TAMKANG JOURNAL OF MATHEMATICS Volume 35, Number 4, Winter 2004

A NOTE ON N-CONTINUUM

S. GANGULY AND S. JANA

Abstract. In this paper a new concept allied to 'continuum' has been introduced with the name N-continuum. Some very interesting results have been obtained which describe some interesting features of this new concept.

1. Introduction

In [6] S. Ganguly and T. Bandyopadhyay introduced a new type of space called 'Hcontinuum' by combining together the concepts of H-closedness and θ -connectedness ; the study was further continued in [5].

In the present paper, we utilize the concept of N-closedness [4] and δ -connectedness [8] to give rise to another continuum-like concept, called N-continuum and study some of its properties.

For such study a locally nearly compact [2] space has been utilized; in this context, concepts of δ -component and δ -quasicomponent have been introduced. Finally, it has been shown that the two coincide in a locally nearly compact space.

2. Prerequisites

Let (X, τ) be a topological space. Let \overline{A} and A^0 denote the closure and interior of A respectively in this space. We shall write simply X to denote the topological space (X, τ) , if no confusion regarding the topology arises.

2.1. Preliminary definitions

Definition 2.1.1([4]) A subset $A \subseteq X$ is said to be regular open (regular closed) if $A = (\overline{A})^0$ [respectively $A = (\overline{A})^0$].

Definition 2.1.2.([12]) A point $x \in X$ is said to be a δ -cluster point of $A \subseteq X$ if $U \cap A \neq \Phi$, for every regular open neighbourhood (nbd. in short) U of x in X.

Received June 23, 2003; revised December 11, 2003.

Key words and phrases. Regular open, δ -open, N-closedness, δ -connectedness, nearly-compact, locally nearly-compact.

²⁰⁰⁰ Mathematics Subject Classification. 54D20, 54D99.

The set of all δ -cluster points of $A \subseteq X$ is called the δ -closure of A and we denote this by \overline{A}^{δ} .

A set $A(\subseteq X)$ is said to be δ -closed if $A = \overline{A}^{\delta}$.

A set $A \subseteq X$ is said to be δ -open if $X \setminus A$ is δ -closed.

Definition 2.1.3. ([4]) A space X is said to be semi-regular if every point of the space has a fundamental system of regularly open nbds.

Definition 2.1.4.([7]) A space X is said to be almost regular if any regularly closed set A and any $x \notin A$ can be strongly separated.

Definition 2.1.5. ([4]) A space X is called nearly-compact if any open cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of X by open sets in X has a finite subfamily $\{U_{\alpha_i} : i = 1, ..., n\}$ such that $X = \bigcup_{i=1}^{n} (\overline{U_{\alpha_i}})^0$.

A set $A(\subseteq X)$ is called N-closed if any open cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of A by open sets in X has a finite subfamily $\{U_{\alpha_i} : i = 1, ..., n\}$ such that $A \subseteq \bigcup_{i=1}^n (\overline{U_{\alpha_i}})^0$.

Definition 2.1.6.([2]) A space X is called locally-nearly compact if each point has a nbd. whose closure is N-closed.

Definition 2.1.7.([8]) A pair (P,Q) of nonempty subsets of X is said to be a δ separation relative to X if $\overline{P}^{\delta} \cap Q = \Phi = \overline{Q}^{\delta} \cap P$.

A subset A of a space X is said to be δ -connected relative to X if there exists no δ -separation (P,Q) relative to X such that $A = P \cup Q$.

Definition 2.1.8.([9]) A function $f : X \longrightarrow Y$ is said to be δ -continuous if for any $x \in X$ and each open nbd. V of f(x) in Y, \exists an open nbd. U of x in X such that $f((\overline{U})^0) \subseteq (\overline{V})^0$.

2.2. Some useful results

Result 2.2.1.([7]) A space X is almost regular iff for each $x \in X$ and each regular open set U containing x, \exists a regular open set V such that $x \in V \subseteq \overline{V} \subseteq U$.

Result 2.2.2. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be an arbitrary family of subsets of X. Then

(i) $\bigcup_{\alpha \in \Lambda} (\overline{A_{\alpha}}^{\delta}) \subseteq \overline{(\bigcup_{\alpha \in \Lambda} A_{\alpha})}^{\delta}$. Equality holds if Λ is finite.

(ii) $\frac{\Im_{\alpha\in\Lambda}}{(\bigcap_{\alpha\in\Lambda}A_{\alpha})^{\delta}} \subseteq \bigcap_{\alpha\in\Lambda}(\overline{A_{\alpha}}^{\delta})$

(iii) $A \subseteq B(\subseteq X) \Rightarrow \overline{A}^{\delta} \subseteq \overline{B}^{\delta}$.

Proof. Straightforward.

Note 2.2.3. It is easy to see from the above result 2.2.2 that, the collection of all δ -open sets in X form a topology. We denote this topology by τ^* . We also note that, the collection of all regular open sets form a basis for the topology τ^* . Thus, each regular open set is δ -open.

372

Result 2.2.4.([8]) If (P,Q) be a δ -separation relative to X, $A \subseteq P$, $B \subseteq Q$ then (A, B) is a δ -separation relative to X.

Result 2.2.5. Any pair (U, V) of non-empty disjoint open subsets of X is a δ -separation relative to X.

Proof. Obvious.

Result 2.2.6.([8]) If (P,Q) be a δ -separation relative to X and $A \subseteq X$ be δ -closed with $A = P \cup Q$ then, P,Q are δ -closed in X.

Result 2.2.7([10]) If A be an N-closed set in a T_2 space X then A is δ -closed.

Remark 2.2.8. It is clear from definition that a set $A \subseteq X$ is N-closed iff every regular open cover of A has a finite subcover. We now give another characterisation of N-closed sets.

