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ASYMPTOTICALLY POWER SOLUTIONS OF HIGHER ORDER

NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

ZHI-QIANG ZHU AND SUI SUN CHENG

Abstract. Necessary and sufficient conditions are derived for the existence of asymptotically

polynomial solutions of a class of neutral functional differential equations.

In [1, 2], n-th order neutral functional differential equations of the form

(x(t) + c(t)x(t − d))(n) + f(t, x(g1(t)), x(g2(t)), · · · , x(gm(t))) = 0, t ≥ t0, (1)

are investigated and necessary and sufficient conditions for the existence of nonoscillatory
solutions are derived. We observed that in these papers, the condition that c(t) ≥ −1 is
assumed. The question then arises as to whether existence criteria can be established in
case c(t) < −1.

In this note, we will show that under the basic assumptions that f is either superlinear
or sublinear and that limt→∞ c(t) = c0 < −1, necessary and sufficient conditions can be
found for the existence of “asymptotically power” solutions.

More precisely, let d > 0, h > 0, m ∈ {1, 2, . . .} and n ∈ {2, 3, . . .}. Let c ∈
C([t0, +∞), R) and limt→+∞ c(t) = c0. We assume that g1, g2, . . . , gm ∈ C([t0, +∞), R)
and satisfy g1(t), . . . , gm(t) ≥ t − h for some constant h > 0, f(t, x1, x2, . . . , xm) ∈
C([t0, +∞) × Rm, R), and,

x1f(t, x1, x2, . . . , xm) > 0, t ≥ t0,

if x1xi > 0 for i = 1, 2, . . . , m.
A function f(t, x1, x2, . . . , xm) is said to be superlinear if there exist continuous func-

tions pi(t) ≥ 0 for i = 1, 2, . . . , m, satisfying
∑m

i=0 pi(t) > 0 and

f(t, y1, y2, . . . , ym)
∑m

i=0 pi(t)yi

≥
f(t, x1, x2, . . . , xm)

∑m

i=0 pi(t)xi

(2)

when yi ≥ xi > 0 or yi ≤ xi < 0 for i = 1, 2, . . . , m. If the inequality ≥ in (2) is changed
into ≤, then the function f(t, x1, x2, . . . , xm) is said to be sublinear.
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The following is shown in [1] which can also be shown easily.

Lemma 1. Suppose that 0 < a ≤ xi ≤ b for i = 1, 2, . . . , m. If f is superlinear, then

f(t, a, . . . , a) ≤ f(t, x1, . . . , xm) ≤ f(t, b, . . . , b), t ≥ t0.

If f is sublinear, then

a

b
f(t, b, . . . , b) ≤ f(t, x1, . . . , xm) ≤

b

a
f(t, a, . . . , a), t ≥ t0.

Lemma 2. Suppose that limt→+∞ c(t) = c0 6= ±1 and that x(t)/ti is bounded and
eventually positive or eventually negative, where i is a nonnegative integer. Let z(t) =
x(t) + c(t)x(t − d). If limt→+∞ z(t)/ti = b exists, then limt→+∞ x(t)/ti = b/(1 + c0).

The proof is similar to that of Lemma 2 in [1] and is ommited.

Lemma 3.(Krasnoselskii [1]) Suppose B is a Banach space and X is a bounded,
convex and closed subset of B. Let U, S : X → B satisfy the following conditions:

(i) Ux + Sy for any x, y ∈ X,
(ii) U is a contraction mapping, and
(iii) S is completely continuous.

Then U + S has a fixed point in X.

As usual, a solution x(t) of (1) is said to be nonoscillatory if it eventually positive
or eventually negative. A nonoscillatory solution x(t) of (1) is said to be asymptotically
constant or belong to T0(a) if

lim
t→+∞

x(t) = a 6= 0.

Two natural extensions of the concept of an asymptotically constant solution can be
stated as follows. A nonoscillatory solution x(t) of (1) is said to belong to Tr(∞, a),
where r ∈ {1, 2, . . . , n − 1}, if

lim sup
t→+∞

|x(t)|

tr−1
= +∞ and lim sup

t→+∞

|x(t)|

tr
= a 6= 0,

and said to belong to Tr(a, 0), where r ∈ {1, 2, . . . , n − 1}, if

lim sup
t→+∞

|x(t)|

tr−1
= a 6= 0 and lim sup

t→+∞

|x(t)|

tr
= 0.

