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ON SOLVABILITY OF A COUPLED HYBRID SYSTEM

OF QUADRATIC FRACTIONAL INTEGRAL EQUATIONS

KAZEM GHANBARI AND YOUSEF GHOLAMI

Abstract. Of concern is studying solvability of the hybrid systems of quadratic fractional

integral equations. To this aim applying hybrid fixed point theory due to Dhag e, exis-

tence of at least one positive solution for mentioned systems via so called D-Lipschitzian

mappings will be concluded . We illustrate the obtained results by presenting an exam-

ple.

1. Introduction

The fractional calculus is the theory of arbitrary order integration and differentiation that

generalizes the integer order ones in classic differential calculus. Not only in theoretical man-

ner but also as a result of more accurate description of real world phenomena in comparison

with classic differential calculus, we can observe the boom of development of theory of frac-

tional calculus in less than three decades in almost whole sciences related to mathematics

such as biosciences, medicine, engineering, economy and so on. More details and applica-

tions can be found in the monographs and papers [26], [23], [1]-[12], [14]-[20]. On the other

hand the theory of integral equations by itself has been introduced as full applicable theory in

mathematics and great theories such as geomagnetic theory, transport theory, mechanics and

so forth. So we can conclude that combination of fractional calculus and integral equations

may introduce more effective tool for analysis and description of topics mentioned above. In

this way more interesting applications can be found in references [25], [27] and references

cited therein. Let us now introduce in the sequel the main motivation for preparing this pa-

per.

The authors in [22], by means of Dhage hybrid fixed point theory obtained periodic solu-

tions of integral equation

x(t )=
n
∑

i=1

fi (t , x(ai (t ))).

∫

R

ki (t , s)gi (s, x(bi (s)))d s.
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The authors in [13], considered the fractional order integral equation

x(t )= f (t , x(t ))+ g (t , x(t ))

∫t

0

(t − s)α−1

Γ(α)
u(s, x(s))d s, t ∈ J = [0,1], α> 0,

and via above mentioned theory concluded the existence of at least one solution.

In this paper we consider the coupled hybrid system of quadratic fractional integral equa-

tions























u(t )=
n
∑

i=1

{

k1,i (t ,u(t ), v(t ))+ g1,i (t ,u(t ), v(t )) ·

∫t

0

(t − s)αi−1

Γ(αi )
f1,i (s,u(s), v(s))d s

}

,

v(t )=
n
∑

j=1

{

k2, j (t ,u(t ), v(t ))+ g2, j (t ,u(t ), v(t )) ·

∫t

0

(t − s)β j−1

Γ(β j )
f2, j (s,u(s), v(s))d s

}

,

(1.1)

where t ∈ J= [0,T ], T,αi ,β j ∈R
+, i , j = 1,2, . . . ,n.

Assume that the following hypotheses are satisfied throughout this paper.

(A1) k1,i ∈ C (J×R
2,R+) for i = 1,2, . . . ,n and there exist positive constants L1,k1,i

,L2,k1,i
,ρk1,i

with L1,k1,i
≤ L2,k1,i

such that

‖k1,i (t ,u1, .)−k1,i (t ,u2, .)‖E ≤
1

2n

L1,k1,i
ln(1+‖u1 −u2‖E )

L2,k1,i
+ ln(1+‖u1 −u2‖E )

, t ∈ J, u1,u2 ∈C (R),

where E =C (J,R) is a Banach space endowed with the max-norm, also assume that

supk1,i (t ,u, v)= ρk1,i
, i = 1,2, . . . ,n, t ∈ J, u, v ∈C (R).

(A2) g1,i ∈ C (J×R
2,R+) for i = 1,2, . . . ,n and there exist positive constants L1,g1,i

,L2,g1,i
,ρg1,i

with L1,g1,i
≤ L2,g1,i

such that

‖g1,i (t ,u1, .)− g1,i (t ,u2, .)‖E ≤
1

2nMi

L1,g1,i
ln(1+‖u1 −u2‖E )

L2,g1,i
+ ln(1+‖u1 −u2‖E )

, t ∈ J, u1,u2 ∈C (R),

where Mi = ‖I
αi

0+ f1,i (.,u, v)‖, also suppose that

sup g1,i (t ,u, v)= ρg1,i
, i = 1,2, . . . ,n, t ∈ J, u, v ∈C (R).

