
TAMKANG JOURNAL OF MATHEMATICS

Volume 35, Number 4, Winter 2004

A NOTE ON N-CONTINUUM

S. GANGULY AND S. JANA

Abstract. In this paper a new concept allied to ‘continuum’ has been introduced with the name

N-continuum. Some very interesting results have been obtained which describe some interesting

features of this new concept.

1. Introduction

In [6] S. Ganguly and T. Bandyopadhyay introduced a new type of space called ‘H-

continuum’ by combining together the concepts of H-closedness and θ-connectedness ;

the study was further continued in [5].

In the present paper, we utilize the concept of N-closedness [4] and δ-connectedness

[8] to give rise to another continuum-like concept, called N-continuum and study some

of its properties.

For such study a locally nearly compact [2] space has been utilized ; in this context,

concepts of δ-component and δ-quasicomponent have been introduced. Finally, it has

been shown that the two coincide in a locally nearly compact space.

2. Prerequisites

Let (X, τ) be a topological space. Let A and A0 denote the closure and interior of

A respectively in this space. We shall write simply X to denote the topological space

(X, τ), if no confusion regarding the topology arises.

2.1. Preliminary definitions

Definition 2.1.1([4]) A subset A ⊆ X is said to be regular open (regular closed) if

A = (A)0 [respectively A = (A0)].

Definition 2.1.2.([12]) A point x ∈ X is said to be a δ-cluster point of A(⊆ X) if

U ∩ A 6= Φ, for every regular open neighbourhood (nbd. in short) U of x in X .
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The set of all δ-cluster points of A(⊆ X) is called the δ-closure of A and we denote

this by A
δ
.

A set A(⊆ X) is said to be δ-closed if A = A
δ
.

A set A(⊆ X) is said to be δ-open if X \ A is δ-closed.

Definition 2.1.3.([4]) A space X is said to be semi-regular if every point of the space
has a fundamental system of regularly open nbds.

Definition 2.1.4.([7]) A space X is said to be almost regular if any regularly closed

set A and any x 6∈ A can be strongly separated.

Definition 2.1.5. ([4]) A space X is called nearly-compact if any open cover {Uα :
α ∈ Λ} of X by open sets in X has a finite subfamily {Uαi

: i = 1, . . . , n} such that

X =
⋃n

i=1(Uαi
)0.

A set A(⊆ X) is called N-closed if any open cover {Uα : α ∈ Λ} of A by open sets in
X has a finite subfamily {Uαi

: i = 1, . . . , n} such that A ⊆
⋃n

i=1(Uαi
)0.

Definition 2.1.6.([2]) A space X is called locally-nearly compact if each point has

a nbd. whose closure is N-closed.

Definition 2.1.7.([8]) A pair (P, Q) of nonempty subsets of X is said to be a δ-

separation relative to X if P
δ
∩ Q = Φ = Q

δ
∩ P .

A subset A of a space X is said to be δ-connected relative to X if there exists no
δ-separation (P, Q) relative to X such that A = P ∪ Q.

Definition 2.1.8.([9]) A function f : X −→ Y is said to be δ-continuous if for any
x ∈ X and each open nbd. V of f(x) in Y , ∃ an open nbd. U of x in X such that

f((U)0) ⊆ (V )0.

2.2. Some useful results

Result 2.2.1.([7]) A space X is almost regular iff for each x ∈ X and each regular

open set U containing x, ∃ a regular open set V such that x ∈ V ⊆ V ⊆ U .

Result 2.2.2. Let {Aα : α ∈ Λ} be an arbitrary family of subsets of X. Then

(i)
⋃

α∈Λ(Aα
δ
) ⊆ (

⋃
α∈Λ Aα)

δ
. Equality holds if Λ is finite.

(ii) (
⋂

α∈Λ Aα)
δ
⊆

⋂
α∈Λ(Aα

δ
)

(iii) A ⊆ B(⊆ X) ⇒ A
δ
⊆ B

δ
.

Proof. Straightforward.

Note 2.2.3. It is easy to see from the above result 2.2.2 that, the collection of all
δ-open sets in X form a topology. We denote this topology by τ⋆. We also note that, the
collection of all regular open sets form a basis for the topology τ⋆. Thus, each regular

open set is δ-open.



A NOTE ON N-CONTINUUM 373

Result 2.2.4.([8]) If (P, Q) be a δ-separation relative to X, A ⊆ P, B ⊆ Q then

(A, B) is a δ-separation relative to X.

Result 2.2.5. Any pair (U, V ) of non-empty disjoint open subsets of X is a δ-

separation relative to X.

Proof. Obvious.

Result 2.2.6.([8]) If (P, Q) be a δ-separation relative to X and A ⊆ X be δ-closed

with A = P ∪ Q then, P, Q are δ-closed in X.