Result 2.2.9. A subset A of X is N-closed iff every δ -open cover of A has a finite subcover.

Proof. If A be N-closed, then, obviously, the condition holds since each δ -open set contains a regular open set [by note 2.2.3].

To prove the converse, let $\{U_{\alpha} : \alpha \in \Lambda\}$ be an arbitrary open cover of A. Since $U_{\alpha} \subseteq (\overline{U_{\alpha}})^0, \forall \alpha \in \Lambda, \{(\overline{U_{\alpha}})^0 : \alpha \in \Lambda\}$ is also a cover of A by regular open sets in X. But each regular open set being δ -open [by note 2.2.3] $\{(\overline{U_{\alpha}})^0 : \alpha \in \Lambda\}$ has a finite subcover [by given condition]. This proves that A is N-closed in X.

Result 2.2.10. If B be a δ -closed subset of an N-closed set A in a space X then B is also N-closed.

Proof. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a δ -open cover of B. Since B is δ -closed $\{U_{\alpha} : \alpha \in \Lambda\} \bigcup \{X \setminus B\}$ is a δ -open cover of X and hence of A i.e. $(\bigcup_{\alpha \in \Lambda} U_{\alpha}) \cup (X \setminus B) = X \supseteq A$.

Since A is N-closed, by result 2.2.9, the above cover has a finite subcover for A. If this finite subcover does not contain $X \setminus B$, it will be the required finite subcover of B. If it contains $X \setminus B$ then excluding $X \setminus B$ from this family we get the required finite subcover of B. Then using the result 2.2.9 we get the result.

Result 2.2.11.([2]) (i) A T_2 space X is locally-nearly compact iff for each N-closed set C of X and each regular open set U such that $C \subseteq U$, \exists an open set V in X such that \overline{V} is N-closed and $C \subseteq V \subseteq \overline{V} \subseteq U$.

(ii) A T_2 space X is locally-nearly compact iff for each $x \in X$ and each regular open set U such that $x \in U$, \exists an open set V in X such that \overline{V} is N-closed and $x \in V \subseteq \overline{V} \subseteq U$.

Result 2.2.12. For a subset A of a space X, the following are equivalent.

- (i) A is δ -connected relative to X.
- (ii) If (P,Q) is a δ-separation relative to X and A ⊆ P ∪ Q then either A ⊆ P or A ⊆ Q.

(iii) For any $x, y \in A$, $\exists a \ \delta$ -connected set $B \subseteq A$ relative to X such that $x, y \in B$.

Proof. (i) \iff (ii) follows from lemma 2.3 [8].

(i) \implies (iii): Taking B = A the result follows.

(iii) \implies (i): If possible let, A be not δ -connected. Then $\exists a \ \delta$ -separation (P,Q) relative to X such that $A = P \cup Q$. Let $x \in P, y \in Q$. Then by (iii), $\exists a \ \delta$ -connected set $B \subseteq A$ such that $x, y \in B$. Now $(B \cap P, B \cap Q)$ forms a δ -separation of B relative to X [by result 2.2.4] — a contradiction.

Result 2.2.13.([8]) If $A \subseteq X$ be δ -connected relative to X and $A \subseteq B \subseteq \overline{A}^{\delta}$ then, B is δ -connected relative to X.

Result 2.2.14.([8]) If $f : X \longrightarrow Y$ be δ -continuous and $K \subseteq X$ is δ -connected relative to X then f(K) is δ -connected relative to Y.

Result 2.2.15.([9]) If $f : X \longrightarrow Y$ be δ -continuous and $K(\subseteq X)$ is N-closed in X then f(K) is N-closed in Y.

Result 2.2.16. ([11]) If A, B be two disjoint N-closed sets in a Hausdorff space X then \exists two disjoint regular open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$.

3. Example

We know that every compact space is nearly-compact and every nearly-compact space is H-closed. But the converse is not true in general. However, if the space be semi-regular and almost-regular then, the above three concepts become identical. So first of all we need a suitable example of a space which is neither semi-regular nor almost-regular.

Example.([1]) Let $X = \{(x, y) \in \pi : x, y \in \mathcal{Q} \text{ and } y \leq 0\}$, where π is the Euclidean plane equipped with a cartesian co-ordinate system and \mathcal{Q} denotes the set of all rational numbers.

Let, $X' = \{(x, 0) \in \pi : x \in \mathcal{Q}\}$. Then $X' \subset X$.

Let $\tau_{X'}$ be the subspace topology on X' relative to the usual topology inherited from the plane.

Let, \mathcal{E} be the collection of all open intervals lying on the x-axis. We fix an irrational number $\alpha > 0$. For each $U \in \mathcal{E}$ we define, $U^+ = \{(x', y') \in X \setminus X' : \text{the line } y - y' = \alpha(x - x') \text{ intersects } U\}$ and $U^- = \{(x', y') \in X \setminus X' : \text{the line } y - y' = -\alpha(x - x') \text{ intersects } U\}$. Also we define, $B(z; U, V) = \{z\} \bigcup (U \times \{0\} \cap X') \bigcup (V \times \{0\} \cap X')$, where $U, V \in \mathcal{E}$ and $z \in U^+ \cap V^-$. We now define, $\mathcal{B} = \{B(z; U, V) : U, V \in \mathcal{E}, z \in U^+ \cap V^-\} \bigcup \tau_{X'}$. It is easy to verify that \mathcal{B} is a basis for some topology τ' (say) on X and (X, τ') is Hausdorff. We note that, $(x', y') \in U^+ \iff x' - \frac{y'}{\alpha} \in U$ and $(x', y') \in U^- \iff x' + \frac{y}{\alpha} \in U$.

Note 3.1. In the sequel we have identified $A \subseteq \mathcal{R}$ with $A \times \{0\}$, where A is any subset of the real line \mathcal{R} ; the context shall speak for itself.