(A3) f1,i , f2, j ∈C (J×R
2,R+) for i , j = 1,2, . . . ,n and

sup f1,i (t ,u, v)= θ1,i , sup f2, j (t ,u, v)= θ2, j , i , j = 1,2, . . . ,n, t ∈ J,u, v ∈C (R).

(A4) Replacing i with j and u with v also α with β in conditions (A1), (A2) the corresponding

conditions will be satisfied for k2, j , g2, j for j = 1,2, . . . ,n in hybrid system (1.1).
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2. Preliminaries

This section contains two steps. First we represent some concepts from fractional calcu-

lus that will be needed in the sequel and in second one in preparatory manner we will briefly

overview the hybrid fixed point theory due to B. C. Dhage.

Definition 2.1 ([23]). The fractional Ri emann−Li ouvi l le integral of order α> 0 for function

f ∈ L1(0,∞) is defined as

Iα0+ f (t ) =
1

Γ(α)

∫t

0
(t − s)α−1 f (s)d s, (2.1)

where Γ(α) =
∫

∞

0 sα−1e−sd s denotes the Euler gamma function.

Definition 2.2 ([23]). The fractional Ri emann−Li ouvi l le derivative of order α> 0 for func-

tion f ∈ L1(0,∞) is given by

Dα
0+ f (t )=

1

Γ(n −α)

(

d n

d t n

)∫t

0
(t − s)n−α−1 f (s)d s, (2.2)

where n = [α]+1.

Lemma 2.3 ([26]). Let α> 0 then

(i) If µ>−1 , µ 6=α− i with i = 1,2, . . . , [α]+1 and t > 0, then Dα
0+ tµ =

Γ(µ+1)

Γ(µ−α+1) tµ−α.

(ii) Dα
0+ tα−i = 0, for i = 1,2, . . . , [α]+1.

(iii) If u ∈ L1(0,∞), then Dα
0+ Iα

0+u(t )= u(t ), Iα
0+Dα

0+u(t )= u(t )+
∑n

i=1 ci tα−i .

(iv) Dα
0+u(t )= 0⇔ u(t )=

n
∑

i=1

ci tα−i ,

where ci ∈ R,n = [α]+1. We notice that replacing α with −α in (i ), gives us fractional integra-

tion of power functions.

In what follows we will apply the Banach space (B,‖.‖B):

B= E ×E , E = {u| u ∈C (J,R)},

‖(u, v)‖B= ‖u‖E +‖v‖E , ‖u‖E = max
t∈J

{u(t )| u ∈ E }.

Define set S ⊂B as

S = {(u, v)∈B| u(t ), v(t )≥ 0, t ∈ J, ‖(u, v)‖B≤ r },

= {u, v ∈ E | u(t ), v(t )≥ 0, t ∈ J, ‖u‖E +‖v‖E ≤ r }. (2.3)

Definition 2.4. We define the integral operators T1,T2 : E → E by

T1,u(t )=
n
∑

i=1

{

k1,i (t ,u(t ), v(t ))+ g1,i (t ,u(t ), v(t )).

∫t

0

(t − s)αi−1

Γ(αi )
f1,i (s,u(s), v(s))d s

}

,

T2,v (t )=
n
∑

j=1

{

k2, j (t ,u(t ), v(t ))+ g2, j (t ,u(t ), v(t )).

∫t

0

(t − s)β j−1

Γ(β j )
f2, j (s,u(s), v(s))d s

}

.

(2.4)
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Now we can define the operator T :B→B as follows

T(u, v)= (T1,u ,T2,v ) (2.5)

Definition 2.5 ([1]). Let X be a normed vector space. A mapping T : X → X is said to be D-

Lipschitzian, provided there exists a continuous and nondecreasing function ψT : R+ → R
+

such that for x, y ∈ X

‖T x −T y‖≤ψT

(

‖x − y‖
)

, ψT (0) = 0.