We will be interested in finding necessary and sufficient conditions for the existence
of solutions in T0(a), Tr(∞, a) and Tr(a, 0).

Theorem 1. Suppose limt→+∞ c(t) = c0 < −1 and f is either superlinear or sublin-
ear. Then (1) has a nonoscillatory solution x(t) ∈ Tr(∞, a) if, and only if, there is some
K 6= 0 such that

∫ +∞

t0

sn−r−1|f(s, Kgr
1(s), Kgr

2(s), . . . , Kgr
m(s))|ds < +∞. (3)
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If r = 0, Tr(∞, a) can be replaced by T0(a) in the above statement.

Proof. Let
Gx(t) = f(t, x(g1(t)), x(g2(t)), . . . , x(gm(t))), (4)

and
Fr(t) = f(t, Kgr

1(t), Kgr
2(t), . . . , Kgr

m(t)). (5)

Since
∫ x

α

(x − y)ng(y)dy = n!

∫ x

α

dyn

∫ yn

α

dyn−1 · · ·

∫ y2

α

dy1

∫ y1

α

g(y)dy,

(3) is equivalent to

∫ +∞

t0

∫ +∞

sn−r−1

· · ·

∫ +∞

s1

|Fr(s)|dsds1 · · · dsn−r−1 < +∞. (6)

Let x(t) be an eventually positive solution of (1) in Tr(∞, a). Then without loss of
generality, we may suppose there exists T > t0 such that x(t) > 0, x(t − d) > 0 and
x(gi(t)) > 0 for t ≥ T and i = 1, 2, . . . , m. Let

z(t) = x(t) + c(t)x(t − d).

Then, by (1),we have

z(n)(t) = −f(t, x(g1(t)), x(g2(t)), . . . , x(gm(t))). (7)

In view of (1), we have z(n)(t) < 0 for t ≥ T . Therefore z(i)(t) is eventually monotonic

for all i ∈ {0, 1, 2, . . . , n− 1}. Since limt→+∞
x(t)
tr

= a > 0, there exists T1 ≥ T such that

1

2
atr ≤ x(t) ≤

3

2
atr, t ≥ T1. (8)

Noticing limt→+∞
z(t)
tr

= (1 + c0)a, we have

lim
t→+∞

z(r)(t) = (1 + c0)ar!. (9)

Invoking the monotonicity of z(i)(t) and (9), we have

lim
t→+∞

z(i)(t) = 0, i = r + 1, r + 2, . . . , n − 1. (10)

After integrating (7) n − r − 1 times, we obtain

z(r+1)(t) = (−1)n−r

∫ +∞

t

∫ +∞

sn−r−2

· · ·

∫ +∞

s1

Gx(s)dsds1 · · · dsn−r−2, t ≥ T1.

Then integrating the above formula from T1 to t, we obtain

z(r)(t) = z(r)(T ) + (−1)n−r

∫ t

T1

∫ +∞

sn−r−1

∫ +∞

sn−r−2

. . .

∫ +∞

s1

Gx(s)dsds1 . . . dsn−r−1.
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In view of (9), we have

∫ +∞

T1

∫ +∞

sn−r−1

∫ +∞

sn−r−2

. . .

∫ +∞

s1

Gx(s)dsds1 . . . dsn−r−1 < +∞. (11)

In view of Lemma 1 and (8), we see that Fr(t) ≤ Gx(t) where we set K = a/2 if f is
superlinear, and Fr(t) ≤ 3Gx(t) where we set K = 3a/2 if f is sublinear. In view of (11),
we see that (7) holds when x(t) is eventually positive.

The case that x(t) is eventually negative can be proved in a similar manner.

