some
U ∈ µ and h is a homomorphism}; stsRejM (µ) = ∩{Kerh | h : M −→ U for some U ∈ µ
and h is a regular homomorphism}, respectively.
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1.5. Let M be a left R-semimodule. An element m ∈ M is regular if the homomorhphism

θ : R −→ M defined by r 7→ rm is a regular homomorphism. Note that M is regular if

for every m ∈ M , m is regular.

1.6. If M is a left R-semimodule, then its left annihilator is LR(M) = {r ∈ R : rm = 0

for every m ∈ M} and its left strong annihilator is SL(M) = {r ∈ R : rm = 0 for every

regular element m ∈ M}.

1.7. A semiring R is said to be k-homomorphic image of S if there exists a k-regular

homomorphism from S onto R.

1.8. An ideal I of a semiring R determines an equivalence relation ≡I on I, the Bourne

relation, defined as r ≡I r′ if and only if there exist elements a, a′ ∈ I satisfying

r + a = r′ + a′. If r ∈ R then we write r/I instead of r/ ≡I . The factor semiring R/ ≡I

is denoted by R/I.

1.9. A left ideal I in a semiring R is regular if the left R-semimodule R/I is regular. A

semiring R is regular if {0} is regular.

1.10. Let ρ be a class of semirings. A semiring (ideal) belonging to the class ρ, will be

called a ρ-semiring (ρ-ideal).

1.11. A class ρ of semiring is a radical class whenever the following three conditions are

satisfied:

(a) ρ is homomorphically closed; i.e. if S is a homomorphic image of a ρ-semiring R,

then S is also a ρ-semiring

(b) Every semiring R contains a ρ-ideal ρ(R) which in turn contains every other ρ-ideal

of R

(c) The factor semiring R/ρ(R) does not contain any nonzero ρ-ideal; i.e. ρ(R/ρ(R)) = 0.

1.12. A class ρ of semirings is said to be a semiradical class whenever the following three

conditions are satisfied:

(a′) ρ is k-homomorphically closed; i.e. if S is an k-homomorphic image of a ρ-semiring

R, then S is also a ρ-semiring

(b′) Every semiring R contains a ρ-subtractive ideal ρ(R) which in turn contains every

other ρ-subtractive ideal of R

(c′) The factor semiring R/ρ(R) does not contain any non-zero ρ-subtractive ideals;

i.e. ρ(R/ρ(R)) = 0.

For example, the class σ of all left quasi-regular semirings forms both a radical class

and a semiradical class, where R is left quasi-regular if for every element x ∈ R there

exists an r ∈ R such that r + rx + x = 0.

A semiring that does not contain any non-zero ρ-subtractive ideals is termed ρ-

semisimple.

Finally we mention the following two propositions.
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Proposition 1. If I is a subtractive ideal of R, then there is a one-to-one correspon-

dence between subtractive ideals H of R that contain I and subtractive ideals J of R/I.

Therefore every subtractive ideal in R/I is of the form H/I, where H is a subtractive

ideal of R that contains I.

Proof. Let I be a subtractive ideal of R and let J be a subtractive ideal of R/I. Let

H = {x ∈ R : x/I ∈ J}. If x, y ∈ H and r ∈ R then x/I + y/I = x + y/I ∈ J and

r/I.x/I = rx/I ∈ J . Therefore H is an ideal of R that contains I. If x, x + r ∈ H then

x/I, x + r/I ∈ J . Since J is subtractive, r/I ∈ J , so r ∈ H . Thus H is a subtractive

ideal. Let S(R) be the set of all subtractive ideals of R containing I and let S(R/I)

be the set of all subtractive ideals of R/I. Define θ : S(R/I) → S(R) by θ(J) = H .

Let θ(J) = θ(J ′). If x/I ∈ J then x ∈ H , so x/J ∈ J ′. Therefore J = J ′. If K

is a subtractive ideal of R containing I, then θ(K/I) = K. Thus there is one-to-one

correspondence between the subtractive ideals H of R that contain I and the subtractive

ideals J of R/I.

Proposition 2. If ρ is a semiradical, then R is an ρ-semiradical semiring if and

only if R cannot be mapped k-regular homomorphically onto a non-zero ρ-semisimple

semiring.

