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A NOTE ON N-CONTINUUM

S. GANGULY AND S. JANA

Abstract. In this paper a new concept allied to ‘continuum’ has been introduced with the name
N-continuum. Some very interesting results have been obtained which describe some interesting

features of this new concept.

1. Introduction

In [6] S. Ganguly and T. Bandyopadhyay introduced a new type of space called ‘H-
continuum’ by combining together the concepts of H-closedness and #-connectedness ;
the study was further continued in [5].

In the present paper, we utilize the concept of N-closedness [4] and J-connectedness
[8] to give rise to another continuum-like concept, called N-continuum and study some
of its properties.

For such study a locally nearly compact [2] space has been utilized ; in this context,
concepts of §-component and §-quasicomponent have been introduced. Finally, it has
been shown that the two coincide in a locally nearly compact space.

2. Prerequisites

Let (X, 7) be a topological space. Let ‘A and A° denote the closure and interior of
A respectively in this space. We shall write simply X to denote the topological space
(X, 7), if no confusion regarding the topology arises.

2.1. Preliminary definitions

Definition 2.1.1([4]) A subset A C X is said to be regular open (regular closed) if

A = (A)° [respectively A = (A0)].

Definition 2.1.2.([12]) A point € X is said to be a J-cluster point of A(C X) if
U N A # @, for every regular open neighbourhood (nbd. in short) U of z in X.
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The set of all d-cluster points of A(C X) is called the §-closure of A and we denote
this by A°.

A set A(C X)) is said to be d-closed if A = Z(s.

A set A(C X)) is said to be d-open if X \ A is d-closed.

Definition 2.1.3.([4]) A space X is said to be semi-regular if every point of the space
has a fundamental system of regularly open nbds.

Definition 2.1.4.([7]) A space X is said to be almost regular if any regularly closed
set A and any x € A can be strongly separated.

Definition 2.1.5. ([4]) A space X is called nearly-compact if any open cover {U,, :
a € A} of X by open sets in X has a finite subfamily {U,, : ¢ = 1,...,n} such that
X = Ui, ).

A set A(C X) is called N-closed if any open cover {U, : « € A} of A by open sets in
X has a finite subfamily {U,, : i =1,...,n} such that A C J;_, (Ua,)°.

Definition 2.1.6.([2]) A space X is called locally-nearly compact if each point has
a nbd. whose closure is N-closed.

Definition 2.1.7.([8]) A pair (P,Q) of nonempty subsets of X is said to be a ¢-
separation relative to X if ﬁg NER=3o= @6 NnPpP.

A subset A of a space X is said to be d-connected relative to X if there exists no
d-separation (P, Q) relative to X such that A =P U Q.

Definition 2.1.8.([9]) A function f: X — Y is said to be J-continuous if for any
z € X and each open nbd. V of f(z) in Y, 3 an open nbd. U of z in X such that

F(OU)°) € (vV)°.

2.2. Some useful results

Result 2.2.1.([7]) A space X is almost regular iff for each x € X and each regular
open set U containing x, 3 a reqular open set V such that x € V CV C U.

Result 2.2.2. Let {A, : « € A} be an arbitrary family of subsets of X. Then
(i) UaeA(A_aé) C (Uaen Aa)é. Equality holds if A is finite.
o TR0 ——5
(i) (Naea 4a) € MNaea(da )

(i) ACB(CX)=>A CB.

Proof. Straightforward.

Note 2.2.3. It is easy to see from the above result 2.2.2 that, the collection of all
d-open sets in X form a topology. We denote this topology by 7*. We also note that, the

collection of all regular open sets form a basis for the topology 7*. Thus, each regular
open set is d-open.



A NOTE ON N-CONTINUUM 373

Result 2.2.4.([8]) If (P, Q) be a 0-separation relative to X, A C P, B C Q then
(A, B) is a 0-separation relative to X .

Result 2.2.5. Any pair (U,V) of non-empty disjoint open subsets of X is a ¢-
separation relative to X .

Proof. Obvious.

Result 2.2.6.([8]) If (P, Q) be a d-separation relative to X and A C X be §-closed
with A= PUQ then, P,Q are d-closed in X .

Result 2.2.7([10]) If A be an N-closed set in a Ts space X then A is §-closed.