The function ψT is called a D-function of T on X .

Remark 2.6 ([24]). If φ,ψ : R+ → R
+ are two D-functions, then i) φ+ψ, ii) λφ, for λ> 0, and

iii) φoψ are also D-functions on R
+. Frequently used D-functions are φ(r ) = kr , with k > 0,

φ(r ) = Lr
K+r

, with 0 ≤ L ≤ K , φ(r ) = r − ln(1+ r ), φ(r ) = ln(1+ r ), etc. So we conclude that the

inequalities in hypotheses (A1)− (A4) are reasonable.

Definition 2.7 ([21]). Let X be a normed space and suppose S ⊂ X . A finite set of N balls

B (xn ,ǫ) with xn ∈ X and ǫ> 0 is said to be a finite ǫ−covering of S, provided that every element

of S lies inside one of the balls B (xn ,ǫ), i.e.

S ⊂

N
⋃

n=1

B (xn ,ǫ).

The set of centers {xn} of a finite ǫ-covering is called a finite ǫ−net for S.

Definition 2.8 ([21]). Let X be a normed space. A set S ⊂ X is said to be a Tot al l y Bounded

if and only if it has a finite ǫ−covering for every ǫ> 0.

Theorem 2.9 (Hausdorff compactness criterion [21]). Assume that X be a normed space. A set

S ⊂ X is compact if and only if it is closed and totally bounded.

Theorem 2.10 (Dhage fixed point theorem [1]). Assume that S be a nonempty closed convex

and bounded subset of Banach algebra X . Let A,C : X → X and B : S → X be three operators

with the following properties:

(i) A,C are D-Lipschitzian with D-functions φA and φC respectively.

(ii) B is completely continuous.

(iii) x = Ax +C xB y ⇒ x ∈ S, for all y ∈ S.

(iv) φA(r )+MφC (r ) < r , for r > 0 where M = ‖B (S)‖.

Then the equation Ax +C xB x = x has a solution in S.
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3. Main results

Theorem 3.1. Suppose that the conditions (A1)−(A4) hold. Then the fractional coupled system

(1.1) has at least one positive solution in S.

Proof. We are going to the represent of the proof in three steps as follows:

(S1) Suppose that

A1,i u(t ) =
n
∑

i=1

k1,i (t ,u(t ), v(t )),

C1,i u(t ) = g1,i (t ,u(t ), v(t )), i = 1,2, . . . ,n, (3.1)

B1,i u(t ) =

∫t

0

(t − s)αi−1

Γ(αi )
f1,i (s,u(s), v(s))d s, i = 1,2, . . . ,n,

A2, j v(t ) =
n
∑

j=1

k2, j (t ,u(t ), v(t )),

C2, j v(t ) = g2, j (t ,u(t ), v(t )), j = 1,2, . . . ,n, (3.2)

B2, j v(t ) =

∫t

0

(t − s)β j−1

Γ(β j )
f2, j (s,u(s), v(s))d s, j = 1,2, . . . ,n.

Define

A1,i ,2, j (u, v)(t ) =











n
∑

i=1

k1,i (t ,u(t ), v(t ))

n
∑

j=1

k2, j (t ,u(t ), v(t ))











, (3.3)

C1,i ,2, j (u, v)(t ) =

(

g1,i (t ,u(t ), v(t )) 0

0 g2, j (t ,u(t ), v(t ))

)

, i , j = 1,2, . . . ,n, (3.4)

B1,i ,2, j (u, v)(t ) =











∫t

0

(t − s)αi−1

Γ(αi )
f1,i (s,u(s), v(s))d s

∫t

0

(t − s)β j−1

Γ(β j )
f2, j (s,u(s), v(s))d s











, i , j = 1,2, . . . ,n. (3.5)

Now we can transform operator T(u, v) defined by (2.5) to the operator

T(u, v)(t )= A1,i ,2, j (u, v)(t )+
∑

i

∑

j

C1,i ,2, j (u, v)(t )B1,i ,2, j (u, v)(t ), (3.6)

such that above double summation acts on (i , j ) = (1,1), (2,2), . . . , (n,n).