Result 2.2.7([10]) If A be an N-closed set in a T2 space X then A is δ-closed.

Remark 2.2.8. It is clear from definition that a set A(⊆ X) is N-closed iff every
regular open cover of A has a finite subcover. We now give another characterisation of
N-closed sets.

Result 2.2.9. A subset A of X is N-closed iff every δ-open cover of A has a finite
subcover.

Proof. If A be N-closed, then, obviously, the condition holds since each δ-open set
contains a regular open set [by note 2.2.3].

To prove the converse, let {Uα : α ∈ Λ} be an arbitrary open cover of A. Since
Uα ⊆ (Uα)0, ∀α ∈ Λ, {(Uα)0 : α ∈ Λ} is also a cover of A by regular open sets in X . But
each regular open set being δ-open [by note 2.2.3] {(Uα)0 : α ∈ Λ} has a finite subcover
[by given condition]. This proves that A is N-closed in X .

Result 2.2.10. If B be a δ-closed subset of an N-closed set A in a space X then B

is also N-closed.

Proof. Let {Uα : α ∈ Λ} be a δ-open cover of B. Since B is δ-closed {Uα : α ∈
Λ}

⋃
{X \B} is a δ-open cover of X and hence of A i.e. (

⋃
α∈Λ Uα)∪ (X \B) = X ⊇ A.

Since A is N-closed, by result 2.2.9, the above cover has a finite subcover for A. If
this finite subcover does not contain X \ B, it will be the required finite subcover of B.
If it contains X \ B then excluding X \ B from this family we get the required finite
subcover of B. Then using the result 2.2.9 we get the result.

Result 2.2.11.([2]) (i) A T2 space X is locally-nearly compact iff for each N-closed

set C of X and each regular open set U such that C ⊆ U , ∃ an open set V in X such

that V is N-closed and C ⊆ V ⊆ V ⊆ U .

(ii) A T2 space X is locally-nearly compact iff for each x ∈ X and each regular open set

U such that x ∈ U , ∃ an open set V in X such that V is N-closed and x ∈ V ⊆ V ⊆ U .

Result 2.2.12. For a subset A of a space X, the following are equivalent.

(i) A is δ-connected relative to X.

(ii) If (P, Q) is a δ-separation relative to X and A ⊆ P ∪ Q then either A ⊆ P or

A ⊆ Q.
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(iii) For any x, y ∈ A, ∃ a δ-connected set B ⊆ A relative to X such that x, y ∈ B.

Proof. (i) ⇐⇒ (ii) follows from lemma 2.3 [8].

(i) =⇒ (iii): Taking B = A the result follows.

(iii) =⇒ (i): If possible let, A be not δ-connected. Then ∃ a δ-separation (P, Q) relative

to X such that A = P ∪ Q. Let x ∈ P, y ∈ Q. Then by (iii), ∃ a δ-connected set B ⊆ A

such that x, y ∈ B. Now (B ∩ P, B ∩ Q) forms a δ-separation of B relative to X [by

result 2.2.4] ——— a contradiction.

Result 2.2.13.([8]) If A ⊆ X be δ-connected relative to X and A ⊆ B ⊆ A
δ

then, B

is δ-connected relative to X.

Result 2.2.14.([8]) If f : X −→ Y be δ-continuous and K(⊆ X) is δ-connected

relative to X then f(K) is δ-connected relative to Y .

Result 2.2.15.([9]) If f : X −→ Y be δ-continuous and K(⊆ X) is N-closed in X

then f(K) is N-closed in Y .

Result 2.2.16. ([11]) If A, B be two disjoint N-closed sets in a Hausdorff space X

then ∃ two disjoint regular open sets U, V of X such that A ⊆ U and B ⊆ V .

3. Example

We know that every compact space is nearly-compact and every nearly-compact space

is H-closed. But the converse is not true in general. However, if the space be semi-regular

and almost-regular then, the above three concepts become identical. So first of all we

need a suitable example of a space which is neither semi-regular nor almost-regular.

Example.([1]) Let X = {(x, y) ∈ π : x, y ∈ Q and y ≤ 0}, where π is the Euclidean

plane equipped with a cartesian co-ordinate system and Q denotes the set of all rational

numbers.

Let, X ′ = {(x, 0) ∈ π : x ∈ Q}. Then X ′ ⊂ X .

Let τX′ be the subspace topology on X ′ relative to the usual topology inherited from

the plane.