Remark 2.2.8. It is clear from definition that a set A(C X) is N-closed iff every
regular open cover of A has a finite subcover. We now give another characterisation of
N-closed sets.

Result 2.2.9. A subset A of X is N-closed iff every §-open cover of A has a finite
subcover.

Proof. If A be N-closed, then, obviously, the condition holds since each d-open set
contains a regular open set [by note 2.2.3].

To prove the converse, let {U, : @ € A} be an arbitrary open cover of A. Since
Ua € (Ua)?Va € A, {(Us)° : @ € A} is also a cover of A by regular open sets in X. But
each regular open set being §-open [by note 2.2.3] {(U,)? : @ € A} has a finite subcover

[by given condition]. This proves that A is N-closed in X.

Result 2.2.10. If B be a §-closed subset of an N-closed set A in a space X then B
is also N-closed.

Proof. Let {U, : @ € A} be a d-open cover of B. Since B is d-closed {U, : o €
A} U{X \ B} is a 6-open cover of X and hence of Aie. (UycpUa)U(X\B)=X D A.
Since A is N-closed, by result 2.2.9, the above cover has a finite subcover for A. If
this finite subcover does not contain X \ B, it will be the required finite subcover of B.
If it contains X \ B then excluding X \ B from this family we get the required finite

subcover of B. Then using the result 2.2.9 we get the result.

Result 2.2.11.([2]) (i) A Tz space X is locally-nearly compact iff for each N-closed
set C of X and each reqular open set U such that C C U, 3 an open set V in X such
that V is N-closed and C CV CV CU.

(ii) A Ty space X is locally-nearly compact iff for each x € X and each regular open set
U such that x € U, 3 an open set V in X such that V is N-closed and t € V CV C U.

Result 2.2.12. For a subset A of a space X, the following are equivalent.
(i) A is 6-connected relative to X.
(il) If (P, Q) is a 0-separation relative to X and A C P U Q then either A C P or
ACQ.
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(iil) For any x,y € A, 3 a §-connected set B C A relative to X such that x,y € B.

Proof. (i) <= (ii) follows from lemma 2.3 [8].
(i) = (iii): Taking B = A the result follows.
(iif) = (i): If possible let, A be not §-connected. Then 3 a d-separation (P, Q) relative
to X such that A = PUQ. Let x € P,y € Q. Then by (iii), 3 a d-connected set B C A
such that z,y € B. Now (BN P,B N Q) forms a d-separation of B relative to X [by
result 2.2.4] a contradiction.

Result 2.2.13.([8]) If A C X be §-connected relative to X and A C B C a’ then, B
is d-connected relative to X.

Result 2.2.14.([8]) If f : X — Y be §-continuous and K(C X) is 0-connected
relative to X then f(K) is d-connected relative to Y.

Result 2.2.15.([9]) If f : X — Y be 0-continuous and K(C X) is N-closed in X
then f(K) is N-closed in'Y .

Result 2.2.16. ([11]) If A, B be two disjoint N-closed sets in a Hausdorff space X
then 3 two disjoint reqular open sets U,V of X such that AC U and BC V.

3. Example

We know that every compact space is nearly-compact and every nearly-compact space
is H-closed. But the converse is not true in general. However, if the space be semi-regular
and almost-regular then, the above three concepts become identical. So first of all we
need a suitable example of a space which is neither semi-regular nor almost-regular.

Example.([1]) Let X = {(z,y) € 7 : z,y € Q and y < 0}, where 7 is the Euclidean
plane equipped with a cartesian co-ordinate system and Q denotes the set of all rational
numbers.

Let, X' = {(2,0) e m: 2 € Q}. Then X’ C X.

Let 7x/ be the subspace topology on X’ relative to the usual topology inherited from
the plane.

Let, &€ be the collection of all open intervals lying on the z-axis. We fix an irrational
number o >0. For each U € £ we define, Ut = {(2/,y’) € X \ X’ : the line y — ¢/ =
alz—2') intersects U} and U~ = {(a/,y') € X\ X' : the line y—y' = —a(x—2’) intersects
U}. Also we define, B(z;U, V) = {z} (U x {0} " X") UV x {0} " X'), where U,V € &
and z € UT(V~. We now define, B={B(z;U,V): U, V€&, e UTNV }Urx. It
is easy to verify that B is a basis for some topology 7 (say) on X and (X, 7’) is Hausdorff.
We note that, (2/,y') € UT <= 2’ — %’ eUand (¢/,y) e U™ <=2’ + % evU.