Conversely, suppose that K > 0. Let e = K/2 if f is superlinear and e = K
if f is sublinear. Set R(t) = tr or R(t) ≡ 1 when r = 0. Take c1 and c2 so that
(−8c0 − 1)/7 > c2 > |c0| > c1 > 1. Then c0 < −(7c2 + 1)/8. Since

lim
t→+∞

7 − 7c2 − 8c(t + d)

8
=

7 − 7c2 − 8c0

8
> 1

and

lim
t→+∞

(c(t) + c2) = c0 + c2 <
1

8
(c2 − 1),

there exists a sufficiently large T > t0 + h + d such that when t ≥ T , we have

1

|c(t + d)|

R2(t + d)

R2(t − d − h)
≤

1

c1
, (12)

|c(t)| ≥ c1, |c(t)| ≤ c2, (13)

c(t) + c2 ≤
1

8
(c2 − 1), (14)

R(t + d)

R(t)
≤

7 − 7c2 − 8c(t + d)

8
, (15)

and
∫ +∞

T

∫ +∞

sn−r−1

∫ +∞

sn−r−2

. . .

∫ +∞

s1

Fr(s)dsds1 . . . dsn−r−1 <
c2 − 1

8
e. (16)

Take T̄ = T − d − h and the linear space

CR[T̄ , +∞) =

{

x ∈ C([T̄ , +∞), R) : sup
t≥T̄

|x(t)|

R2(t)
< +∞

}

with norm ||x||R = supt≥T̄
|x(t)|
R2(t) . Then CR[T̄ , +∞) is a Banach space. Set

X = {x ∈ [T̄ , +∞) : eR(t) ≤ x(t) ≤ 2eR(t)}.

Then it is obvious that X is a bounded convex and closed subset of CR[T̄ , +∞) and for
any x ∈ X and t ≥ T̄ + h,

Gx(t) ≤ 2Fr(t). (17)
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Define two operators on X as follows:

(Ux)(t) =















3eR(t)

2c(T + d)
−

1

c(T + d)

x(T + d)

R(T )
R(t) T̄ ≤ t < T

3eR(t)

2c(t + d)
−

1

c(t + d)
x(t + d) t ≥ T

,

and

(Sx)(t) =















−
3c2eR(t)

2c(T + d)
T̄ ≤ t < T

−
3c2eR(t)

2c(t + d)
+

(−1)n−r−1

c(t + d)
H(t) t ≥ T

where

H(t) =

∫ t+d

T+d

∫ sn−1

T

. . .

∫ sn−r+1

T

∫ +∞

sn−r

. . .

∫ +∞

s1

Gx(s)dsds1 . . . dsn−1.

We will show that the operator U and S satisfy the conditions of the Krasnoselskii

fixed point theorem.

(i) First we assert that Ux +Sy ∈ X for any x, y ∈ X . Indeed, for t ∈ [T̄ , T ), in view

of (13) and (15), we have

(Ux)(t) + (Sy)(t) =

(

3(1 − c2)

2c(T + d)
eR(T )−

x(T + d)

c(T + d)

)

R(t)

R(T )

≥

(

3(1 − c2)

2c(T + d)
eR(T )−

eR(T + d)

c(T + d)

)

R(t)

R(T )

≥ eR(t),

and

(Ux)(t) + (Sy)(t) ≤

(

3(1 − c2)

2c(T + d)
eR(T )−

2eR(T + d)

c(T + d)

)

R(t)

R(T )

=

(

3(1 − c2)

2c(T + d)
−

2

c(T + d)

R(T + d)

R(T )

)

eR(t)

≤

(

3(1 − c2)

2c(T + d)
−

1

c(T + d)

7 − 7c2 − 8c(T + d)

4

)

R(t)

R(T )

≤ 2eR(t).

When t ∈ [T, +∞), in view of (16) and (17), we have

∫ t

T

∫ sn−1

T

. . .

∫ sn−r+1

T

∫ +∞

sn−r

. . .

∫ +∞

s1

Gx(s)dsds1 . . . dsn−1 ≤
(c2 − 1)eR(t)

4
. (18)
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Hence,

(Ux)(t) + (Sy)(t) ≥
3(1 − c2)

2c(t + d)
eR(t) −

x(t + d)

c(t + d)
+

(c2 − 1)eR(t)

4c(t + d)

≥

(

3(1 − c2)

2c(t + d)
−

1

c(t + d)
+

c2 − 1

4c(t + d)

)

eR(t)

≥ eR(t).