Proof. If R is an ρ-semiradical semiring then condition (a′) implies that every non

zero k-regular homomorphic image of R is also a ρ-semiradical semiring and therefore it

cannot be ρ-semisimple. Conversely, if R is not a ρ-semiradical semiring, then by (b′)

and (c′) it can be mapped k-regular homomorphically noto the non-zero ρ-semisimple

semiring R/ρ(R), where ρ(R) is the ρ-semiradical of R.

Remark 1. For potential applications, we note that semimodules over semirings are

important in studying the properties of semirings, and the latter arise in such diverse

eareas of applied mathematics as optimization theory, automata theory, mathematical

modeling and parallel computation systems (c.f. [4], pp iv, 138).

2. Weak Radical Classes

Definition 1. A class σ of semirings is a weak semiradical class whenever the fol-

lowing two conditions are satisfied:

(A) If R is an σ-semiring, then every non-zero k-regular homomorphic image of R has a

non-zero σ-subtractive ideal;

(D) If every-non-zero k-regular homomorphic image of a semiring R has a non-zero σ-

subtractive ideal then R is an σ-semiring.

Remark 2. Observe that by axiom (D) the semiring 0 is always a σ-weak radical

semiring. Furthermore, there are two trivial weak radical classes, the semiring 0 and the

class of all semirings. Note that when σ is a class of rings, this definition defaults to the

standard definition of a radical class.
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The next result shows that weak semiradical is a generalization of semiradical.

Proposition 3. Every semiradical calss is weak semiradical.

Proof. If ρ is a semiradical class, then the class ρ satisfies conditions (a′), (b′), and
(c′). Condition (a′) implies condition (A) trivialy. If R is not a ρ-semiring, then by (b′)
we have ρ(R) 6= R, and so R/ρ(R) is a non-zero homomorphic image of R which does
not contain non-zero ρ-subtractive ideals by (c′). Thus condition (D) is also fulfilled.

Now we present some new definitions and results that will enable us to describe an
example of a weak radical class.

Definition 2. A left R-semimodule M is strongly austere if M is austere and
SLR(M) 6= R.

Definition 3. A left ideal I in a semiring R is modular if there exists an e ∈ R such
that r/I = re/I for every r ∈ R.

Remark 3. Note that these default to the customary definitions if M is a module
or if R is a ring.

The following theorem is analogous to the one that characterizes simple modules with
maximal modular ideals.

Theorem 1. A left R-semimodule M over a semiring R is strongly austere if and

only if M is isomorphic to R/I for some modular maximal subtractive left ideal I.

Proof. Let M be a strongly austere semimodule. Hence SLR(M) 6= R, so there exists
a regular element 0 6= m ∈ M . Since Rm is subtractive, M = Rm. Define θ : R → Rm
as θ(r) = rm. Since m is regular, θ is a k-regular surjective homomorphism. Consider
φ : R/Ker θ → Rm as defined by φ(r/Ker θ) = rm. Clearly φ is an isomorphism.

Since M is austere, Ker θ is a maximal subtractive left ideal. Now M = Rm, where
m = em for some e ∈ R. Thus, for any r ∈ R, rm = rem. By the regularity of m,
r + k = re + k′ and km = k′m = 0, hence re/Ker θ = r/Ker θ. Thus Ker θ is a modular
maximal subtractive left ideal. Conversely, let I be a modular maximal subtractive ideal
of R such that M ≃ R/I. Clearly M is austere, so it suffices to prove that SLR(M) 6= R.
Suppose that SLR(M) = R. Since I is modular, there exists an element e/I such that
re/I = r/I. Clearly e/I is a regular element. Hence R(e/I) 6= 0 and SLR(M) 6= R.

Corollary 1. If R is a semiring, then R has a strongly austere left R-semimodule if

and only if R has a modular maximal subtractive left ideal.

Proposition 4. Let R and S be semirings and let φ : R → S be a surjective

k-regular homomorphism. Then every S-strongly austere semimodule is an R-strongly

austere semimodule.

