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ASYMPTOTICALLY POWER SOLUTIONS OF HIGHER ORDER
NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

ZHI-QIANG ZHU AND SUI SUN CHENG

Abstract. Necessary and sufficient conditions are derived for the existence of asymptotically

polynomial solutions of a class of neutral functional differential equations.

In [1, 2], n-th order neutral functional differential equations of the form

(2(t) + c(t)z(t = )™ + f(t,2(91(8), 2(g2(1)), -+, 2(gm (1) = 0,8 > b0, (1)

are investigated and necessary and sufficient conditions for the existence of nonoscillatory
solutions are derived. We observed that in these papers, the condition that ¢(¢t) > —1 is
assumed. The question then arises as to whether existence criteria can be established in
case c(t) < —1.

In this note, we will show that under the basic assumptions that f is either superlinear
or sublinear and that lim; , ¢(t) = ¢y < —1, necessary and sufficient conditions can be
found for the existence of “asymptotically power” solutions.

More precisely, let d > 0, h > 0,m € {1,2,...} and n € {2,3,...}. Let ¢ €
C([to, +00), R) and lim;_, 4o c(t) = co. We assume that g1,92,...,9m € C([to, +o0), R)
and satisfy ¢1(t),...,gm(t) > t — h for some constant h > 0, f(t,21,22,...,Zm) €
C([tg, +o0) X R™ R), and,

$1f(t7x1,$2,---,$m) > 0; t> th

if ;yz; >0fori=1,2,...,m.
A function f(t,x1,x2,...,Zm) is said to be superlinear if there exist continuous func-
tions p;(t) > 0 for i = 1,2,...,m, satisfying >~ p;(t) > 0 and

f(taylvaa"'aym) f(tvxI;ZQa"'axm)
2
> im0 pi(t)yi & i pi(t)zi @)

when y; > 2; > 0ory;, <z; <0fori=1,2,...,m. If the inequality > in (2) is changed
into <, then the function f(t,x1,22,..., ) is said to be sublinear.
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The following is shown in [1] which can also be shown easily.
Lemma 1. Suppose that 0 < a <x; <b fori=1,2,...,m. If f is superlinear, then
flta,...;a) < f(t,x1,...,xm) < f(t,b,...,b), t > to.
If f is sublinear, then

Lt by b) < f(tan,. . am) <

b f(taaa"'aa)ﬂt2t0~

Q|

Lemma 2. Suppose that lim;_ oo c(t) = co # +1 and that z(t)/t' is bounded and
eventually positive or eventually negative, where i is a nonnegative integer. Let z(t) =
x(t) + c(t)x(t — d). If limg_ oo 2(t)/t? = b exists, then lim;_. o z(t)/t* = b/(1+ cp).

The proof is similar to that of Lemma 2 in [1] and is ommited.

Lemma 3.(Krasnoselskii [1]) Suppose B is a Banach space and X is a bounded,
convex and closed subset of B. Let U, S : X — B satisfy the following conditions:
(i) Uz + Sy for any x,y € X,
(ii) U is a contraction mapping, and
(i) S is completely continuous.
Then U + S has a fixed point in X.

As usual, a solution z(t) of (1) is said to be nonoscillatory if it eventually positive
or eventually negative. A nonoscillatory solution x(t) of (1) is said to be asymptotically
constant or belong to Ty(a) if

lim z(t) =a#0.

t——+o00
Two natural extensions of the concept of an asymptotically constant solution can be
stated as follows. A mnonoscillatory solution z(t) of (1) is said to belong to T,.(o0,a),
where r € {1,2,...,n— 1}, if
|z(t)] |z(8)]

lim su = 400 and limsup —= =a # 0,
t—>+oop tr—1 t—>+oop tr 7

and said to belong to T.(a,0), where r € {1,2,...,n — 1}, if

t t
|;(—_3|:a7£0and limsupM:O.

lim sup i
t——+oo

t——+oo
We will be interested in finding necessary and sufficient conditions for the existence
of solutions in Ty(a), T;(c0, a) and T, (a,0).

Theorem 1. Suppose lim;_, o c(t) = co < —1 and f is either superlinear or sublin-
ear. Then (1) has a nonoscillatory solution x(t) € T,(c0, a) if, and only if, there is some
K # 0 such that

+oo
/ ST (s, K gy (), K gh(s), - K gy (9))lds < +oo. ®)

to
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If r =0, T.(c0,a) can be replaced by Ty(a) in the above statement.