Proposition 3.2. $\overline{B(z;U,V)}^X = (\overline{U} \cap X') \cup (\overline{V} \cap X') \cup (\overline{U}^+ \cup \overline{U}^-) \cup (\overline{V}^+ \cup \overline{V}^-),$ [where \overline{U} denotes the closure of U in the usual topology on the real line \mathcal{R} and \overline{B}^X denotes the closure of B in X].

Proof. Let us denote the R.H.S. by A. Then, $(x, y) \in A$ with $y = 0 \Longrightarrow (x, 0) \in A$ $(\overline{U} \cap X') \cup (\overline{V} \cap X').$

Let, W be any open nbd. of (x, 0) in X.

If $(x,0) \in \overline{U} \cap X'$ then $W \cap U \neq \Phi \Longrightarrow W \cap B(z;U,V) \neq \Phi$.

If $(x,0) \in \overline{V} \cap X'$ then $W \cap V \neq \Phi \Longrightarrow W \cap B(z;U,V) \neq \Phi$.

Thus, $(x,0) \in \overline{B(z;U,V)}^X$. Now, let $(x,y) \in A$ with $y \neq 0$. Then $(x,y) \in (\overline{U}^+ \cup$ $\overline{U}^- \cup \overline{V}^+ \cup \overline{V}^-$). Let, B((x,y); M, N) be any open nbd. of (x,y) in X. So, $(x,y) \in \overline{U}^ \overline{U}^+ \Longrightarrow x - \frac{y}{\alpha} \in \overline{U}$. Again, $x - \frac{y}{\alpha} \in M$. Since M is an open interval it follows that, $M \cap U \neq \Phi$. Consequently, $B((x,y);M,N) \cap B(z;U,V) \neq \Phi$ and hence $(x,y) \in V$. $\overline{B(z;U,V)}^X. \text{ Similarly, if } (x,y) \in \overline{U}^- \text{ or } \overline{V}^+ \text{ or } \overline{V}^- \text{ arguing same as above we have,} \\ (x,y) \in \overline{B(z;U,V)}^X. \text{ Thus } A \subseteq \overline{B(z;U,V)}^X - (\mathbf{i})$

Conversely, let $(x, y) \notin A$. If y = 0 then $(x, 0) \notin (\overline{U} \cap X') \cup (\overline{V} \cap X')$. $\implies \exists$ open intervals W_1, W_2 containing (x, 0) in X such that $W_1 \cap U = \Phi$ and $W_2 \cap V = \Phi$ $\Phi \implies (W_1 \cap W_2) \cap B(z; U, V) = \Phi$. Therefore $(x, 0) \notin \overline{B(z; U, V)}^X$. If $y \neq 0$ then $(x,y) \notin (\overline{U}^+ \cup \overline{U}^- \cup \overline{V}^+ \cup \overline{V}^-) \Longrightarrow x - \frac{y}{\alpha} \notin \overline{U} \cup \overline{V} \text{ and } x + \frac{y}{\alpha} \notin \overline{U} \cup \overline{V} = \overline{U \cup V}.$ So, $\exists W_1 \in \mathcal{E} \text{ containing } x - \frac{y}{\alpha} \text{ and } W_2 \in \mathcal{E} \text{ containing } x + \frac{y}{\alpha} \text{ such that } W_1 \cap (U \cup V) = \Phi$ and $W_2 \cap (U \cup V) = \Phi \Longrightarrow B((x, y); W_1, W_2) \cap B(z; U, V) = \Phi. \Longrightarrow (x, y) \notin \overline{B(z; U, V)}^X$. Therefore, $\overline{B(z; U, V)}^X \subseteq A$ —(ii)

From (i) and (ii) the result follows.

Proposition 3.3. For each $U \in \mathcal{E}$, $\overline{U \cap X'}^X = (\overline{U} \cap X') \cup (\overline{U}^+ \cup \overline{U}^-)$.

Proof. Let us denote the R.H.S. by A. Then, $(x, y) \in A$ with $y = 0 \Longrightarrow (x, 0) \in \overline{U} \cap$ X'. Let W be any open nbd. of (x,0) in X. Then $W \cap U \neq \Phi \Longrightarrow W \cap (U \cap X') \neq \Phi \Longrightarrow$ $(x,0) \in \overline{U \cap X'}^X$. Now, $(x,y) \in A$ with $y \neq 0 \Longrightarrow (x,y) \in (\overline{U}^+ \cup \overline{U}^-) \Longrightarrow x + \frac{y}{\alpha} \in \overline{U}$ or $x - \frac{y}{\alpha} \in \overline{U}$. Let $B((x,y); W_1, W_2)$ be any open nbd. of (x,y) in X. So, $x - \frac{y}{\alpha} \in W_1$ and $x + \frac{\frac{\alpha}{y}}{\alpha} \in W_2.$

Therefore, $W_1 \cap U \neq \Phi$ or $W_2 \cap U \neq \Phi \implies W_1 \cap (U \cap X') \neq \Phi$ or $W_2 \cap (U \cap X') \neq \Phi$. $\implies B((x,y); W_1, W_2) \cap (U \cap X') \neq \Phi. \text{ Consequently, } (x,y) \in \overline{U \cap X'}^{\tilde{X}}.$ Thus, $A \subseteq \overline{U \cap X'}^X$.—(i)

Conversely, let $(x, y) \notin A$. If y = 0, then $(x, 0) \notin \overline{U} \cap X'$.

 $\implies \exists$ an open nbd. W of (x, 0) in X such that $W \cap U = \Phi$.