Indeed we shall show in this step that T(u, v) is a nonlinear D-Lipschitzian with D-

function

ψu,v =

n
∑

i=1

ψk1,i
+

n
∑

j=1

ψk2, j
+

∑

i

∑

j

{ψg1,i
Mi +ψg2, j

M j }, (3.7)

where (i , j ) = (1,1), (2,2), . . . , (n,n) and ψk1,i
, ψk2, j

, ψg1,i
, ψg2, j

are D-functions corre-

sponding to the nonlinear D-Lipschitzian k1,i , k2, j , g1,i , g2, j . To this aim by means of
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conditions (A1), (A4) we have

‖A1,i ,2, j (u1, v1)− A1,i ,2, j (u2, v2)‖B

≤

n
∑

i=1

‖k1,i (.,u1, v1)−k1,i (.,u2, v2)‖E +

n
∑

j=1

‖k2, j (.,u1, v1)−k2, j (.,u2, v2)‖E

≤

n
∑

i=1

L1,k1,i
ln(1+‖u1 −u2‖E )

2n
(

L2,k1,i
+ ln(1+‖u1 −u2‖E )

) +

n
∑

j=1

L1,k2, j
ln(1+‖v1 −v2‖E )

2n
(

L2,k2, j
+ ln(1+‖v1 −v2‖E )

)

≤
ln(1+‖u1 −u2‖E )

2
+

ln(1+‖v1 −v2‖E )

2

≤
ln(1+‖(u1,u2)− (v1, v2)‖B)

2
+

ln(1+‖(u1,u2)− (v1, v2)‖B)

2
= ln(1+‖(u1,u2)− (v1, v2)‖B) . (3.8)

Thus k1,i , k2, j are two D-Lipschitzian with corresponding D-functions

ψk1,i
(r ) =

L1,k1,i
ln(1+ r )

2n(L2,k1,i
+ ln(1+ r ))

, ψk2, j
(r )=

L1,k2, j
ln(1+ r )

2n(L2,k2, j
+ ln(1+ r ))

, i , j = 1,2, . . . ,n. (3.9)

Equivalently we have been proved that A1,i ,2, j (u, v) is a D-Lipschitzian with correspond-

ing D-function

ψA1,i ,2, j
(r ) =

(

n
∑

i=1

ψk1,i
+

n
∑

j=1

ψk2, j

)

r. (3.10)

Similarly by means of conditions (A2), (A4) we conclude that

∑

i

∑

j

‖C1,i ,2, j B1,i ,2, j (u1, v1)−C1,i ,2, j B1,i ,2, j (u2, v2)‖B

≤
∑

i

∑

j

{

‖g1,i (.,u1, v1)− g1,i (.,u2, v2)‖E‖I
αi

0+ f1,i‖E +‖g2, j (.,u1, v1)

−g2, j (.,u2, v2)‖E‖I
β j

0+ f2, j‖E

}

≤
∑

i

∑

j

{

L1,g1,i
ln(1+‖u1 −u2‖E ) Mi

2nMi

(

L2,g1,i
+ ln(1+‖u1 −u2‖E )

) +
L1,g2, j

ln(1+‖v1 −v2‖E ) M j

2nM j

(

L2,g2, j
+ ln(1+‖v1 −v2‖E )

)

}

≤
ln(1+‖u1 −u2‖E )

2
+

ln(1+‖v1 −v2‖E )

2

≤
ln(1+‖(u1,u2)− (v1, v2)‖B)

2
+

ln(1+‖(u1,u2)− (v1, v2)‖B)

2
= ln(1+‖(u1,u2)− (v1, v2)‖B) . (3.11)

for (i , j ) = (1,1), (2,2), . . . , (n,n). Hence we deduce that both of operators g1,i , g2, j are

D-Lipschitzian with corresponding D-functions

ψg1,i
(r )=

L1,g1,i
ln(1+ r )

2nMi (L2,g1,i
+ ln(1+ r ))

, ψg2, j
(r ) =

L1,g2, j
ln(1+ r )

2nM j (L2,g2, j
+ ln(1+ r ))

, i , j = 1,2, . . . ,n.