Proof. Let
Ga(t) = [, 2(91(8), 2(g2(1)), - - -, (gm (1)), (4)
and
Fo(t) = f(t, Kgi(t), Kg5(t), ..., Kgp(1)). (5)
Since

T x Yn Y2 Y1
/ (w*y)"g(y)dy:n!/ dyn/ dynqm/ dy1/ 9(y)dy,
« « « « «

(3) is equivalent to

—+oo —+oo —+oo
/to ‘/571.7'1 /51

Let z(t) be an eventually positive solution of (1) in T;(co, a). Then without loss of
generality, we may suppose there exists T' > to such that x(t) > 0, x(t — d) > 0 and
x(gi(t)) >0fort >T and i =1,2,...,m. Let

|F(s)|dsdsy -+ - dsp—r—1 < +00. (6)

z(t) = z(t) + c(t)z(t — d).
Then, by (1),we have
2(t) = —f(t,2(91()), 2(92(2)), - ., (g (1)))- (7)

In view of (1), we have (™ (t) < 0 for t > T. Therefore z(¥)(t) is eventually monotonic

for alli € {0,1,2,...,n—1}. Since lim;_, mt(f) = a > 0, there exists 77 > T such that

1 3
Eatr <z(t) < §atr,t > T. (8)

z(t)

tr

Noticing lim;_. 1 o = (1 + ¢o)a, we have

lim 2 (t) = (1+ co)ar!. (9)

t——+o0
Invoking the monotonicity of z(9(¢) and (9), we have

lim 29) =0, i=r+1,r+2,...,n—1. (10)

t—+00
After integrating (7) n — r — 1 times, we obtain

—+o0 —+o0 —+o0
2D (1) = (—1)”4/ / - Gy (s)dsdsy -+ -dsp—r—a, t > T1.
t S S1

n—r—2

Then integrating the above formula from T} to ¢, we obtain

t —+oo —+oo +oo
20() = 20(T) + (71)"#/ / / . / G (s)dsdsy ... dsp—pr_1.
Ty

Sn—r—1 Y Sn—r—2 S1
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In view of (9), we have

+oo +oo +oo +oo
/ / / .. / Gz (s)dsdsy ...dsp—p_1 < +00. (11)
Th Sp—r—1 Y Sn—r—2 s1

In view of Lemma 1 and (8), we see that F,.(t) < G.(t) where we set K = a/2 if f is
superlinear, and F,.(t) < 3G,(t) where we set K = 3a/2 if f is sublinear. In view of (11),
we see that (7) holds when z(t) is eventually positive.
The case that x(t) is eventually negative can be proved in a similar manner.
Conversely, suppose that K > 0. Let e = K/2 if f is superlinear and e = K
if f is sublinear. Set R(t) = t" or R(t) = 1 when r = 0. Take ¢; and ¢z so that
(=8co —1)/7 > ca > |eo| > ¢1 > 1. Then ¢ < —(7eca + 1)/8. Since

. T—Tcg—8c(t+d) 7—"Tca—8co
lim =

> 1
t—-+oo 8 8

and 1
tléinoo(c(t) +e)=co+ec < g(CQ - 1),

there exists a sufficiently large T' > tg + h + d such that when ¢ > T', we have

1 R%*(t +d) 1
< = 12
le(t +d)| R3(t —d—h) ~— 1’ (12)
le(t)] = e1, [e(t)] < c2, (13)
1
e(t) +ex < g(CQ - 1), (14)
R(t+4d) < 7T —Tco 780(t+d)’ (15)
R(t) 8
and
+oo +oo +oo +oo co — 1
/ / / . / F.(s)dsdsy ...dsp—r_1 < e. (16)
T Sp—r—1 Y Sp—r—2 S1 8
Take T =T — d — h and the linear space
_ _ t
CrlT,+o00) =<z € C([T,+),R) : sup|m2(—)| < 400
t>T R (t)

with norm ||z||r = sup,>7 ‘I;CZEéZ)l Then Cg[T, +00) is a Banach space. Set
X ={x €[T,+00) : eR(t) < x(t) < 2eR(t)}.

Then it is obvious that X is a bounded convex and closed subset of C[T, +00) and for
any x € X and t > T + h,
Ga(t) < 2F.(1). (17)
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Define two operators on X as follows:

Ux)(t) = 2?%&‘1) C(T1+ 3 R ) Tst<T |
20(t+d)_c(t+d)I(t+d) t>T

and

_ exeR(t) _
(Sz)(t) =4 2c(T+d) N T<t<T
kW) CU gy =1
2e(t+d) = c(t+d) >
where

t-‘rd Sn—r41 +OO OO
/ / / / G (8)dsdsy ...dsp—1.