Let, E be the collection of all open intervals lying on the x-axis. We fix an irrational

number α >0. For each U ∈ E we define, U+ = {(x′, y′) ∈ X \ X ′ : the line y − y′ =

α(x−x′) intersects U} and U− = {(x′, y′) ∈ X\X ′ : the line y−y′ = −α(x−x′) intersects

U}. Also we define, B(z; U, V ) = {z}
⋃

(U ×{0}
⋂

X ′)
⋃

(V ×{0}
⋂

X ′), where U, V ∈ E

and z ∈ U+
⋂

V −. We now define, B = {B(z; U, V ) : U, V ∈ E , z ∈ U+
⋂

V −}
⋃

τX′ . It

is easy to verify that B is a basis for some topology τ ′ (say) on X and (X, τ ′) is Hausdorff.

We note that, (x′, y′) ∈ U+ ⇐⇒ x′ − y′

α
∈ U and (x′, y′) ∈ U− ⇐⇒ x′ + y′

α
∈ U .

Note 3.1. In the sequel we have identified A ⊆ R with A × {0}, where A is any

subset of the real line R; the context shall speak for itself.
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Proposition 3.2. B(z; U, V )
X

= (U∩X ′)∪(V ∩X ′)∪(U
+
∪U

−
)∪(V

+
∪V

−
), [where

U denotes the closure of U in the usual topology on the real line R and B
X

denotes the

closure of B in X ].

Proof. Let us denote the R.H.S. by A. Then, (x, y) ∈ A with y = 0 =⇒ (x, 0) ∈
(U ∩ X ′) ∪ (V ∩ X ′).
Let, W be any open nbd. of (x, 0) in X .

If (x, 0) ∈ U ∩ X ′ then W ∩ U 6= Φ =⇒ W ∩ B(z; U, V ) 6= Φ.
If (x, 0) ∈ V ∩ X ′ then W ∩ V 6= Φ =⇒ W ∩ B(z; U, V ) 6= Φ.

Thus, (x, 0) ∈ B(z; U, V )
X

. Now, let (x, y) ∈ A with y 6= 0. Then (x, y) ∈ (U
+
∪

U
−
∪ V

+
∪ V

−
). Let, B((x, y); M, N) be any open nbd. of (x, y) in X . So, (x, y) ∈

U
+

=⇒ x − y
α

∈ U . Again, x − y
α

∈ M . Since M is an open interval it follows
that, M ∩ U 6= Φ. Consequently, B((x, y); M, N) ∩ B(z; U, V ) 6= Φ and hence (x, y) ∈

B(z; U, V )
X

. Similarly, if (x, y) ∈ U
−

or V
+

or V
−

arguing same as above we have,

(x, y) ∈ B(z; U, V )
X

. Thus A ⊆ B(z; U, V )
X

———(i)
Conversely, let (x, y) 6∈ A. If y = 0 then (x, 0) 6∈ (U ∩ X ′) ∪ (V ∩ X ′).

=⇒ ∃ open intervals W1, W2 containing (x, 0) in X such that W1 ∩U = Φ and W2 ∩V =

Φ =⇒ (W1 ∩ W2) ∩ B(z; U, V ) = Φ. Therefore (x, 0) 6∈ B(z; U, V )
X

. If y 6= 0 then

(x, y) 6∈ (U
+
∪ U

−
∪ V

+
∪ V

−
) =⇒ x − y

α
6∈ U ∪ V and x + y

α
6∈ U ∪ V = U ∪ V . So,

∃ W1 ∈ E containing x − y
α

and W2 ∈ E containing x + y
α

such that W1 ∩ (U ∪ V ) = Φ

and W2∩ (U ∪V ) = Φ =⇒ B((x, y); W1, W2)∩B(z; U, V ) = Φ. =⇒ (x, y) 6∈ B(z; U, V )
X

.

Therefore, B(z; U, V )
X

⊆ A———(ii)
From (i) and (ii) the result follows.

Proposition 3.3. For each U ∈ E, U ∩ X ′
X

= (U ∩ X ′) ∪ (U
+
∪ U

−
).

Proof. Let us denote the R.H.S. by A. Then, (x, y) ∈ A with y = 0 =⇒ (x, 0) ∈ U ∩
X ′. Let W be any open nbd. of (x, 0) in X . Then W ∩U 6= Φ =⇒ W ∩(U ∩X ′) 6= Φ =⇒

(x, 0) ∈ U ∩ X ′
X

. Now, (x, y) ∈ A with y 6= 0 =⇒ (x, y) ∈ (U
+
∪ U

−
) =⇒ x + y

α
∈ U or

x − y
α
∈ U . Let B((x, y); W1, W2) be any open nbd. of (x, y) in X . So, x − y

α
∈ W1 and

x + y
α
∈ W2.

Therefore, W1 ∩ U 6= Φ or W2 ∩ U 6= Φ =⇒ W1 ∩ (U ∩ X ′) 6= Φ or W2 ∩ (U ∩ X ′) 6= Φ.

=⇒ B((x, y); W1, W2) ∩ (U ∩ X ′) 6= Φ. Consequently, (x, y) ∈ U ∩ X ′
X

.