(3.12)
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It can be that
∑

i

∑

j C1,i ,2, j B1,i ,2, j (u, v) is a D-Lipschitzian with corresponding D-function

ψC1,i ,2, j
(r ) =

∑

i

∑

j

[

ψg1,i
Mi +ψg2, j

M j

]

r , (i , j ) = (1,1), (2,2), . . . , (n,n). (3.13)

At last, by means of (3.8)-(3.13) one can observe that T(u, v) defined by (3.6) is a D-

Lipschitzian with corresponding D-function ψu,v defined by (3.7). So (S1) is complete

now.

(S2) In this step we must prove that the operator B1,i ,2, j (u, v) defined by (3.5) is completely

continuous on S defined by (2.3). In this way firstly applying the Hausdorff compactness

criterion given by Theorem 2.9, we will prove that S is a compact subset of Banach space

B.

It is clear that S ⊂B is a cone in B. Let us define

Su = {u ∈ E | ‖u‖E ≤
r

2
, t ∈ J},

Sv = {v ∈ E | ‖v‖E ≤
r

2
, t ∈ J}.

(3.14)

Clearly Su,Sv is closed. Therefore Su ,Sv are complete. Thus as a result of equicontinuity

of u(t ), v(t ), the Ar zel a − Ascol i theorem implies that Su ,Sv are relatively compact.

Hence Theorem 2.9 ensures that Su ,Sv are totally bounded. Thus via Definition 2.8 we

conclude that there exist two finite ǫ−coverings as

Uǫ(ui ), Uǫ(v j ) i = 1,2,3, . . . , l1, j = 1,2,3, . . . , l2,

such that

Su ⊂

l1
⋃

i=1

Uǫ(ui ),

Sv ⊂

l2
⋃

j=1

Uǫ(v j ),

(3.15)

where
Uǫ(ui )= {u ∈ Su| ‖u −ui‖E < ǫ},

Uǫ(v j )= {v ∈ Sv | ‖v −v j‖E < ǫ}.
(3.16)

Define

Si j =
{

(u, v)∈ Su ×Sv | u ∈Uǫ(ui ), v ∈Uǫ(v j )
}

.

It is easy to see that S ⊂ Su ×Sv ⊂
⋃

i , j Si j , 1 ≤ i ≤ l1, 1 ≤ j ≤ l2.

In fact if we take (ui j , vi j ) ∈ Si j , then Su ×Sv can be covered by finite 4ǫ−covering

U4ǫ(ui j , vi j ) =
{

(u, v)∈ Su ×Sv | ‖(u, v)− (ui j , vi j )‖B < 4ǫ
}

.

In other means for every (u, v)∈ Su ×Sv , there exist indices i , j such that

u ∈Uǫ(ui ), v ∈Uǫ(v j ).
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Therefore

|u −ui j | ≤ |u −ui |+ |ui −ui j | < ǫ+ǫ= 2ǫ,

|v −vi j | ≤ |v −vi |+ |vi −vi j | < ǫ+ǫ= 2ǫ.
(3.17)

(3.17) implies that ‖(u, v)−(ui j , vi j )‖B < 4ǫ. Hence S has a finite 4ǫ−covering. Therefore

using Theorem 2.9 we conclude that S is compact.