Note 3.1. In the sequel we have identified A C R with A x {0}, where A is any
subset of the real line R; the context shall speak for itself.
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Proposition 3.2. B(z; U, V)X = (OnNXUTVNX)YUT VT UV UV, [where

U denotes the closure of U in the usual topology on the real line R and EX denotes the
closure of B in X].

_ Proof. Let us denote the R.H.S. by A. Then, (z,y) € A with y = 0 = (2,0) €
UnXHu(Vnx’.
Let, W be any open nbd. of (2,0) in X.

If (2,0) € TN X' then W NU # & = WNB(z;U,V) # 9.

If (,0) e VN X then WNV #®= WnNB(z;U,V) #.
Thus, (z,0) € B(z;U, V)X Now, let (z,y) € A with y # 0. Then (z,y) € (UJr U
T uv’ UV ). Let, B((z,y); M,N) be any open nbd. of (z,y) in X. So, (z,y) €
T = oz - 4 e U. Again, r — % € M. Since M is an open interval it follows
that, M NU # ®. Consequently, B((x,y); M, N) N B(z;U,V) # ® and hence (x,y) €
B(z; U, V)X. Similarly, if (z,y) € U or Vo VO arguing same as above we have,
(x,y) € B(z; U, V)X. Thus A C B(z; U, V)X (i) _

Conversely, let (z,y) ¢ A. If y =0 then (z,0) ¢ (UNX)U(V NX').
= J open intervals W7, W5 containing (z,0) in X such that W1 NU = ® and WoNV =
b = (W, NWy) N B(z;U,V) = ®. Therefore (2,0) ¢ B(z; U, V)X If y # 0 then
(x,y) & (U+UU7 UV+U77) = 2z-2¢UUVanda+L¢gUUV =UUV. So,
3 Wy € & containing x — £ and W5 € £ containing = + £ such that W, N (UUV) = &
and WaN(UUV) = & = B((z,y); Wi, Wo)NB(2;U,V) = &. = (z,y) ¢ B(z:U, V) ..
Therefore, B(z; U, V)X CA (ii)

From (i) and (ii) the result follows.

Proposition 3.3. For each U € &, UnxX’ = UnNX"u (U+ ul ).

Proof. Let us denote the R.H.S. by A. Then, (z,) € A with y =0 = (2,0) € U N
X'. Let W be any open nbd. of (2,0) in X. Then WNU # & —= WNUNX') # & =
(z,0) € Tnx’ . Now, (z,y) € A with y # 0 = (x,y) € (U+ UU )=z+LeUor
z— % cU. Let B((z,y); Wi, Wa) be any open nbd. of (z,y) in X. So, z — £ € W} and
l“i’% € Ws.

Therefore, Wi NU £ P or WoNU #® = W1 N({UNX')#Por Won(UNX') # .
= B((z,y); W1, W2) N (U N X') # ®. Consequently, (x,y) € TAx.
Thus, ACT N X' . (i)

Conversely, let (x,y) € A. If y =0, then (x,0) ¢ U N X'
= J an open nbd. W of (z,0) in X such that WNU = ®.
—=WNUNX)=d= (2,0)¢TNX"".

If y # 0, then (:c,y)gZ(U+UU7):>xf%¢Uandz+%€ﬁ.
= d open intervals W7, W5 containing x — %, x—l—% respectively such that Wi NU = &
and Wo NU = .

:>W10(UHX’):<I>andW2ﬂ(UﬁX’):®.
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= B((z,y); W1, W2)N(UNX') = 2.

= (z,y) & Tnx

Therefore, TN X"\ C A (ii)
From (i) and (ii) the result follows.

Proposition 3.4. (i) (UﬁX’X)O =UNnX)uUtNU"), for any U € E.
(i) (B(z; U, V)X)0 = (UNXHu(VnXHuUTNUHUVT NV HUUTNVHU(U - NVT),
for any U,V € £ with UT NV~ #£ &.