Proof. Let M be an S-strongly austere semimodule. Define φ : R × M → M
by the rule rm = φ(r)m. Clearly M is an R-semimodule. Let K be a subtractive
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R-subsemimodule. Since φ is surjective, SK = φ(R)K = RK ⊂ K. Hence K is a
subtractive S-subsemimodule. Therefore M is an austere R-semimodule. Since M is a
strongly austere S-semimodule, there exists a regular element 0 6= m ∈ M . If r1m = r2m,
then φ(r1)m = φ(r2)m. Since m is regualr, φ(r1)+s1 = φ(r2)+s2, where s1m = s2m = 0
and s1, s2 ∈ S. Since φ is onto, s1 = φ(r3), s2 = φ(r4). Hence φ(r1 + r3) = φ(r2 + r3).
Since φ is k-regular, r1+r3+k1 = r2+r4+k2, where r1, r2, r3, r4 ∈ R and k1, k2 ∈ Kerφ.
Clearly (r3+k1)m = φ(r3+k1)m = φ(r3)m+φ(k1)m = φ(r3)m+0 = φ(r3)m = s1m = 0.
Similarly (r4 + k2)m = 0. If r1m + b = r2m then φ(r1)m + b = φ(r2)m. Since m is a
regular element, b = s2m. Since φ is onto, s2 = φ(r3). Thus b = φ(r3)m = r3m and
therefore M is an R-strongly austere semimodule.

Definition 4. The Jacobson weak radical σ̂ is defined as σ̂ = {R : R is commutative
and has no modular maximal subtractive left ideals} .

Theorem 2. The class σ̂ is a weak radical class.

Proof. Let R be a σ̂-semiring and S 6= 0 a k-homomorphic image of R. Suppose that
S 6∈ σ̂. Then there exists a strongly austere left S-semimodule, say M . By proposition 4,
M is an R-strongly austere R-semimodule and M 6= 0. By theorem 1, M is isomorphic
to R/I for some modular maximal subtractive left ideal I of R. This contradicts the
assumption that R ∈ σ̂. Thus S ∈ σ̂, proving the validity of (A). Next, assume that
every non-zero homomorphic image of a semiring R has a non-zero σ̂-subtractive ideal.
If R 6∈ σ̂ then there exists a modular subtractive left ideal I such that R/I is a strongly
austere left R-semimodule. By our assumption R/I has a non-zero σ̂-subtractive ideal.
Since R/I is austere, R/I ∈ σ̂. Therefore R/I has no modular maximal subtractive left
ideal. But I is a modular subtractive left ideal of R/I. Thus R ∈ σ̂. Hence condition
(D) is also satisfied and σ̂ is weak radical class.

In ring theory the weak radical class coincides with the both radical class and the
semiradical class. However, the next two examples will show that a weak radical class σ̂
may be neither a semiradical class nor a radical class.

Example 1. Let R = {0, a, b, c, d, e} and define operations + and · on R as follows:

+ 0 a b c d e

0 0 a b c d e

a a a a e e e

b b b b e e e

c c e e c c e

d d e e d d e

e e e e e e e

. 0 a b c d e

0 0 0 0 0 0 0

a 0 b b 0 0 b

b 0 b b 0 0 b

c 0 0 0 c c c

d 0 0 0 c c c

e 0 b b c c e

Clearly {0}, {0, a, b}, {0, c, d} and R are all subractive ideals of R. It can be shown that
R 6∈ σ̂ and {0, a, b}, {0, c, d} ∈ σ̂. Thus {0, a, b} + {0, c, d} 6∈ σ̂. Therefore σ̂ cannot be a
semiradical class.
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Example 2. Let R be the semiring consisting of the three elements 0, b and a with

the two operations given by the tables

+ 0 b a

0 0 b a

b b b b

a a b a

. 0 b a

0 0 0 0

b 0 b b

a 0 b b

Clearly {0}, {0, b} and R are all left ideals of R, {0, b} is not a subtractive left ideal and

{0} is a subtractive left ideal which is not modular. Thus R has no modular subtractive

left ideals. Therefore R ∈ σ̂. Now consider the semiring R/{0, b}. Clearly 0 is a modular

subtractive ideal of R/{0, b}. Hence R/{0, b} 6∈ σ̂. Now R/{0, b} is a homomorphic image

of the σ̂-semiring R, which is not a σ̂-semiring. Thus the class σ̂ is weak radical, not

radical.

3. Construction of a Weak Radical Class

In thie section we develop weak radical classes in the same way that radical classes

of rings are developed in [2].

Theorem 3. Let µ be any class of semiring which satisfies the following condi-

tion:

(E) Every non-zero subtractive ideal of a semiring of µ can be mapped k-homomorphi-

cally onto some non-zero semiring of µ.

Then the class σµ = {R : R cannot be mapped k-homomorphically onto any non-zero

semiring of µ} is a weak radical class.