We will show that the operator U and S satisfy the conditions of the Krasnoselskii
fixed point theorem.

(i) First we assert that Uz + Sy € X for any x,y € X. Indeed, for t € [T, T), in view
of (13) and (15), we have

(31— c) #(T+d)\ R(t)
(Uz)(1) - (20 T+ "0 -~ Trra ) R(T)
(1—co eR(T +d)\ R(t)
Z(QcT—i—d (T) - c(T+d)>R(T)
and
3(1— 02) 2eR(T +d)\ R(?)
(U=)() b= (2(; T+ D" T ) R(T)
- ]. — 02) 2 R(T -+ d)
- (20 T+d oT+d R(T) ) eR(t)
< 3(1 —¢2) 1 7T—Tea—8c(T+d)\ R(t)
= (2cT+d) (T +d) 1 )R(T)
< 2eR(t

When t € [T, +00), in view of (16) and (17), we have

Sn—1 Sn—r41 +o0 +OO _
/ / / / / s)dsdsy ...dsp—1 < w. (18)

n—r
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Hence,
3(1 — o) z(t+d) (c2—1)eR(t)
U2)O)+ 0 23 5790~ T et a)
3(1—c2) 1 c2—1
= <2c(t +d) et +d) - de(t + d)> e

> eR(t).
Again, in view of (15) and (18), we have

(Uz)(t) + (Sy)(t)
3(1 —c2) z(t+d) (c2—1)eR(t)
= 2¢(t + d) eR(t) - ct+d)  Ac(t+d)
31 —co) ) 2¢ R(t+4d) (ca —1)eR(t)
T oe(ttd) c(t+d) R Ac(t + d)
3(1—ca) T—=Tca—8c(t+d) (c2—1)
= (2c(t ¥d) de(t+d)  de(t+ d)) eR(t)

R(t) -

< 2eR(t).
That is, Uz + Sy € X.

(ii) In view of (12), U is a contraction mapping since it is easy to see that

1 fx(t) —y(t)]
R2(t) |(Ux)(t) — (Uy)(t)] < p f’g T(t)

for any z,y € X.

(iii) The operator S is a completely continuous mapping. Indeed, we first note that
(13) implies —cgo/c(t) > 1 and (14) implies —cg/c(t) < 8/7. Hence when t € [T,T),
(Sz)(t) > 3eR(t)/2 and (Sz)(t) < (3/2)(8/T)eR(t) < 2eR(t). For t € [T, +00),

(s2)(0) 2 522 en( + L2
= %(—1 —5c2) > eR(t),
and
($2)(0) < 52y eRlD) = #
% < 2eR(t).

Therefore the operator S maps X into X. The fact that S is continuous and SX is
relatively compact can be proved in a manner similar to that in [1] and is omitted.
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By the Krasnoselskii fixed point theorem, there then exists x € X such that (Uxz)(t)+
(Sx)(t) = x(t). Therefore,

3(1 — 02)

a(t+d) (=)t
2c(t+d)

2(t) = ct+d) ' clt+d)

R(t) -

H(t), t >T.

It is now clear that z(¢) is a nonoscillatory solution of (1) and satisfies

.ooz2(t) 3
tl}gnoo t—r = 5(1 — 02)6.

By Lemma 2, we have

m(t) = 73(1 —c)e and lim :c(t) = +o0.
t—+oo {7 2(1 4+ co) t——o0 7

So z(t) € T,(c0,a). In a similar way, we can prove the other case where K < 0. Our
proof is complete.

Theorem 2. Suppose lim;_,, c(t) = co < —1 and f is superlinear or sublinear. Then
x(t) € Tr(a,0) is a nonoscillatory solution of (1) if, and only if, there is some K # 0
such that

+oo
/ ST f(s, K gt (), Kgh M (s),. .., Kghit(s))|ds < +oc.

to

The proof is similar to that of Theorem 1, except that the operator S is taken as
follows:

_ 3eaeh(t) ]
(Sz)(t) =4 2c(T+d) ) r<t<T
Sefl) D" gy pxp

S 2(t+d) | c(t+d)
where H(t) = [p4% [ [ [1% [T Gu(s)dsdsy . ds, 1 and R(t) =
tr~tifr>1land R(t)=1ifr=1.
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