Proof. (i) Since UNX’ is openin X soUNX' C (WX)O. Let, (z,y) eUTNU".
Then B((z,y);U,U) C Tnx" = (TNX')U(T LT ). Therefore (z,y) € (WX)O.
Thus, (UNX)UUtNU") C (WX)O. Conversely let, (z,y) € (UﬁX’X)O. If
y = 0,3 an open nbd. W N X’ of (x,0) such that (z,0) € WNX' C (WX) =
(z,0) e WNX' CUNX'. If y# 0, 3 an open nbd. B((z,y); W1, Ws) of (z,y) such
that B((z,y); Wi, Ws) CUNX" = (z,y) € (U UT ) and W, C U, Wa C U. But,
(x,y) € Wf'ﬂWQ_ —z-ZcW QUandx—l—% € W, C U. Since Wy, W are open
intervals it follows that, z — £ € U, 24+ £ € U so that (z,y) e UTNU".

Thus, (U N X’X)O C(UNX)YU(UTNU™). This completes the proof.

(i) In a Slmllar way as in (i) we have, UNX)U(VNX)UU*TNU")U (VJr nv-)
(B(z;U,V) V) )°. Now, (z,y) e Ut NV~ = B((z,y);U,V) C B(z; U, V) = (z,y)
BEU,VY ). Similarly, (z,y) € U~ N VY = B((z,y);U,V) C WX
(x,y) € (B(z; U, V)X)O. Thus, UNXHYUu(VnXHYuUtrnUH UVt NV )uU*Tn
VI)u U - NVt C (B(z;U, V)X)O. Conversely let, (z,y) € (B(z;U, V)X)O. Ify =0,
then arguing similarly as in (i) we get, (,0) € (UNX)U(VNnX'). Ify # 0, 3
an open nbd. B((z,y); Wi, Ws) of (z,y) such that B((z,y); Wi, Wa) C WX
= (2,y) e T UT)H)UV UV )and W, CTUV =TUV, Wo CTUV. But,
(x,y) € Wf'ﬂWQ_ =+ 2L W, C mandx—% € Wi, C UUV. Since,
W1, Wa are open intervals it follows that,  + £ ¢ UUV and v — £ € U UV so that,
(z,y) € UTNUHYUVTNVHYUUTNV)U(U ™ NVT). Therefore, (B(z; U, V)X)O C
UnNXHYu(VnXHuUTNUHuVHTrNV ) u(UtTNV-)u (U~ NVT). This completes
the proof.

m 1N

Since Ut NU~ # ® for any U € &, it follows from proposition 3.4 that, no basic open
set is regular open. Also the sets in (i) and (ii) of this proposition are regular open.

Proposition 3.5. The space (X, 7') is not almost regular.

Proof . Let U = {xr € R: 0 < x < 1}. Then by above discussion (UﬁX’X)O is a

—X
regular open set. We denote, G = (UN X'~ ). We show that, G' does not contain the
closure of any basic open set contained in G. Let, B be an arbitrary basic open set such
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that B C G.

Case-l: B={(z,0) € Q*:a <z <b},B=(a,b)N X'(CR). Then, B = ([a, b)) N X") U
(V+ UV ) [by proposition 3.3], where V' = (a,b)(C R). Since, B C G it follows that
(a,b) C (0,1) ie. 0 <a <b < 1. We choose a rational 2’ < 0 and another rational 3/’
satisfying a(2' —b) < ¢/ < a(2'—a). = (2/,¢/) e VT and (2/,y) ¢ U~ = (2'y/) € BY
but (2’,y’) € G [since 3’ # 0 and by proposition 3.4]. Thus, B ZG.

Case-1I: B = B(z; U, V). Since by case-I, UT € G so from proposition 3.2 it follows that,
B" ¢ G. Since any regular open set contained in G' must contain basic open sets, it

follows from above discussion that G does not contain the closure of any regular open
set. Therefore by result 2.2.1, the space is not almost regular.

Proposition 3.6. The space (X, 7') is not semi-regular.

Proof. We took the point (1,0) € X and its open nbd. UN X', where U = {z € R :
0 < 2 < 2}. We denote U N X’ = G. Any open nbd. of (1,0) contained in G must be of
the form V' N X', where V € £ and V C U. But we have seen earlier that no open set
of the form V' N X' is regular open. Consequently, G does not contain any regular-open
nbd. of (1,0). This completes the proof.