Proof. Let µ be any class of semirings which satisfies condition (E). If σµ is defined

as above, we shall show σµ is a weak radical class by showing that it meets conditions

(A) and (D). Condition (A) is clear, for whenever a k-homomorphic image of a semiring

R can be mapped k-homomorphcially onto a non-zero semiring of µ, then R itself can

be mapped k-homomorphically onto this same semiring of µ. In this case, R is not a

σµ-semiring, and this establishes (A). To show that (D) holds, let R be a semiring such

that every non-zero k-homomorphic image of R has a non-zero σµ-subtractive ideal. If

R is itself not a σµ-semiring, then it can be mapped homomorphically onto a non-zero

semiring R′ of µ. By our assumption, R′ must have a non-zero σµ-subtractive ideal

I. By (E), I can be mapped homomorphically onto some non-zero semiring of µ, which

contradicts the definition of a σµ-semiring. Thus R must be a σµ-semiring and (D) holds,

so σµ is a weak radical class.

Remark 4. If we let µ be a class of strongly austere semirings, then µ satisfies (E)

and we have a weak radical class as promised above.
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4. Semiradical Classes over a Restricted Class of Semirings

In this section we consider the class ℑ of semirings. It will be shown that in this

class, semiradical and weak radical are equivalent. Thus by the previous section, the

semiradical class can be constructed over the class ℑ.

The following results are necessary to prove theorem 6.

Theorem 4. (Second Isomorphism Theorem): If I and J are subtractive ideals in a

semiring R for which i≡
J

i′ implies i ≡
I∩J

i′, then there exists an isomorphism of semirings

I/(I ∩ J) ≃ I + J/J .

Proof. Consider the homomorphism f : I → I + J/J defined by f(i) = i/J . Clearly

f is surjective k-regular with kernel I ∩ J , so I/(I ∩ J) ≃ I + J/J .

Theorem 5. (Third Isomorphism Theorem): If H is a subtractive ideal of R and

K is an ideal of R such that K ⊂ H, then H/K is a subtractive ideal of R/K and

(R/K)/(H/K) ≃ R/H.

Proof. Clearly H/K is subtractive ideal of R/I. Define θ : R/K → R/H by

θ(r/K) = r/H . Now θ is a homomorphism with kernel H/K. If r/H = r′/H , then

r + h = r′ + h′, so r + h + k = r′ + h′ + k. Hence r/K + h/K = r′/K + h′/K, so θ is

k-regular and (R/K)/(H/K) ≃ R/H .

Let ℑ be the class of semirings satisfying the following two conditions:

(*) If I and J are subtractive ideals with i≡
J

i′ for i, i′ ∈ I, then i ≡
I∩J

i′.

(**) If I and J are subtractive ideals of R, then I + J is subtractive.

Remark 5. Note that all classes of rings are contained in the class ℑ.

Theorem 6. A class σ of ℑ is semiradical if and only if σ is weak semiradical.

Proof. Let σ be a semiradical class. By proposition 4, σ is weak radical. Conversely,

suppose σ is a weak radical class of ℑ. Let R be a σ-semiring and S 6= 0 a k-regular

homomorphic image of R. Since every k-regular homomorphic image of S is at the same

time a k-regular homomorphic image of R, by (A) every non-zero k-regular homomorphic

image of S contains a non-zero σ-subtractive ideal. Hence applying (D) we see that S

is a σ-semiring, establishing (a′). To show (b′), we have to show the sum J =
∑

α Iα

of all σ-subtractive ideals Iα of a semiring R is again a σ-subtractive ideal of R. If

J = 0, then by (D), J is a σ-subtractive ideal. If J 6= 0, consider an arbitrary non-zero

k-regular homomorphic image J ′ of J . By the homomorphism theorem we may assume

that J ′ ≃ J/K, where K 6= J is a subtractive ideal of J . By the defintion of J there

exists a σ-subtractive ideal Iα of R such that Iα is not isomorphic to K. Now the second