Thus, A ⊆ U ∩ X ′
X

.——— (i)
Conversely, let (x, y) 6∈ A. If y = 0, then (x, 0) 6∈ U ∩ X ′.

=⇒ ∃ an open nbd. W of (x, 0) in X such that W ∩ U = Φ.

=⇒ W ∩ (U ∩ X ′) = Φ =⇒ (x, 0) 6∈ U ∩ X ′
X

.

If y 6= 0, then (x, y) 6∈ (U
+
∪ U

−
) =⇒ x − y

α
6∈ U and x + y

α
6∈ U .

=⇒ ∃ open intervals W1, W2 containing x− y
α
, x+ y

α
respectively such that W1 ∩U = Φ

and W2 ∩ U = Φ.
=⇒ W1 ∩ (U ∩ X ′) = Φ and W2 ∩ (U ∩ X ′) = Φ.
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=⇒ B((x, y); W1, W2) ∩ (U ∩ X ′) = Φ.

=⇒ (x, y) 6∈ U ∩ X ′
X

.

Therefore, U ∩ X ′
X

⊆ A ———(ii)

From (i) and (ii) the result follows.

Proposition 3.4. (i) (U ∩ X ′
X

)0 = (U ∩ X ′) ∪ (U+ ∩ U−), for any U ∈ E .

(ii) (B(z; U, V )
X

)0 = (U∩X ′)∪(V ∩X ′)∪(U+∩U−)∪(V +∩V −)∪(U+∩V −)∪(U−∩V +),

for any U, V ∈ E with U+ ∩ V − 6= Φ.

Proof. (i) Since U ∩X ′ is open in X so U ∩X ′ ⊆ (U ∩ X ′
X

)0. Let, (x, y) ∈ U+∩U−.

Then B((x, y); U, U) ⊆ U ∩ X ′
X

= (U ∩X ′)∪(U
+
∪U

−
). Therefore (x, y) ∈ (U ∩ X ′

X
)0.

Thus, (U ∩ X ′) ∪ (U+ ∩ U−) ⊆ (U ∩ X ′
X

)0. Conversely let, (x, y) ∈ (U ∩ X ′
X

)0. If

y = 0, ∃ an open nbd. W ∩ X ′ of (x, 0) such that (x, 0) ∈ W ∩ X ′ ⊆ (U ∩ X ′
X

) =⇒

(x, 0) ∈ W ∩ X ′ ⊆ U ∩ X ′. If y 6= 0, ∃ an open nbd. B((x, y); W1, W2) of (x, y) such

that B((x, y); W1, W2) ⊆ U ∩ X ′
X

=⇒ (x, y) ∈ (U
+
∪ U

−
) and W1 ⊆ U, W2 ⊆ U . But,

(x, y) ∈ W+
1 ∩ W−

2 =⇒ x − y
α
∈ W1 ⊆ U and x + y

α
∈ W2 ⊆ U . Since W1, W2 are open

intervals it follows that, x − y
α
∈ U , x + y

α
∈ U so that (x, y) ∈ U+ ∩ U−.

Thus, (U ∩ X ′
X

)0 ⊆ (U ∩ X ′) ∪ (U+ ∩ U−). This completes the proof.

(ii) In a similar way as in (i) we have, (U ∩X ′) ∪ (V ∩ X ′) ∪ (U+ ∩U−) ∪ (V + ∩ V −) ⊆

(B(z; U, V )
X

)0. Now, (x, y) ∈ U+ ∩ V − =⇒ B((x, y); U, V ) ⊆ B(z; U, V )
X

=⇒ (x, y) ∈

(B(z; U, V )
X

)0. Similarly, (x, y) ∈ U− ∩ V + =⇒ B((x, y); U, V ) ⊆ B(z; U, V )
X

=⇒

(x, y) ∈ (B(z; U, V )
X

)0. Thus, (U ∩ X ′) ∪ (V ∩ X ′) ∪ (U+ ∩ U−) ∪ (V + ∩ V −) ∪ (U+ ∩

V −) ∪ (U− ∩ V +) ⊆ (B(z; U, V )
X

)0. Conversely let, (x, y) ∈ (B(z; U, V )
X

)0. If y = 0,

then arguing similarly as in (i) we get, (x, 0) ∈ (U ∩ X ′) ∪ (V ∩ X ′). If y 6= 0, ∃

an open nbd. B((x, y); W1, W2) of (x, y) such that B((x, y); W1, W2) ⊆ B(z; U, V )
X

=⇒ (x, y) ∈ (U
+
∪ U

−
) ∪ (V

+
∪ V

−
) and W1 ⊆ U ∪ V = U ∪ V , W2 ⊆ U ∪ V . But,

(x, y) ∈ W+
1 ∩ W−

2 =⇒ x + y
α

∈ W2 ⊆ U ∪ V and x − y
α

∈ W1 ⊆ U ∪ V . Since,

W1, W2 are open intervals it follows that, x + y
α
∈ U ∪ V and x − y

α
∈ U ∪ V so that,

(x, y) ∈ (U+ ∩U−)∪ (V + ∩V −)∪ (U+ ∩V −)∪ (U− ∩V +). Therefore, (B(z; U, V )
X

)0 ⊆

(U ∩X ′)∪ (V ∩X ′)∪ (U+ ∩U−)∪ (V + ∩V −)∪ (U+ ∩V −)∪ (U− ∩V +). This completes

the proof.