 $\implies W \cap (U \cap X') = \Phi \implies (x, 0) \notin \overline{U \cap X'}^X.$

If $y \neq 0$, then $(x, y) \notin (\overline{U}^+ \cup \overline{U}^-) \Longrightarrow x - \frac{y}{\alpha} \notin \overline{U}$ and $x + \frac{y}{\alpha} \notin \overline{U}$. $\Longrightarrow \exists$ open intervals W_1, W_2 containing $x - \frac{y}{\alpha}, x + \frac{y}{\alpha}$ respectively such that $W_1 \cap U = \Phi$ and $W_2 \cap U = \Phi$.

 $\implies W_1 \cap (U \cap X') = \Phi$ and $W_2 \cap (U \cap X') = \Phi$.

 $\implies B((x,y); W_1, W_2) \cap (U \cap X') = \Phi.$ $\implies (x,y) \notin \overline{U \cap X'}^X.$ Therefore, $\overline{U \cap X'}^X \subseteq A$ ——(ii) From (i) and (ii) the result follows.

Proposition 3.4. (i) $(\overline{U \cap X'}^X)^0 = (U \cap X') \cup (U^+ \cap U^-)$, for any $U \in \mathcal{E}$. (ii) $(\overline{B(z;U,V)}^X)^0 = (U \cap X') \cup (V \cap X') \cup (U^+ \cap U^-) \cup (V^+ \cap V^-) \cup (U^+ \cap V^-) \cup (U^- \cap V^+)$, for any $U, V \in \mathcal{E}$ with $U^+ \cap V^- \neq \Phi$.

Proof. (i) Since $U \cap X'$ is open in X so $U \cap X' \subseteq (\overline{U \cap X'}^X)^0$. Let, $(x, y) \in U^+ \cap U^-$. Then $B((x, y); U, U) \subseteq \overline{U \cap X'}^X = (\overline{U \cap X'}) \cup (\overline{U}^+ \cup \overline{U}^-)$. Therefore $(x, y) \in (\overline{U \cap X'}^X)^0$. Thus, $(U \cap X') \cup (U^+ \cap U^-) \subseteq (\overline{U \cap X'}^X)^0$. Conversely let, $(x, y) \in (\overline{U \cap X'}^X)^0$. If $y = 0, \exists$ an open nbd. $W \cap X'$ of (x, 0) such that $(x, 0) \in W \cap X' \subseteq (\overline{U \cap X'}^X) \Longrightarrow$ $(x, 0) \in W \cap X' \subseteq \overline{U} \cap X'$. If $y \neq 0, \exists$ an open nbd. $B((x, y); W_1, W_2)$ of (x, y) such that $B((x, y); W_1, W_2) \subseteq \overline{U \cap X'}^X \Longrightarrow (x, y) \in (\overline{U}^+ \cup \overline{U}^-)$ and $W_1 \subseteq \overline{U}, W_2 \subseteq \overline{U}$. But, $(x, y) \in W_1^+ \cap W_2^- \Longrightarrow x - \frac{y}{\alpha} \in W_1 \subseteq \overline{U}$ and $x + \frac{y}{\alpha} \in W_2 \subseteq \overline{U}$. Since W_1, W_2 are open intervals it follows that, $x - \frac{y}{\alpha} \in U, x + \frac{y}{\alpha} \in U$ so that $(x, y) \in U^+ \cap U^-$. Thus, $(\overline{U \cap X'}^X)^0 \subseteq (U \cap X') \cup (U^+ \cap U^-)$. This completes the proof.

(ii) In a similar way as in (i) we have, $(U \cap X') \cup (V \cap X') \cup (U^+ \cap U^-) \cup (V^+ \cap V^-) \subseteq (\overline{B(z;U,V)}^X)^0$. Now, $(x,y) \in U^+ \cap V^- \Longrightarrow B((x,y);U,V) \subseteq \overline{B(z;U,V)}^X \Longrightarrow (x,y) \in (\overline{B(z;U,V)}^X)^0$. Similarly, $(x,y) \in U^- \cap V^+ \Longrightarrow B((x,y);U,V) \subseteq \overline{B(z;U,V)}^X \Longrightarrow (x,y) \in (\overline{B(z;U,V)}^X)^0$. Thus, $(U \cap X') \cup (V \cap X') \cup (U^+ \cap U^-) \cup (V^+ \cap V^-) \cup (U^+ \cap V^-) \cup (U^+ \cap V^-) \cup (U^- \cap V^+) \subseteq (\overline{B(z;U,V)}^X)^0$. Conversely let, $(x,y) \in (\overline{B(z;U,V)}^X)^0$. If y = 0, then arguing similarly as in (i) we get, $(x,0) \in (U \cap X') \cup (V \cap X')$. If $y \neq 0$, \exists an open nbd. $B((x,y);W_1,W_2)$ of (x,y) such that $B((x,y);W_1,W_2) \subseteq \overline{B(z;U,V)}^X \Longrightarrow (x,y) \in (\overline{U}^+ \cup \overline{U}^-) \cup (\overline{V}^+ \cup \overline{V}^-)$ and $W_1 \subseteq \overline{U} \cup \overline{V} = \overline{U \cup V}$, $W_2 \subseteq \overline{U \cup V}$. But, $(x,y) \in W_1^+ \cap W_2^- \Longrightarrow x + \frac{y}{\alpha} \in W_2 \subseteq \overline{U \cup V}$ and $x - \frac{y}{\alpha} \in W_1 \subseteq \overline{U \cup V}$. Since, W_1, W_2 are open intervals it follows that, $x + \frac{y}{\alpha} \in U \cup V$ and $x - \frac{y}{\alpha} \in U \cup V$ so that, $(x,y) \in (U^+ \cap U^-) \cup (V^+ \cap V^-) \cup (U^- \cap V^+)$. Therefore, $(\overline{B(z;U,V)}^X)^0 \subseteq (U \cap X') \cup (V \cap X') \cup (U^+ \cap U^-) \cup (U^+ \cap V^-) \cup (U^- \cap V^+)$. This completes the proof.