isomorphism theorem yields

0 6= (Iα + K)/K ≃ Iα/(K ∩ Iα),
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and the right-hand side, as a k-regular homomorphic image of the σ-semiring Iα, is
a σ-semiring by (a′). Thus J/K contains a non-zero σ-subtractive ideal (Iα + K)/K
and (D) implies J is a σ-subtractive ideal. Finally, we establish (c′). Because we have
already verified (b′), we can let J = σ(R). Now assume that (c′) does not hold and let
L′ be a non-zero σ-subtractive ideal of the factor semiring R/σ(R). By proposition 1
L′ can be written as L′ = L/σ(R) where L is a subtractive ideal of R. Let L/T be a
k-regular homomorphic image of L. Now either σ(R) ⊆ T or not. In the first case, the
third isomorphism theorem implies 0 6= L/T ≃ (L/σ(R))/(T/σ(R)), and the right-hand
side, as a k-regular homomorphic image of the σ-semiring L′ = L/σ(R), is a σ-semiring.
Hence L/T . contains a non-zero σ-subtractive ideal, namely itself. In the second case,
by the second isomorphism theorem, we have 0 6= (T + σ(R))/T ≃ σ(R)/(T ∩ σ(R)) and
the right-hand side is again a σ-semiring because of (a′) and σ(R) ∈ σ. Furthermore,
T + σ(R)/T is a subtractive ideal of L/T . Thus in both case the arbitrarily chosen
non-zero k-regular homomorphic image of L/T contains a non-zero σ-subtractive ideal.
Applying (D) we get L ∈ σ, so L is a σ-subtractive ideal of R that is not contained in
σ(R), contradicting the definition of σ(R). Hence condition (c′) is satisfied.

In ring theory, a semiradical class is equivalent to a radical class. However, the above
theorem enables us to construct the following example of a semiradical class that is not
radical.

Example 3. Let R be the semiring defined in example 2. Clearly R ∈ ℑ. Let
σ̃ = {R ∈ ℑ : R is commutative and R has no modular maximal subtractive left ideal
I}. By theorem 2 and theorem 6 σ̃ is semiradical class. By example 2 we see that σ̃ is
semiradical class over ℑ that is not radical.

The following fundamental result is required to construct semiradical classes.

Theorem 7. A class µ ⊂ ℑ is a class of all ρ-semisimple semirings with respect to

some semiradical class ρ over the class ℑ if and only if µ satisfies the following condi-

tions:

(E) Every non-zero subtractive ideal of a semiring of µ can be mapped k-homomorphi-

cally onto some non-zero semiring of µ.

(F) If every non-zero subtractive ideal of a semiring R can be mapped k-homomorphi-

cally onto some non-zero semiring of µ, then the semiring R must be in µ.

Proof. Suppose that we are given a semiradical class ρ over the class ℑ and that µ
is the class of all ρ-semisimple semirings over ℑ. Let R be in µ and let I be a subtractive
ideal of R. Since R is ρ-semisimple, I is not a ρ-semiradical semiring. By Proposition 2,
I can be mapped k-homomorphically onto a non-zero ρ-semisimple semiring; i.e., onto
a semiring of µ. Thus µ satisfies (E). To show that (F) is satisfied, let R be a semiring
that is not ρ-semisimple, so R has a non-zero ρ-semiradical subtractive ideal H . By
proposition 2, this subtractive ideal H cannot be mapped k-homomorphically onto a
non-zero ρ-semisimple semiring, so our desired conclusion follows.

Conversely, let µ be any class of semirings over ℑ which meets conditions (E) and (F).
By Theorem 3 the class ρµ = {R ∈ ℑ : R cannot be mapped k-homomorphically onto
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any non-zero semiring of µ} is a weak radical class. By theorem 6 ρµ is semi-radical. It

remains to show that µ is the class of all ρµ-semisimple semirings. If R is a semiring of µ,
then by (E) a non-zero subtractive ideal R cannot be a ρµ-semiring. Thus every semiring
in µ is ρµ-semisimple. On the other hand, if R ∈ ℑ is any ρµ-semisimple semiring then

no non-zero subtractive ideal of R is a ρµ-semiring and therefore R cannot be mapped
k-homomorphically onto a non-zero semiring of µ. By (F), R is itself in µ. Thus µ is
precisely the class of all ρµ-semisimple semirings over ℑ, and the theorem is proved.

If we can exhibit a class of semiring in the class ℑ that satisfy (E) and (F), we will

have a semiradical class as above. If we find a class of semirings satisfying only (E), we
can use the following proposition to build it up to a class satisfying both (E) and (F).

Proposition 5. If a class µ ⊂ ℑ of semirings satisfies (E) and if the class µ is

defined as the set of all semirings R ⊂ ℑ such that every non-zero subtractive ideal of R

can be mapped k-homomorphically onto some non-zero semiring of µ, then the class µ
satisfies (E) and (F) as well.