4. N-Continuum

In this section we introduce the concept of N-continuum and study its several prop-
erties.

Definition 4.1. Let, X be a Ts-space. A d-connected (relative to X) N-closed set
in X is called an N-continuum.

Theorem 4.2. The union of two N-continua of a Ta-space X, which have a point in
common, is an N-continuum of X .

Proof. Let A, B be two N-continua of X with AN B # ®. Let (P,Q) be a 6-
separation relative to X and AU B C P U Q. Since A is d-connected relative to X so
either AC Por AC Q@ [by 22.12]. Now ACP—BCPor ACQ—=— BCQ
[since AN B # ® and B is é-connected relative to X]. Thus, AUB C Por AUB C Q.
Consequently AU B is d-connected relative to X [by 2.2.12]. Also, AU B is an N-closed
set in X, since A, B are so.

Lemma 4.3. Let A, B be two d-closed sets in X. If the sets AU B and AN B are
d-connected relative to X, then the sets A, B are also §-connected relative to X.

Proof. If possible let, A be not §-connected relative to X. Then 3 a d-separation
(P,Q) of A relative to X such that A = PUQ. Then AUB = P U (Q U B) and
ANB=(PNB)U(@NDB). f PNB #® # QN B then (PN B,Q N B) will form
a d-separation of A N B relative to X contradicting that A N B is J-connected
relative to X.
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If at least one of PN B, Q@ N B be empty, say PN B = & then, we show that
(P,Q U B) will form a d-separation of A U B relative to X contradicting that
AU B is §-connected relative to X.

(QU Bé) NP= (@6 UE(S) NP= (@6 U B)N P [ since B is §-closed]

=@ NnP)UBNP) =

and
P n@QuB)=F nQuBnP)

(%)

Now, PC A — P - A =4 [since A is d-closed]
— P NnBCA=PUQ.
But since ﬁé NQ = ® so, ﬁé NB C P. Again since BNP = ® it follows that ﬁé NB = .
Therefore from (*) P’'n (QUB)=9.
Thus, the assertion is proved and the lemma is complete.

Theorem 4.4. If A, B be two N-closed sets in a To-space X such that AU B and
AN B are N-continua of X, then A, B are also N-continua of X.

Proof. Since N-closed sets in a Th-space are d-closed [by 2.2.7], the result follows
from the lemma 4.3.

Theorem 4.5. If f : X — Y (X,Y both are Hausdorff) is d-continuous and A is an
N-continuum of X then f(A) is an N-continuum of Y.

Proof. The theorem follows from the results 2.2.14 and 2.2.15.

Theorem 4.6. If {C;}2, be a decreasing sequence of N-continua of a locally nearly
compact Hausdorff space X then ﬂfil C; s also an N-continuum of X.

Proof. Let C' =2, C;. Each C; being N-closed of the Th-space X, is d-closed [by
result 2.2.7] and so C is d-closed [by note 2.2.3]. Thus C being a d-closed subset of an
N-closed set Cq, is N-closed [by result 2.2.10]. We claim that C' # ®. For, otherwise
is a d-open cover of Cy and Cy is N-closed. So it has a finite subcover, say, {(X \ C;,) :
n=1,...,p} [by result 2.2.9]. Let k = max{i,...,i,}. Then C; C | J'_,(X\ C;,) =
X\M_,Ci, = X\ Cy [since {C;} is a decreasing sequence] = C1 N Cj, = @ a
contradiction.

We now prove that C' is d-connected relative to X.