Since U+∩U− 6= Φ for any U ∈ E , it follows from proposition 3.4 that, no basic open

set is regular open. Also the sets in (i) and (ii) of this proposition are regular open.

Proposition 3.5. The space (X, τ ′) is not almost regular.

Proof . Let U = {x ∈ R : 0 < x < 1}. Then by above discussion (U ∩ X ′
X

)0 is a

regular open set. We denote, G = (U ∩ X ′
X

)0. We show that, G does not contain the

closure of any basic open set contained in G. Let, B be an arbitrary basic open set such
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that B ⊆ G.

Case-I: B = {(x, 0) ∈ Q2 : a < x < b}, B = (a, b) ∩ X ′(⊂ R). Then, B
X

= ([a, b] ∩ X ′) ∪

(V
+
∪ V

−
) [by proposition 3.3], where V = (a, b)(⊂ R). Since, B ⊆ G it follows that

(a, b) ⊂ (0, 1) i.e. 0 < a < b < 1. We choose a rational x′ < 0 and another rational y′

satisfying α(x′−b) < y′ < α(x′−a). =⇒ (x′, y′) ∈ V + and (x′, y′) 6∈ U− =⇒ (x′y′) ∈ B
X

but (x′, y′) 6∈ G [since y′ 6= 0 and by proposition 3.4]. Thus, B
X

6⊆ G.
Case-II: B = B(z; U, V ). Since by case-I, U+ 6⊆ G so from proposition 3.2 it follows that,

B
X

6⊆ G. Since any regular open set contained in G must contain basic open sets, it
follows from above discussion that G does not contain the closure of any regular open
set. Therefore by result 2.2.1, the space is not almost regular.

Proposition 3.6. The space (X, τ ′) is not semi-regular.

Proof. We took the point (1, 0) ∈ X and its open nbd. U ∩X ′, where U = {x ∈ R :
0 < x < 2}. We denote U ∩ X ′ = G. Any open nbd. of (1, 0) contained in G must be of
the form V ∩ X ′, where V ∈ E and V ⊆ U . But we have seen earlier that no open set
of the form V ∩ X ′ is regular open. Consequently, G does not contain any regular-open
nbd. of (1, 0). This completes the proof.

4. N-Continuum

In this section we introduce the concept of N-continuum and study its several prop-
erties.

Definition 4.1. Let, X be a T2-space. A δ-connected (relative to X) N-closed set
in X is called an N-continuum.

Theorem 4.2. The union of two N-continua of a T2-space X, which have a point in

common, is an N-continuum of X.

Proof. Let A, B be two N-continua of X with A ∩ B 6= Φ. Let (P, Q) be a δ-
separation relative to X and A ∪ B ⊆ P ∪ Q. Since A is δ-connected relative to X so
either A ⊆ P or A ⊆ Q [by 2.2.12]. Now, A ⊆ P =⇒ B ⊆ P or A ⊆ Q =⇒ B ⊆ Q

[since A ∩ B 6= Φ and B is δ-connected relative to X ]. Thus, A ∪ B ⊆ P or A ∪ B ⊆ Q.
Consequently A∪B is δ-connected relative to X [by 2.2.12]. Also, A∪B is an N-closed
set in X , since A, B are so.

Lemma 4.3. Let A, B be two δ-closed sets in X. If the sets A ∪ B and A ∩ B are

δ-connected relative to X, then the sets A, B are also δ-connected relative to X.

Proof. If possible let, A be not δ-connected relative to X . Then ∃ a δ-separation
(P, Q) of A relative to X such that A = P ∪ Q. Then A ∪ B = P ∪ (Q ∪ B) and
A ∩ B = (P ∩ B) ∪ (Q ∩ B). If P ∩ B 6= Φ 6= Q ∩ B then (P ∩ B, Q ∩ B) will form
a δ-separation of A ∩ B relative to X——— contradicting that A ∩ B is δ-connected
relative to X .
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If at least one of P ∩ B, Q ∩ B be empty, say P ∩ B = Φ then, we show that

(P, Q ∪ B) will form a δ-separation of A ∪ B relative to X ——— contradicting that

A ∪ B is δ-connected relative to X .