Since $U^+ \cap U^- \neq \Phi$ for any $U \in \mathcal{E}$, it follows from proposition 3.4 that, no basic open set is regular open. Also the sets in (i) and (ii) of this proposition are regular open.

Proposition 3.5. The space (X, τ') is not almost regular.

Proof. Let $U = \{x \in \mathcal{R} : 0 < x < 1\}$. Then by above discussion $(\overline{U \cap X'}^X)^0$ is a regular open set. We denote, $G = (\overline{U \cap X'}^X)^0$. We show that, G does not contain the closure of any basic open set contained in G. Let, B be an arbitrary basic open set such

376

that $B \subseteq G$.

Case-I: $B = \{(x,0) \in Q^2 : a < x < b\}, B = (a,b) \cap X'(\subset \mathcal{R}).$ Then, $\overline{B}^X = ([a,b] \cap X') \cup (\overline{V}^+ \cup \overline{V}^-)$ [by proposition 3.3], where $V = (a,b)(\subset \mathcal{R}).$ Since, $B \subseteq G$ it follows that $(a,b) \subset (0,1)$ i.e. 0 < a < b < 1. We choose a rational x' < 0 and another rational y' satisfying $\alpha(x'-b) < y' < \alpha(x'-a). \Longrightarrow (x',y') \in V^+$ and $(x',y') \notin U^- \Longrightarrow (x'y') \in \overline{B}^X$ but $(x',y') \notin G$ [since $y' \neq 0$ and by proposition 3.4]. Thus, $\overline{B}^X \not\subseteq G.$ Case-II: B = B(z; U, V). Since by case-I, $U^+ \not\subseteq G$ so from proposition 3.2 it follows that,

 $\overline{B}^X \not\subseteq G$. Since any regular open set contained in G must contain basic open sets, it follows from above discussion that G does not contain the closure of any regular open set. Therefore by result 2.2.1, the space is not almost regular.

Proposition 3.6. The space (X, τ') is not semi-regular.

Proof. We took the point $(1,0) \in X$ and its open nbd. $U \cap X'$, where $U = \{x \in \mathcal{R} : 0 < x < 2\}$. We denote $U \cap X' = G$. Any open nbd. of (1,0) contained in G must be of the form $V \cap X'$, where $V \in \mathcal{E}$ and $V \subseteq U$. But we have seen earlier that no open set of the form $V \cap X'$ is regular open. Consequently, G does not contain any regular-open nbd. of (1,0). This completes the proof.

4. N-Continuum

In this section we introduce the concept of N-continuum and study its several properties.

Definition 4.1. Let, X be a T_2 -space. A δ -connected (relative to X) N-closed set in X is called an N-continuum.

Theorem 4.2. The union of two N-continua of a T_2 -space X, which have a point in common, is an N-continuum of X.

Proof. Let A, B be two N-continua of X with $A \cap B \neq \Phi$. Let (P, Q) be a δ separation relative to X and $A \cup B \subseteq P \cup Q$. Since A is δ -connected relative to X so
either $A \subseteq P$ or $A \subseteq Q$ [by 2.2.12]. Now, $A \subseteq P \Longrightarrow B \subseteq P$ or $A \subseteq Q \Longrightarrow B \subseteq Q$ [since $A \cap B \neq \Phi$ and B is δ -connected relative to X]. Thus, $A \cup B \subseteq P$ or $A \cup B \subseteq Q$.
Consequently $A \cup B$ is δ -connected relative to X [by 2.2.12]. Also, $A \cup B$ is an N-closed
set in X, since A, B are so.

Lemma 4.3. Let A, B be two δ -closed sets in X. If the sets $A \cup B$ and $A \cap B$ are δ -connected relative to X, then the sets A, B are also δ -connected relative to X.

$$(\overline{Q \cup B}^{\delta}) \cap P = (\overline{Q}^{\delta} \cup \overline{B}^{\delta}) \cap P = (\overline{Q}^{\delta} \cup B) \cap P \text{ [since } B \text{ is } \delta\text{-closed}]$$
$$= (\overline{Q}^{\delta} \cap P) \cup (B \cap P) = \Phi$$

and

$$\overline{P}^{\delta} \cap (Q \cup B) = (\overline{P}^{\delta} \cap Q) \cup (B \cap \overline{P}^{\delta}) \quad ----- (\star)$$

Now, $P \subseteq A \Longrightarrow \overline{P}^{\delta} \subseteq \overline{A}^{\delta} = A$ [since A is δ -closed] $\Longrightarrow \overline{P}^{\delta} \cap B \subseteq A = P \cup Q$. But since $\overline{P}^{\delta} \cap Q = \Phi$ so, $\overline{P}^{\delta} \cap B \subseteq P$. Again since $B \cap P = \Phi$ it follows that $\overline{P}^{\delta} \cap B = \Phi$. Therefore from $(\star) \ \overline{P}^{\delta} \cap (Q \cup B) = \Phi$.

Thus, the assertion is proved and the lemma is complete.

Theorem 4.4. If A, B be two N-closed sets in a T_2 -space X such that $A \cup B$ and $A \cap B$ are N-continua of X, then A, B are also N-continua of X.

Proof. Since N-closed sets in a T_2 -space are δ -closed [by 2.2.7], the result follows from the lemma 4.3.

Theorem 4.5. If $f : X \longrightarrow Y(X, Y \text{ both are Hausdorff})$ is δ -continuous and A is an N-continuum of X then f(A) is an N-continuum of Y.

Proof. The theorem follows from the results 2.2.14 and 2.2.15.

Theorem 4.6. If $\{C_i\}_{i=1}^{\infty}$ be a decreasing sequence of N-continua of a locally nearly compact Hausdorff space X then $\bigcap_{i=1}^{\infty} C_i$ is also an N-continuum of X.