Turning back to the definition of B1,i ,2, j (u, v) given by (3.5) and considering the condi-

tion (A3), we conclude that B1,i ,2, j (u, v) is continuous on S. Thus B1,i ,2, j (S) is completely

continuous on S. This completes the (S2)

(S3) In the last step we are going to show that if

u∗ =

n
∑

i=1

{

k1,i (.,u∗, v)+ g1,i (.,u∗, v).I
αi

0+ f1,i (.,u∗, v)
}

,

v∗ =

n
∑

j=1

{

k2, j (.,u, v∗)+ g2, j (.,u, v∗).I
β j

0+ f2, j (.,u, v∗)
}

,

(3.18)

then (u∗, v∗) ∈ S for all (u, v) ∈ S. By means of conditions (A1) − (A4) and Applying

Lemma 2.3, it is easy to check that

T1,u(t ) ≤
n
∑

i=1

Γ(αi +1)ρk1,i
+ρg1,i

θ1,i T αi

Γ(αi +1)
= r1,

T2,v (t ) ≤
n
∑

j=1

Γ(β j +1)ρk2, j
+ρg2, j

θ2, j T β j

Γ(β j +1)
= r2.

(3.19)

On the other hand ‖T(u, v)‖B= ‖T1,u‖E +‖T2,v‖E . So we have

‖T(u, v)‖B≤ r = 2max{r1,r2}.

Equivalently, we have proved that T(S) ⊂ S, that is if (3.18) be satisfied, then (u∗, v∗) ∈ S

for all (u, v)∈ S. So (S3) is completed.

Since all of the conditions (i)−(iv) in Theorem 2.10 hold, then the coupled hybrid system

of fractional quadratic integral equations (1.1) has at least one positive solution in S. ���

4. An example

Let us consider the coupled hybrid system of FQIEs























u(t )=
n
∑

i=1

{

k1,i (t ,u(t ), v(t ))+ g1,i (t ,u(t ), v(t )).

∫t

0

(t − s)αi−1

Γ(αi )
f1,i (s,u(s), v(s))d s

}

,

v(t )=
n
∑

j=1

{

k2, j (t ,u(t ), v(t ))+ g2, j (t ,u(t ), v(t )).

∫t

0

(t − s)β j−1

Γ(β j )
f2, j (s,u(s), v(s))d s

}

.

(4.1)
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Take t ∈ J= [0,4] and αi =
2i−1

2
, β j =

2 j+1

4
for i , j = 1,2, . . . ,n. Setting

Lp,k1,i
= Lp,k2,i

= Lp,g1, j
= Lp,g2, j

= 1, p = 1,2, i , j = 1,2, . . . ,n,

and














































































k1,i (t ,u, v)=
ln(1+|u|)

2n(1+exp(i + t 2))
, g1,i (t ,u, v)=

ln |u|
(

10nπ
4

2i−1
2

Γ
(

2i+1
2

)

)

(1+ t 2)

, i = 1,2, . . . ,n,

k2, j (t ,u, v)=
ln(1+|v |)

2n(1+exp( j + t 2))
, g2, j (t ,u, v)=

ln |v |
(

2nπ2 4
2i+1

4

Γ
(

2i+5
4

)

)

(1+ t 2)

, j = 1,2, . . . ,n,

f1,i (t ,u, v)= 4

(

tan−1(i + t +u)
)2
+

(

cot−1(i + t +v)
)2

π
, i = 1,2, . . . ,n,

f2, j (t ,u, v)=

(

sin−1( j + t +u)
)2
+

(

cos−1( j + t +v)
)2

8
, j = 1,2, . . . ,n,

(4.2)

and after a direct calculation, we have

sup
{

f1,i (t ,u, v)| t ∈ J, u, v ∈C (R), i = 1,2, . . . ,n
}

= 5π, Mi = 5π
4

2i−1
2

Γ
(

2i+1
2

)
, i = 1,2, . . . ,n,

sup
{

f2, j (t ,u, v)| t ∈ J, u, v ∈C (R), j = 1,2, . . . ,n
}

=π2, Mi =π2 4
2i+1

4

Γ
(

2i+5
4

)
, j = 1,2, . . . ,n.

By means of above setting all of conditions (A1)− (A4) hold. So according on the Theorem 3.1

we deduce that coupled hybrid system of FQIEs (4.1) has at least one positive solution in S.
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