(Q ∪ B
δ
) ∩ P = (Q

δ
∪ B

δ
) ∩ P = (Q

δ
∪ B) ∩ P [ since B is δ-closed]

= (Q
δ
∩ P ) ∪ (B ∩ P ) = Φ

and
P

δ
∩ (Q ∪ B) = (P

δ
∩ Q) ∪ (B ∩ P

δ
) ——— (⋆)

Now, P ⊆ A =⇒ P
δ
⊆ A

δ
= A [since A is δ-closed]

=⇒ P
δ
∩ B ⊆ A = P ∪ Q.

But since P
δ
∩Q = Φ so, P

δ
∩B ⊆ P . Again since B∩P = Φ it follows that P

δ
∩B = Φ.

Therefore from (⋆) P
δ
∩ (Q ∪ B) = Φ.

Thus, the assertion is proved and the lemma is complete.

Theorem 4.4. If A, B be two N-closed sets in a T2-space X such that A ∪ B and

A ∩ B are N-continua of X, then A, B are also N-continua of X.

Proof. Since N-closed sets in a T2-space are δ-closed [by 2.2.7], the result follows

from the lemma 4.3.

Theorem 4.5. If f : X −→ Y (X, Y both are Hausdorff) is δ-continuous and A is an

N-continuum of X then f(A) is an N-continuum of Y .

Proof. The theorem follows from the results 2.2.14 and 2.2.15.

Theorem 4.6. If {Ci}
∞
i=1 be a decreasing sequence of N-continua of a locally nearly

compact Hausdorff space X then
⋂∞

i=1 Ci is also an N-continuum of X.

Proof. Let C =
⋂∞

i=1 Ci. Each Ci being N-closed of the T2-space X , is δ-closed [by

result 2.2.7] and so C is δ-closed [by note 2.2.3]. Thus C being a δ-closed subset of an

N-closed set C1, is N-closed [by result 2.2.10]. We claim that C 6= Φ. For, otherwise
C = Φ =⇒ X \

⋂∞

i=1 Ci = X =⇒
⋃∞

i=1(X \ Ci) = X ⊇ C1. Now, {(X \ Ci) : i = 1, . . .}

is a δ-open cover of C1 and C1 is N-closed. So it has a finite subcover, say, {(X \ Cin
) :

n = 1, . . . , p} [by result 2.2.9]. Let k = max{i1, . . . , ip}. Then C1 ⊆
⋃p

n=1(X \ Cin
) =

X \
⋂p

n=1 Cin
= X \ Ck [since {Ci} is a decreasing sequence] =⇒ C1 ∩ Ck = Φ ——— a

contradiction.
We now prove that C is δ-connected relative to X .

We assume the contrary. Then ∃ a δ-separation (P, Q) relative to X such that C =

P ∪Q. Now C being δ-closed, so are P, Q in X [by result 2.2.6]. Therefore P, Q must be
N-closed, since C is so [by result 2.2.10]. Also P, Q are disjoint. Hence by result 2.2.16, ∃

two disjoint regular open sets U, V of X such that P ⊆ U, Q ⊆ V . Therefore,
⋂∞

i=1 Ci =

C = P ∪Q ⊆ U ∪V = T (say). Then T is δ-open [by note 2.2.3]. Let x ∈ C. Then x ∈ T .
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Since T is δ-open, by note 2.2.3, ∃ a regular open set Tx such that x ∈ Tx ⊆ T . Since X is

a locally nearly compact Hausdorff space, ∃ an open set Wx such that x ∈ Wx ⊆ Wx ⊆ Tx

and Wx is N-closed [by result 2.2.11 (ii)]. Here Wx can be taken as a regular open (and

hence δ-open) set [taking (Wx)0 instead of Wx]. Thus {Wx : x ∈ C} is a regular open
cover of the N-closed set C. So it has a finite subcover {Wxi

: i = 1, . . . , n}(say). Let

W =
⋃n

i=1 Wxi
. Then C ⊆ W ⊆ W ⊆ T and W is N-closed. Also W is δ-open [by note

2.2.3]. Therefore, T \
⋂∞

i=1 Ci ⊇ W \W =⇒ W \W ⊆
⋃∞

i=1(T \Ci). Now, W \W is δ-closed

and W \W ⊆ W . So W \W is N-closed. Also, T \Ci is δ-open ∀i ( since T is δ-open and Ci

is δ-closed ∀i). So, ∃ i1, . . . , ip such that W \W ⊆
⋃p

t=1(T \Cit
) = T \

⋂p

t=1 Cit
= T \Cn,

where n = max{i1, . . . , ip} =⇒ (W \ W ) ∩ Cn = Φ ——— (⋆)