Proof. Let $C = \bigcap_{i=1}^{\infty} C_i$. Each C_i being N-closed of the T_2 -space X, is δ -closed [by result 2.2.7] and so C is δ -closed [by note 2.2.3]. Thus C being a δ -closed subset of an N-closed set C_1 , is N-closed [by result 2.2.10]. We claim that $C \neq \Phi$. For, otherwise $C = \Phi \Longrightarrow X \setminus \bigcap_{i=1}^{\infty} C_i = X \Longrightarrow \bigcup_{i=1}^{\infty} (X \setminus C_i) = X \supseteq C_1$. Now, $\{(X \setminus C_i) : i = 1, \ldots\}$ is a δ -open cover of C_1 and C_1 is N-closed. So it has a finite subcover, say, $\{(X \setminus C_{i_n}) : n = 1, \ldots, p\}$ [by result 2.2.9]. Let $k = \max\{i_1, \ldots, i_p\}$. Then $C_1 \subseteq \bigcup_{n=1}^p (X \setminus C_{i_n}) = X \setminus \bigcap_{n=1}^p C_{i_n} = X \setminus C_k$ [since $\{C_i\}$ is a decreasing sequence] $\Longrightarrow C_1 \cap C_k = \Phi$ — a contradiction.

We now prove that C is δ -connected relative to X.

We assume the contrary. Then $\exists a \ \delta$ -separation (P, Q) relative to X such that $C = P \cup Q$. Now C being δ -closed, so are P, Q in X [by result 2.2.6]. Therefore P, Q must be N-closed, since C is so [by result 2.2.10]. Also P, Q are disjoint. Hence by result 2.2.16, \exists two disjoint regular open sets U, V of X such that $P \subseteq U$, $Q \subseteq V$. Therefore, $\bigcap_{i=1}^{\infty} C_i = C = P \cup Q \subseteq U \cup V = T$ (say). Then T is δ -open [by note 2.2.3]. Let $x \in C$. Then $x \in T$.

Since T is δ -open, by note 2.2.3, \exists a regular open set T_x such that $x \in T_x \subseteq T$. Since X is a locally nearly compact Hausdorff space, \exists an open set W_x such that $x \in W_x \subseteq \overline{W_x} \subseteq T_x$ and $\overline{W_x}$ is N-closed [by result 2.2.11 (ii)]. Here W_x can be taken as a regular open (and hence δ -open) set [taking $(\overline{W_x})^0$ instead of W_x]. Thus $\{W_x : x \in C\}$ is a regular open cover of the N-closed set C. So it has a finite subcover $\{W_{x_i} : i = 1, \ldots, n\}$ (say). Let $W = \bigcup_{i=1}^n W_{x_i}$. Then $C \subseteq W \subseteq \overline{W} \subseteq T$ and \overline{W} is N-closed. Also W is δ -open [by note 2.2.3]. Therefore, $T \setminus \bigcap_{i=1}^{\infty} C_i \supseteq \overline{W} \setminus W \Longrightarrow \overline{W} \setminus W \subseteq \bigcup_{i=1}^{\infty} (T \setminus C_i)$. Now, $\overline{W} \setminus W$ is δ -closed and $\overline{W} \setminus W \subseteq \overline{W}$. So $\overline{W} \setminus W$ is N-closed. Also, $T \setminus C_i$ is δ -open $\forall i$ (since T is δ -open and C_i is δ -closed $\forall i$). So, $\exists i_1, \ldots, i_p$ such that $\overline{W} \setminus W \subseteq \bigcup_{t=1}^p (T \setminus C_{i_t}) = T \setminus \bigcap_{t=1}^p C_{i_t} = T \setminus C_n$, where $n = \max\{i_1, \ldots, i_p\} \Longrightarrow (\overline{W} \setminus W) \cap C_n = \Phi$. (*) Now, $C_n = (C_n \setminus \overline{W}) \cup (C_n \cap \overline{W}) \subseteq (C_n \setminus W) \cup (C_n \cap \overline{W})$. We note that, $(C_n \setminus W)$

Now, $C_n = (C_n \setminus \overline{W}) \cup (C_n \cap \overline{W}) \subseteq (C_n \setminus W) \cup (C_n \cap \overline{W})$. We note that, $(C_n \setminus W)$ and $(C_n \cap \overline{W})$ both are δ -closed and $(C_n \setminus W) \cap (C_n \cap \overline{W}) = C_n \cap (\overline{W} \setminus W) = \Phi$ [by (*)]. So $(C_n \setminus W, C_n \cap \overline{W})$ forms a δ -separation relative to X. Since C_n is δ -connected relative to X and $C_n \not\subseteq C_n \setminus W$ (for, $W \supseteq C \neq \Phi$) so $C_n \subseteq C_n \cap \overline{W} \subseteq \overline{W} \subseteq T = U \cup V$ [by result 2.2.12] [Infact: $C_n \subseteq W$ since $(\overline{W} \setminus W) \cap C_n = \Phi$].

Now, U, V being disjoint regular open, (U, V) forms a δ -separation relative to X [by result 2.2.5]. Since C_n is δ -connected relative to X, either $C_n \subseteq U$ or $C_n \subseteq V$ [by result 2.2.12] $\Longrightarrow C \subseteq U$ or $C \subseteq V \Longrightarrow$ either $C \cap Q = \Phi$ or $C \cap P = \Phi$ — a contradiction. Thus, $C = \bigcap_{i=1}^{\infty} C_i$ is an N-continuum of X.

5. δ -component and δ -quasicomponent

In this article we introduce the concept of δ -component and δ -quasicomponent and see when these two concepts become identical.

Definition 5.1. Let $A \subseteq X$. A subset *C* of *A* is said to be a δ -component of *A* relative to *X* if *C* is δ -connected relative to *X* and is not contained properly in any other δ -connected relative to *X* subset of *A*.