We assume the contrary. Then 3 a d-separation (P, Q) relative to X such that C' =
PUQ. Now C being d-closed, so are P,Q in X [by result 2.2.6]. Therefore P, Q must be
N-closed, since C'is so [by result 2.2.10]. Also P, @ are disjoint. Hence by result 2.2.16, 3
two disjoint regular open sets U, V' of X such that P C U, @ C V. Therefore, ﬂfil C; =
C=PUQ CUUV =T (say). Then T is -open [by note 2.2.3]. Let x € C. Thenz € T.
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Since T is §-open, by note 2.2.3, 3 a regular open set T, such that z € T, C T. Since X is
a locally nearly compact Hausdorff space, 3 an open set W, such that z € W, C W, C T,
and W, is N-closed [by result 2.2.11 (ii)]. Here W, can be taken as a regular open (and
hence d§-open) set [taking (W) instead of W,]. Thus {W, : x € C} is a regular open
cover of the N-closed set C. So it has a finite subcover {W,, : ¢ = 1,...,n}(say). Let
W = U:.LZI W,,. Then C CW C W C T and W is N-closed. Also W is §-open [by note
2.2.3]. Therefore, T\(2, C; 2 W\W = W\W C |J;2,(T\C;). Now, W\W is d-closed
and W\W C W. So W\W is N-closed. Also, T'\C; is d-open Vi ( since T is §-open and C;
is 0-closed Vi). So, Ji1,. .., 4, such that W\W C JV_,(T\C;,) = T\, Cs, = T\ Chy,
where n = max{is,...,i,} = W\W)NC, = (%)

Now, C,, = (C, \W) U (C, N W) C (C,, \ W)U (C,, "W). We note that, (C,, \ W)
and (C,, N W) both are d-closed and (C,, \ W) N (C,, N W) = C, N (W\ W) =& [ by
(%)]- So (Cn, \ W,C,, N W) forms a d-separation relative to X. Since C,, is d-connected
relative to X and C,, € C, \W (for, WD C #®)s0C,, CC,"NWCWCT=UUV
[ by result 2.2.12] [Infact: C,, € W since (W \ W)NC, = ®].

Now, U,V being disjoint regular open, (U, V) forms a J-separation relative to X [by
result 2.2.5]. Since C, is d-connected relative to X, either C,, C U or C,, C V [by result
2212l = CCUor CCV = either CNQ=P0orCNP =270 a contradiction.

Thus, C =(;2, C; is an N-continuum of X.

5. d-component and d-quasicomponent

In this article we introduce the concept of J-component and d-quasicomponent and
see when these two concepts become identical.

Definition 5.1. Let A C X. A subset C of A is said to be a J-component of A
relative to X if C is §-connected relative to X and is not contained properly in any other
d-connected relative to X subset of A.

Definition 5.2. A subset C C X is said to be d-connected between A and B
(where AU B C () if there is no J-separation (P,Q) of C relative to X such that

Definition 5.3. We define a relation p on A C X as follows :- (z,y) € p iff A is
d-connected between x and y.

It is easy to verify that p is an equivalence relation and hence induces a partition
on A. The equivalence classes of A are called §-quasicomponents of A. We denote the
d-quasicomponents of A containing z(€ A) as Alz].

Theorem 5.4. A set C(C X) is d-connected between A and B (when AUB C C) iff
C C PUQ for any 0-separation (P, Q) relative to X implies if A C P then BN P # ®.

Proof. Follows immediately from definition.
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Result 5.5.
(i) Let x € A. Then A = Alz] iff A is §-connected relative to X .
(ii) If ® # B C A C X then Blz] C Alz], for each x € B.
(iii) Let A C X. Then Alz] is a §-component of A relative to X for each x € A for
which Alx] is §-connected relative to X .

Proof. (i) Immediate from definition.
(ii) If B be d-connected between x and y and B C A then A will also be d-connected
between x and y.
(iil) If possible let, 3 a d-connected set C' relative to X such that A[z] C C C A =
Clz] C Alz] [by (ii) above]. Since C is §-connected relative to X, by (i) above, C = C|x].
Therefore A[z] = C. Consequently, Alx] is a é-component of A relative to X.

Theorem 5.6. If A is a §-closed subset of X then Alx] is 0-closed in X .
—

Proof. A[z] C A=A [since A is d-closed) (%)
Let y € A\ Alz]. Then 3 a d-separation (P, Q) relative to X such that z € P, y € Q
and A = PUQ. Therefore Alz] C P = A[:c]6 C P’. But P’ n R=2o Soy ¢ A[:L']é.

—
Therefore using (x) we can write, Alx] C A[z]. This completes the proof.

Theorem 5.7. Let X be a locally nearly compact Ts-space and A be an N-closed
subset of X. Then each d-quasicomponent of A relative to X is a §-component of A
relative to X.