Now, Cn = (Cn \ W ) ∪ (Cn ∩ W ) ⊆ (Cn \ W ) ∪ (Cn ∩ W ). We note that, (Cn \ W )

and (Cn ∩ W ) both are δ-closed and (Cn \ W ) ∩ (Cn ∩ W ) = Cn ∩ (W \ W ) = Φ [ by

(⋆)]. So (Cn \ W, Cn ∩ W ) forms a δ-separation relative to X . Since Cn is δ-connected
relative to X and Cn 6⊆ Cn \ W ( for, W ⊇ C 6= Φ) so Cn ⊆ Cn ∩ W ⊆ W ⊆ T = U ∪ V

[ by result 2.2.12] [Infact: Cn ⊆ W since (W \ W ) ∩ Cn = Φ].

Now, U, V being disjoint regular open, (U, V ) forms a δ-separation relative to X [by

result 2.2.5]. Since Cn is δ-connected relative to X , either Cn ⊆ U or Cn ⊆ V [by result

2.2.12] =⇒ C ⊆ U or C ⊆ V =⇒ either C ∩Q = Φ or C ∩P = Φ ——— a contradiction.
Thus, C =

⋂∞

i=1 Ci is an N-continuum of X .

5. δ-component and δ-quasicomponent

In this article we introduce the concept of δ-component and δ-quasicomponent and

see when these two concepts become identical.

Definition 5.1. Let A ⊆ X . A subset C of A is said to be a δ-component of A

relative to X if C is δ-connected relative to X and is not contained properly in any other

δ-connected relative to X subset of A.

Definition 5.2. A subset C ⊆ X is said to be δ-connected between A and B

(where A ∪ B ⊆ C) if there is no δ-separation (P, Q) of C relative to X such that
A ⊆ P, B ⊆ Q, C = P ∪ Q.

Definition 5.3. We define a relation ρ on A ⊆ X as follows :- (x, y) ∈ ρ iff A is

δ-connected between x and y.

It is easy to verify that ρ is an equivalence relation and hence induces a partition

on A. The equivalence classes of A are called δ-quasicomponents of A. We denote the

δ-quasicomponents of A containing x(∈ A) as A[x].

Theorem 5.4. A set C(⊆ X) is δ-connected between A and B (when A∪B ⊆ C) iff

C ⊆ P ∪ Q for any δ-separation (P, Q) relative to X implies if A ⊆ P then B ∩ P 6= Φ.

Proof. Follows immediately from definition.
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Result 5.5.

(i) Let x ∈ A. Then A = A[x] iff A is δ-connected relative to X.

(ii) If Φ 6= B ⊆ A ⊆ X then B[x] ⊆ A[x], for each x ∈ B.

(iii) Let A ⊆ X. Then A[x] is a δ-component of A relative to X for each x ∈ A for

which A[x] is δ-connected relative to X.

Proof. (i) Immediate from definition.

(ii) If B be δ-connected between x and y and B ⊆ A then A will also be δ-connected

between x and y.

(iii) If possible let, ∃ a δ-connected set C relative to X such that A[x] ⊆ C ⊆ A =⇒

C[x] ⊆ A[x] [by (ii) above]. Since C is δ-connected relative to X , by (i) above, C = C[x].

Therefore A[x] = C. Consequently, A[x] is a δ-component of A relative to X .

Theorem 5.6. If A is a δ-closed subset of X then A[x] is δ-closed in X.

Proof. A[x]
δ
⊆ A

δ
= A [since A is δ-closed]——— (⋆)

Let y ∈ A \ A[x]. Then ∃ a δ-separation (P, Q) relative to X such that x ∈ P, y ∈ Q

and A = P ∪ Q. Therefore A[x] ⊆ P =⇒ A[x]
δ
⊆ P

δ
. But P

δ
∩ Q = Φ. So y 6∈ A[x]

δ
.

Therefore using (⋆) we can write, A[x]
δ
⊆ A[x]. This completes the proof.

Theorem 5.7. Let X be a locally nearly compact T2-space and A be an N-closed

subset of X. Then each δ-quasicomponent of A relative to X is a δ-component of A

relative to X.

Proof. Let x ∈ A. It now suffices to prove that A[x] is a δ-component of A relative to

X . For this we show that A[x] is δ-connected relative to X . Then the desired conclusion

will follow from result 5.5.

Let y ∈ A[x]. We construct

F = { F ⊆ A : F is δ-closed in X, x ∈ F and y ∈ F [x] }

Since A ∈ F , F 6= Φ. We define a relation ‘≥’ in F as follows :- F1 ≥ F2 (F1, F2 ∈ F) iff

F1 ⊆ F2. Clearly (F ,≥) is a poset. Let T be a chain in F and C =
⋂

F∈T
F . Then C

is a δ-closed subset of A [by note 2.2.3] and hence C is N-closed [by result 2.2.10], since

A is N-closed. Also x, y ∈ C. We want to show y ∈ C[x] i.e. C is δ-connected between

x and y.