Definition 5.2. A subset $C \subseteq X$ is said to be δ -connected between A and B (where $A \cup B \subseteq C$) if there is no δ -separation (P,Q) of C relative to X such that $A \subseteq P, B \subseteq Q, C = P \cup Q$.

Definition 5.3. We define a relation ρ on $A \subseteq X$ as follows :- $(x, y) \in \rho$ iff A is δ -connected between x and y.

It is easy to verify that ρ is an equivalence relation and hence induces a partition on A. The equivalence classes of A are called δ -quasicomponents of A. We denote the δ -quasicomponents of A containing $x \in A$ as A[x].

Theorem 5.4. A set $C(\subseteq X)$ is δ -connected between A and B (when $A \cup B \subseteq C$) iff $C \subseteq P \cup Q$ for any δ -separation (P, Q) relative to X implies if $A \subseteq P$ then $B \cap P \neq \Phi$.

Proof. Follows immediately from definition.

Result 5.5.

- (i) Let $x \in A$. Then A = A[x] iff A is δ -connected relative to X.
- (ii) If $\Phi \neq B \subseteq A \subseteq X$ then $B[x] \subseteq A[x]$, for each $x \in B$.
- (iii) Let $A \subseteq X$. Then A[x] is a δ -component of A relative to X for each $x \in A$ for which A[x] is δ -connected relative to X.

Proof. (i) Immediate from definition.

(ii) If B be δ -connected between x and y and $B \subseteq A$ then A will also be δ -connected between x and y.

(iii) If possible let, \exists a δ -connected set C relative to X such that $A[x] \subseteq C \subseteq A \Longrightarrow$ $C[x] \subseteq A[x]$ [by (ii) above]. Since C is δ -connected relative to X, by (i) above, C = C[x]. Therefore A[x] = C. Consequently, A[x] is a δ -component of A relative to X.

Theorem 5.6. If A is a δ -closed subset of X then A[x] is δ -closed in X.

Proof. $\overline{A[x]}^{\delta} \subseteq \overline{A}^{\delta} = A$ [since A is δ -closed]—— (*) Let $y \in A \setminus A[x]$. Then \exists a δ -separation (P,Q) relative to X such that $x \in P, y \in Q$ and $A = P \cup Q$. Therefore $A[x] \subseteq P \Longrightarrow \overline{A[x]}^{\delta} \subseteq \overline{P}^{\delta}$. But $\overline{P}^{\delta} \cap Q = \Phi$. So $y \notin \overline{A[x]}^{\delta}$. Therefore using (\star) we can write, $\overline{A[x]}^{\delta} \subseteq A[x]$. This completes the proof.

Theorem 5.7. Let X be a locally nearly compact T_2 -space and A be an N-closed subset of X. Then each δ -quasicomponent of A relative to X is a δ -component of A relative to X.

Proof. Let $x \in A$. It now suffices to prove that A[x] is a δ -component of A relative to X. For this we show that A[x] is δ -connected relative to X. Then the desired conclusion will follow from result 5.5.

Let $y \in A[x]$. We construct

$$\mathcal{F} = \{ F \subseteq A : F \text{ is } \delta \text{-closed in } X, x \in F \text{ and } y \in F[x] \}$$

Since $A \in \mathcal{F}, \mathcal{F} \neq \Phi$. We define a relation ' \geq ' in \mathcal{F} as follows :- $F_1 \geq F_2$ ($F_1, F_2 \in \mathcal{F}$) iff $F_1 \subseteq F_2$. Clearly (\mathcal{F}, \geq) is a poset. Let \mathcal{T} be a chain in \mathcal{F} and $C = \bigcap_{F \in \mathcal{T}} F$. Then C is a δ -closed subset of A [by note 2.2.3] and hence C is N-closed [by result 2.2.10], since A is N-closed. Also $x, y \in C$. We want to show $y \in C[x]$ i.e. C is δ -connected between x and y.

If not, \exists a δ -separation (P,Q) relative to X such that $C = P \cup Q, x \in P, y \in Q$. Then P, Q are disjoint δ -closed subsets of C [by result 2.2.6], since C is δ -closed. Hence P, Q are also disjoint N-closed sets (since $P \subseteq A, Q \subseteq A$) [by result 2.2.10]. So, \exists two regular open sets U, V in X such that $P \subseteq U, Q \subseteq V, U \cap V = \Phi$ [by result 2.2.16]. Since X is a locally nearly compact T_2 -space and P, Q are N-closed so \exists two open sets W_1, W_2 in X such that $P \subseteq W_1 \subseteq \overline{W_1} \subseteq U$, $Q \subseteq W_2 \subseteq \overline{W_2} \subseteq V$ and $\overline{W_1}$, $\overline{W_2}$ are Nclosed [by result 2.2.11]. Here we can assume that W_1, W_2 are regular open (and hence δ -open) [taking $(\overline{W_1})^0$ instead of W_1]. Therefore $\bigcap_{F \in \mathcal{T}} F = C = P \cup Q \subseteq W_1 \cup W_2 \subseteq W_1 \cup W_2$