Proof. Let x € A. It now suffices to prove that A[z] is a §-component of A relative to
X. For this we show that A[z] is d-connected relative to X. Then the desired conclusion
will follow from result 5.5.

Let y € A[z]. We construct

F={FCA:Fisdclosedin X, x € Fand y € Fz] }

Since A € F, F # ®. We define a relation ‘>’ in F as follows :- Fy > Fy (Fy, F € F) iff
Fy C Fy. Clearly (F,>) is a poset. Let 7 be a chain in 7 and C = (\pcy . Then C
is a d-closed subset of A [by note 2.2.3] and hence C is N-closed [by result 2.2.10], since
A is N-closed. Also z,y € C. We want to show y € C[z] i.e. C is d-connected between
z and y.

If not, 3 a d-separation (P, Q) relative to X such that C = PUQ, = € P, y € Q.
Then P, Q are disjoint J-closed subsets of C' [by result 2.2.6], since C' is J-closed. Hence
P, Q are also disjoint N-closed sets (since P C A, @ C A) [by result 2.2.10]. So, 3 two
regular open sets U,V in X such that P C U, Q CV, UNV = & [by result 2.2.16].
Since X is a locally nearly compact Ts-space and P, @ are N-closed so 3 two open sets
Wi, Wy in X such that PC W1, C W, C U, Q C Wy C Wy C V and Wy, W, are N-
closed [by result 2.2.11]. Here we can assume that Wi, Wy are regular open ( and hence
§-open) [taking (W71)° instead of Wi]. Therefore per F =C =PUQ C Wi UW, C
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WiUW, CUUV T (say). Therefore T'\ Nper F 2 Wi UWR \ W U Wy =
WiUWo \ Wy UWy € Jper(T\ F). Now, Wy UWs \ W3 UWs is a d-closed subset of
W1 U Wy which is N-closed. So Wi U Wa \ W U W is N-closed. Also T\ F is §-open,
VF € T ( since T is §-open and F is d-closed VF ). So 3 a finite subset 7y of 7 such
that W UWQ\Wl UW, C UFETO(T\F) = T\mFGTOF = T\FQ, for some Fy € 7y (
since 7y is a finite chain) = Fo N (W, UWo \ W, UW,) = @ (%)

Now, Fy = (FQ\WlUWQ) U (FO ﬂm) U (FO ng) - (FQ\Wl UWQ) U (FO n
W1) U (Fy N Wa). We note that, (Fo \ W1 UWs), Fo N Wy, FyNWs all are §-closed and
(FonW)N(FyNWa) = Fon(WyNWy) = ® [since W, CU, Wo CV, UNV = ®].
(FO ﬂWg) n (FO \ Wi U WQ) =FyN (WQ\_WI U Wi: P [by (*)]

Therefore, ((Fp \ W1 U Wa) U (Fo N W1), Fy N Wa) forms a J- separation relative to
X. Also, z € (Fp \ Wi UWo) U (FoNWi) and y € Fy " Wa [sincex € PC Wy, y€Q C
Wa, x,y € Fp]. This contradicts that F is d-connected between z and y [by Theorem
5.4]. Therefore, C' is J-connected between = and y i.e. y € C|z]. Consequently, C' € F.
Also C' is an upper bound of 7. Then by Zorn’s lemma F has a maximal element C
(say). Since Cy € F so z,y € Cp.

We now show that, Cj is d-connected relative to X and Cy C A[z]. Then by result
2.2.12, it follows that Alz] is d-connected relative to X. If possible let (M, N) be a
d-separation relative to X with Cy = M U N. Since y € Cp[z] i.e. Cp is d-connected
between x and y so without loss of generality we assume that z,y € M. Since M is
d-closed in X with M C Cy and Cj is a maximal element of F, so M cannot be 4-
connected between z and y. Consequently, 3 a d-separation (M*, M**) relative to X
such that M = M*UM**, x € M*, y € M**. Then, Cho = M UN = M* U (N U M**).
But clearly (M*, M**UN) is a d-separation of Cy relative to X withz € M*,y € M**UN
contradicting that y € Cy|z].

Thus, Cp is d-connected relative to X. Therefore, Cy = Cylz] C Alz]— [by result
5.5]. This completes the proof.
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