If not, ∃ a δ-separation (P, Q) relative to X such that C = P ∪ Q, x ∈ P, y ∈ Q.

Then P, Q are disjoint δ-closed subsets of C [by result 2.2.6], since C is δ-closed. Hence

P, Q are also disjoint N-closed sets (since P ⊆ A, Q ⊆ A) [by result 2.2.10]. So, ∃ two

regular open sets U, V in X such that P ⊆ U, Q ⊆ V, U ∩ V = Φ [by result 2.2.16].

Since X is a locally nearly compact T2-space and P, Q are N-closed so ∃ two open sets

W1, W2 in X such that P ⊆ W1 ⊆ W1 ⊆ U, Q ⊆ W2 ⊆ W2 ⊆ V and W1, W2 are N-

closed [by result 2.2.11]. Here we can assume that W1, W2 are regular open ( and hence

δ-open) [taking (W1)
0 instead of W1]. Therefore

⋂
F∈T

F = C = P ∪ Q ⊆ W1 ∪ W2 ⊆
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W1 ∪ W2 ⊆ U ∪ V = T (say). Therefore T \
⋂

F∈T
F ⊇ W1 ∪ W2 \ W1 ∪ W2 =⇒

W1 ∪ W2 \ W1 ∪ W2 ⊆
⋃

F∈T
(T \ F ). Now, W1 ∪ W2 \ W1 ∪ W2 is a δ-closed subset of

W1 ∪ W2 which is N-closed. So W1 ∪ W2 \ W1 ∪ W2 is N-closed. Also T \ F is δ-open,

∀F ∈ T ( since T is δ-open and F is δ-closed ∀F ). So ∃ a finite subset T0 of T such

that W1 ∪ W2 \ W1 ∪ W2 ⊆
⋃

F∈T0
(T \ F ) = T \

⋂
F∈T0

F = T \ F0, for some F0 ∈ T0 (

since T0 is a finite chain) =⇒ F0 ∩ (W1 ∪ W2 \ W1 ∪ W2) = Φ ——— (⋆)
Now, F0 = (F0 \ W1 ∪ W2) ∪ (F0 ∩ W1) ∪ (F0 ∩ W2) ⊆ (F0 \ W1 ∪ W2) ∪ (F0 ∩

W1) ∪ (F0 ∩ W2). We note that, (F0 \ W1 ∪ W2), F0 ∩ W1, F0 ∩ W2 all are δ-closed and

(F0 ∩ W1) ∩ (F0 ∩ W2) = F0 ∩ (W1 ∩ W2) = Φ [since W1 ⊆ U, W2 ⊆ V, U ∩ V = Φ].

(F0 ∩ W2) ∩ (F0 \ W1 ∪ W2) = F0 ∩ (W2 \ W1 ∪ W2) = Φ [by (⋆)]

Therefore, ((F0 \ W1 ∪ W2) ∪ (F0 ∩ W1), F0 ∩ W2) forms a δ- separation relative to

X . Also, x ∈ (F0 \ W1 ∪ W2) ∪ (F0 ∩ W1) and y ∈ F0 ∩ W2 [since x ∈ P ⊆ W1, y ∈ Q ⊆
W2, x, y ∈ F0]. This contradicts that F0 is δ-connected between x and y [by Theorem

5.4]. Therefore, C is δ-connected between x and y i.e. y ∈ C[x]. Consequently, C ∈ F .

Also C is an upper bound of T . Then by Zorn’s lemma F has a maximal element C0

(say). Since C0 ∈ F so x, y ∈ C0.

We now show that, C0 is δ-connected relative to X and C0 ⊆ A[x]. Then by result

2.2.12, it follows that A[x] is δ-connected relative to X . If possible let (M, N) be a
δ-separation relative to X with C0 = M ∪ N . Since y ∈ C0[x] i.e. C0 is δ-connected

between x and y so without loss of generality we assume that x, y ∈ M . Since M is

δ-closed in X with M ⊂ C0 and C0 is a maximal element of F , so M cannot be δ-

connected between x and y. Consequently, ∃ a δ-separation (M∗, M∗∗) relative to X

such that M = M∗ ∪ M∗∗, x ∈ M∗, y ∈ M∗∗. Then, C0 = M ∪ N = M∗ ∪ (N ∪ M∗∗).

But clearly (M∗, M∗∗∪N) is a δ-separation of C0 relative to X with x ∈ M∗, y ∈ M∗∗∪N

——— contradicting that y ∈ C0[x].

Thus, C0 is δ-connected relative to X . Therefore, C0 = C0[x] ⊆ A[x]— [by result

5.5]. This completes the proof.
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