 $\overline{W_1 \cup W_2} \subseteq U \cup V = T \text{ (say). Therefore } \underline{T} \setminus \bigcap_{F \in \mathcal{T}} F \supseteq \overline{W_1 \cup W_2} \setminus W_1 \cup W_2 \Longrightarrow \\
\overline{W_1 \cup W_2} \setminus W_1 \cup W_2 \subseteq \bigcup_{F \in \mathcal{T}} (T \setminus F). \text{ Now, } \overline{W_1 \cup W_2} \setminus W_1 \cup W_2 \text{ is a } \delta \text{-closed subset of } \\
\overline{W_1 \cup W_2} \text{ which is N-closed. So } \overline{W_1 \cup W_2} \setminus W_1 \cup W_2 \text{ is N-closed. Also } T \setminus F \text{ is } \delta \text{-open, } \\
\forall F \in \mathcal{T} \text{ (since } T \text{ is } \delta \text{-open and } F \text{ is } \delta \text{-closed } \forall F \text{). So } \exists \text{ a finite subset } \mathcal{T}_0 \text{ of } \mathcal{T} \text{ such } \\
\text{that } \overline{W_1 \cup W_2} \setminus W_1 \cup W_2 \subseteq \bigcup_{F \in \mathcal{T}_0} (T \setminus F) = T \setminus \bigcap_{F \in \mathcal{T}_0} F = T \setminus F_0, \text{ for some } F_0 \in \mathcal{T}_0 \text{ (since } \mathcal{T}_0 \text{ is a finite chain}) \Longrightarrow F_0 \cap (\overline{W_1 \cup W_2} \setminus W_1 \cup W_2) = \Phi - ----- (\star)$

Now, $F_0 = (F_0 \setminus \overline{W_1 \cup W_2}) \cup (F_0 \cap \overline{W_1}) \cup (F_0 \cap \overline{W_2}) \subseteq (F_0 \setminus W_1 \cup W_2) \cup (F_0 \cap \overline{W_1}) \cup (F_0 \cap \overline{W_2})$. We note that, $(F_0 \setminus W_1 \cup W_2)$, $F_0 \cap \overline{W_1}$, $F_0 \cap \overline{W_2}$ all are δ -closed and $(F_0 \cap \overline{W_1}) \cap (F_0 \cap \overline{W_2}) = F_0 \cap (\overline{W_1} \cap \overline{W_2}) = \Phi$ [since $\overline{W_1} \subseteq U$, $\overline{W_2} \subseteq V$, $U \cap V = \Phi$]. $(F_0 \cap \overline{W_2}) \cap (F_0 \setminus W_1 \cup W_2) = F_0 \cap (\overline{W_2} \setminus W_1 \cup W_2) = \Phi$ [by (*)]

Therefore, $((F_0 \setminus W_1 \cup W_2) \cup (F_0 \cap \overline{W_1}), F_0 \cap \overline{W_2})$ forms a δ - separation relative to X. Also, $x \in (F_0 \setminus W_1 \cup W_2) \cup (F_0 \cap \overline{W_1})$ and $y \in F_0 \cap \overline{W_2}$ [since $x \in P \subseteq \overline{W_1}, y \in Q \subseteq \overline{W_2}, x, y \in F_0$]. This contradicts that F_0 is δ -connected between x and y [by Theorem 5.4]. Therefore, C is δ -connected between x and y i.e. $y \in C[x]$. Consequently, $C \in \mathcal{F}$. Also C is an upper bound of \mathcal{T} . Then by Zorn's lemma \mathcal{F} has a maximal element C_0 (say). Since $C_0 \in \mathcal{F}$ so $x, y \in C_0$.

We now show that, C_0 is δ -connected relative to X and $C_0 \subseteq A[x]$. Then by result 2.2.12, it follows that A[x] is δ -connected relative to X. If possible let (M, N) be a δ -separation relative to X with $C_0 = M \cup N$. Since $y \in C_0[x]$ i.e. C_0 is δ -connected between x and y so without loss of generality we assume that $x, y \in M$. Since M is δ -closed in X with $M \subset C_0$ and C_0 is a maximal element of \mathcal{F} , so M cannot be δ connected between x and y. Consequently, \exists a δ -separation (M^*, M^{**}) relative to Xsuch that $M = M^* \cup M^{**}$, $x \in M^*$, $y \in M^{**}$. Then, $C_0 = M \cup N = M^* \cup (N \cup M^{**})$. But clearly $(M^*, M^{**} \cup N)$ is a δ -separation of C_0 relative to X with $x \in M^*, y \in M^{**} \cup N$ ———— contradicting that $y \in C_0[x]$.

Thus, C_0 is δ -connected relative to X. Therefore, $C_0 = C_0[x] \subseteq A[x]$ — [by result 5.5]. This completes the proof.

Acknowledgement

Thanks to the learned Referee for his valuable comments for the improvement of the paper.

References

- A. V. Arkenzel'skii and V. I. Ponomarev, Fundamentals of General Topology Problems and Exercises, D.Reidel Publishing Company, Holland.
- [2] D. A. Carnahan, Locally nearly-compact spaces, Boll. Un. Mat. Ital. 6(1972), 146-153.
- [3] K. Kuratowski, Topology (Volume I and II), Academic Press, New York and London.
- [4] M. K. Singal and Asha Mathur, On nearly-compact spaces, Boll. Un. Mat. Ital. 6(1969), 702-710.
- [5] S. Ganguly and S. Jana, A note on H-continuum, [communicated].

- [6] S. Ganguly and T. Bandyopadhyay, On H-continuum, Bull. Cal. Math. Soc. 85(1993), 311-318.
- [7] M. K. Singal and S. P. Arya, On almost-regular spaces, Glasnik Mat. 4 (1969), 89-99.
- [8] Takashi Noiri, A weak form of connected sets, Math. Nachr. 116(1984), 7-11.
- [9] Takashi Noiri, On δ -continuous functions, J. Korean Math. Soc. 16(1980), 161-166.
- [10] T. Noiri, Remarks on locally nearly-compact spaces, Boll. Un. Mat. Ital. 10 (1974), 36-43.
- [11] T. Noiri, N-closed sets and some separation axioms, Ann. Soc. Sci. Bruxelles 88 (1974), 195-199.
- [12] N. V. Velicko, H-closed topological spaces, Amer. Math. Transl. 78(1968), 103-118.

Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.

E-mail: sjpm12@yahoo.co.in