Proof. Because µ satisfies (E), µ is contained in µ. If R is in µ, then every non-zero

subtractive ideal of R can be mapped k-homomorphically onto some non-zero semiring
of µ and thus onto a non-zero semiring R′ of µ. Thus µ satisfies (E). On the other
hand, let R be a semiring such that every non-zero subtractive ideal of R can be mapped
k-homomorphically onto a non-zero semiring R′ of µ. By the definition of µ, can be

mapped k-homomorphically onto a non-zero semiring of µ, and therefore R is in µ, and
thus µ satisfies (F).

Example 4. Let µ be the class of all strongly austere semirings over the class ℑ. It
is clear that the class µ satisfies (E). If the class µ is defined as the set of all semirings

R ∈ ℑ such that every non-zero subtractive ideal of R can be mapped k-homomorphically
onto some non-zero semiring of µ, then the class µ satisfies (E) and (F). By theorem 7
we can then obtain a semiradical class ρµ.

Thus, if we start with a class µ of semirings over the class ℑ that satisfies (E), we
can build it up to a class µ which satisfies both (E) and (F), and by theorem 7 we can
then obtain a semiradical class ρµ. We call this class the upper semiradical determined
by µ. The use of the word upper is justified by the following:

Proposition 6. If µ is a class of semiring over ℑ which satisfies (E) and if ρ is a

semiradical class over ℑ for which all the semirings in µ are ρ-semisimple, then ρ is a

subset of the upper semiradical determined by µ.

Proof. By Theorem 7, the class of all ρ-semisimple semirings satisfies (F), so this

class contains all semirings of µ, and thus ρ ⊂ ρµ.

In the following example 5 we will show that the Jacobson semiradical over a certain
restricted class χ is the upper semiradical determined by the class of all regular strongly
austere semiring over χ. The reader is referred to the appendix for necessary background

results.
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Example 5. Let χ be the class of all semiring R with identity 1 over the class ℑ, for
which every subtractive ideal I of R satisfies the following conditions:

(1) I(r/K) is subtractive for every regular maximal subtractive left ideal K of R
(2) If re/LI(i/K) = r′e/LI(i/K) then re/LR(i/K) = r′e/LR(i/K) where K is a regular

maximal subtractive left ideal of I, ei/K = i/K and e, i ∈ I.

By theorem 8, the class of Jacobson semiradical over χ, JS = {JS(R) : R ∈ χ} forms
a semiradical class. Moreover, proposition 7 implies that JS(R) = ∩α∈AKα, where
{Kα : α ∈ A} is the set of all regular maximal subtractive left ideal. Let λ be the class
of all regular strongly austere semirings over χ. It is clear that the class λ satisfies (E),
we can build it up to a class λ which satisfies both (E) and (F), and by theorem 7 we
can then obtain a semiradical class ρλ. If R ∈ λ, then JS(R) = 0. By proposition 6
JS ⊂ ρλ. Let R ∈ ρλ. If R 6∈ JS, then there exists a regular maximal subtractive ideal
Kα. Hence R/Kα ∈ λ. Therefore R/JS(R) 6∈ ρλ. Thus R 6∈ ρλ. This contradiction
proves that R ∈ JS. Therefore JS = ρλ.

Appendix

Here, we recall some necessary definition and results which we have used in the main
text.

Definition 5. For a semiring R the Jacobson semiradical JS(R) is the annihilator
of R in τ ; i.e., JS(R) = LR(τ) where τ is the class of all regular strongly austere left
R-semimodules.

Proposition 7. For any semiring R the following properties hold:

(1) JS(R) is the intersection of all of the rejects of regular strongly austere left R-

semimodules.

(2) JS(R) is the intersection of all of the strong rejects of regular strongly austere left

R-semimoudles.

(3) JS(R) is the intersection of all of the regular modular maximal subtractive left ideals

of R.

Theorem 8. The class JS = {JS(R) : R ∈ v} froms a semiradical class, where v is

the class of semirings R for which every subtractive ideal I of R satisfies the following

conditons:

(1) If i ≡
LR(r/K)

i′ then i ≡
LR(r/K)∩I

i′ where K is a regular modular maximal subtractive

left ideal of R, i, i′ ∈ I and r ∈ R.

(2) I(r/K) is subtractive for every regular modular maximal subtractive left ideal K of

R.

(3) If re/LI(i/H) = r′e/LI(i/H) then re/LR(i/H) = r′e/LR(i/H) where H is a regular

modular maximal subtractive left ideal of I, ei/H = i/H, and e, i ∈ I.
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(For the proofs of the above results, please contact the author directly. They are included

in a paper submitted for publication)
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