Again, in view of (15) and (18), we have

(Ux)(t) + (Sy)(t)

≤
3(1 − c2)

2c(t + d)
eR(t) −

x(t + d)

c(t + d)
−

(c2 − 1)eR(t)

4c(t + d)

=
3(1 − c2)

2c(t + d)
eR(t) −

2e

c(t + d)

R(t + d)

R(t)
R(t) −

(c2 − 1)eR(t)

4c(t + d)

≤

(

3(1 − c2)

2c(t + d)
−

7 − 7c2 − 8c(t + d)

4c(t + d)
−

(c2 − 1)

4c(t + d)

)

eR(t)

≤ 2eR(t)̇.

That is, Ux + Sy ∈ X .

(ii) In view of (12), U is a contraction mapping since it is easy to see that

1

R2(t)
|(Ux)(t) − (Uy)(t)| ≤

1

c1
sup
t≥T̄

|x(t) − y(t)|

R2(t)

for any x, y ∈ X .

(iii) The operator S is a completely continuous mapping. Indeed, we first note that
(13) implies −c2/c(t) ≥ 1 and (14) implies −c2/c(t) ≤ 8/7. Hence when t ∈ [T̄ , T ),
(Sx)(t) ≥ 3eR(t)/2 and (Sx)(t) ≤ (3/2)(8/7)eR(t) ≤ 2eR(t). For t ∈ [T, +∞),

(Sx)(t) ≥ −
3c2

2c(t + d)
eR(t) +

(c2 − 1)eR(t)

4c(t + d)

≥
eR(t)

4c(t + d)
(−1 − 5c2) ≥ eR(t),

and

(Sx)(t) ≤ −
3c2

2c(t + d)
eR(t) −

(c2 − 1)eR(t)

4c(t + d)

≤
(−7c2 + 1)eR(t)

4c(t + d)
≤ 2eR(t).

Therefore the operator S maps X into X . The fact that S is continuous and SX is
relatively compact can be proved in a manner similar to that in [1] and is omitted.
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By the Krasnoselskii fixed point theorem, there then exists x ∈ X such that (Ux)(t)+
(Sx)(t) = x(t). Therefore,

x(t) =
3(1 − c2)

2c(t + d)
eR(t) −

x(t + d)

c(t + d)
+

(−1)n−r−1

c(t + d)
H(t), t ≥ T.

It is now clear that x(t) is a nonoscillatory solution of (1) and satisfies

lim
t→+∞

z(t)

tr
=

3

2
(1 − c2)e.

By Lemma 2, we have

lim
t→+∞

x(t)

tr
=

3(1 − c2)e

2(1 + c0)
and lim

t→+∞

x(t)

tr−1
= +∞.

So x(t) ∈ Tr(∞, a). In a similar way, we can prove the other case where K < 0. Our
proof is complete.

Theorem 2. Suppose limt→∞ c(t) = c0 < −1 and f is superlinear or sublinear. Then
x(t) ∈ Tr(a, 0) is a nonoscillatory solution of (1) if, and only if, there is some K 6= 0
such that

∫ +∞

t0

sn−r|f(s, Kgr−1
1 (s), Kgr−1

2 (s), . . . , Kgr−1
m (s))|ds < +∞.

The proof is similar to that of Theorem 1, except that the operator S is taken as
follows:

(Sx)(t) =















−
3c2eR(t)

2c(T + d)
T̄ ≤ t < T

−
3c2eR(t)

2c(t + d)
+

(−1)n−r

c(t + d)
H(t) t ≥ T

,

where H(t) =
∫ t+d

T+d

∫ sn−1

T
. . .

∫ sn−r+2

T

∫ +∞

sn−r+1
. . .

∫ +∞

s1
Gx(s)dsds1 . . . dsn−1 and R(t) =

tr−1 if r > 1 and R(t) ≡ 1 if r = 1.
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