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QUENCHING PROBLEMS FOR A SEMILINEAR

REACTION-DIFFUSION SYSTEM WITH

SINGULAR BOUNDARY OUTFLUX

BURHAN SELCUK

Abstract. In this paper, we study two quenching problems for the following semilinear

reaction-diffusion system:

ut = uxx + (1− v)−p1 , 0 < x < 1, 0 < t < T,

vt = vxx + (1−u)−p2 , 0< x < 1, 0 < t < T,

ux (0, t) = 0, ux (1, t) =−v−q1 (1, t), 0 < t < T,

vx (0, t) = 0, vx (1, t) =−u−q2 (1, t), 0 < t < T,

u (x,0) = u0 (x) < 1, v (x,0) = v0 (x) < 1, 0 ≤ x ≤ 1,

where p1, p2, q1, q2 are positive constants and u0(x), v0 (x) are positive smooth functions.

We firstly get a local exisence result for this system. In the first problem, we show that

quenching occurs in finite time, the only quenching point is x = 0 and (ut , vt ) blows up

at the quenching time under the certain conditions. In the second problem, we show that

quenching occurs in finite time, the only quenching point is x = 1 and (ut , vt ) blows up

at the quenching time under the certain conditions.

1. Introduction

In this paper, we study two quenching problems for the following semilinear reaction-

diffusion system:





ut = uxx + (1−v)−p1 , 0< x < 1, 0< t < T,

vt = vxx + (1−u)−p2 , 0< x < 1, 0< t < T,

ux (0, t )= 0, ux (1, t ) =−v−q1 (1, t ), 0< t < T,

vx (0, t ) = 0, vx (1, t ) =−u−q2 (1, t ), 0< t < T,

u(x,0) = u0(x) < 1, v(x,0) = v0(x) < 1, 0≤ x ≤ 1,

(1.1)
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where p1, p2, q1, q2 are positive constants and u0(x), v0 (x) are positive smooth functions sat-

isfying the compatibility conditions

u′
0 (0) = v ′

0 (0) = 0, u′
0 (1) =−v

−q1

0 (1), v ′
0 (1) =−u

−q2

0 (1).

Our main purpose is to examine the quenching behavior of the solution of system (1.1) having

different singular heat sources.

Definition 1. The solution of the problem (1.1) is said to quench if there exists a finite time T

such that

(a) lim
t→T −

max{u(x, t ), v(x, t ) : 0 ≤ x ≤ 1} → 1,

or

(b) lim
t→T −

min{u(x, t ), v(x, t ) : 0≤ x ≤ 1} → 0.

From now on, we denote the quenching time of the problem (1.1) with T .

The First Problem. The system (1.1) is supplemented with either the initial conditions

uxx (x,0)+ (1−v(x,0))−p1 ≥ 0 (6= 0),

vxx (x,0)+ (1−u(x,0))−p2 ≥ 0 (6= 0),
(1.2)

ux (x,0) ≤ 0, vx (x,0) ≤ 0. (1.3)

Throughout this paper, we shall refer to the system (1.1), (1.2)−(1.3) conditions as the first

problem.

The Second Problem. The system (1.1) is supplemented with either the initial conditions (1.3)

and the inequalities

uxx (x,0)+ (1−v(x,0))−p1 ≤ 0 (6= 0),

vxx (x,0)+ (1−u(x,0))−p2 ≤ 0 (6= 0),
(1.4)

Throughout this paper, we shall refer to the system (1.1), (1.3)−(1.4) conditions as the second

problem.

Since 1975, quenching problems for the solutions of parabolic equations with various

boundary conditions have been studied extensively ([1], [4], [8]). There are many papers con-

sidering the quenching phenomenon for the solutions of parabolic systems ([3], [9], [10]).

If p1 = p2, q1 = q2, and u0 = v0, the problem (1.1) reduces to a following problem, namely




ut = uxx + (1−u)−p1 , (x, t )∈ (0,1)× (0,T ),

ux (0, t ) = 0,ux (1, t ) =−u−q1 (1, t ), t ∈ (0,T ),

u(x,0) =u0(x), x ∈ [0,1].

(1.5)



QUENCHING PROBLEMS FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM 325

Recently, Selcuk and Ozalp [8] studied the problem (1.5). They showed that x = 0 is the

quenching point in finite time, lim
t→T −

u(0, t ) → 1, if u0 satisties uxx (x,0)+ (1−u(x,0))−p ≥ 0

and ux (x,0) ≤ 0. Further they showed that ut blows up at quenching time. Furthermore, they

obtained a quenching rate and a lower bound for the quenching time.

So far in literature, the quenching problem (a parabolic equation or a parabolic sys-

tem) with different type two singular sources, which one is reaction term the other is ab-

sorption term, less studied. The quenching problem (1.1) with two type of singularity terms,

namely, reaction terms (1− v)−p1 , (1−u)−p2 and the boundary outflux terms −v−q1 ,−u−q2 .

Observe that in the problem (1.1) the singular source term may become singular if u(x, t ) →

1−, v(x, t )→ 1− as (x, t )→ (x∗,T ), where x∗ is a quenching point in [0,1] and T is a quenching

time in (0,∞). On the other hand, the outflux −v−q1 (1, t ),−u−q2 (1, t ) may also become singu-

lar in some finite time. Motivated by the problem (1.5) and [2], we discuss these situation in

the present paper.

This paper is organized as follows. In Section 2, we obtain the local existence of the so-

lution for problem (1.1). In Section 3, we consider the first problem. Firstly, we show that

quenching, as definition 1 (a), occurs in finite time, only quenching point is x = 0 and (ut , vt )

blows up at the quenching time under the conditions (1.2)−(1.3). In Section 4, we consider

the second problem. We show that quenching, as definition 1 (b), occurs in finite time and

the only quenching point is x = 1 and (ut , vt ) blows up at the quenching time under the con-

ditions (1.3)−(1.4).

2. Local existence

It is well known that one of the most effective methods to obtain existence and unique-

ness results of the solutions of parabolic equations and systems with initial conditions is

monotone iterative technique (for details see [1], [5] and [6]).

Let C m(Q),Cα(Q) be the respective spaces of m-times differentiable and Hölder contin-

uous functions in Q with exponent α ∈ (0,1), where Q is any domain. Denote by C 2,1([0,1]×

[0,T )) the set of functions that are twice continuously differentiable in x and once continu-

ously differentiable in t for (x, t ) ∈ [0,1]× [0,T ). It assumed that initial function u0(x) is in

C 2+α.

Definition 2. (ũ, ṽ) is called an upper solution of the problem (1.1) if ũ, ṽ ∈C ([0,1]× [0,T ))∩

C 2,1((0,1)× (0,T )) and (ũ, ṽ) satisfies the following conditions:

ũt − ũxx ≥ (1− ṽ)−p1 , 0 < x < 1, 0 < t < T,

ṽt − ṽxx ≥ (1− ũ)−p2 , 0 < x < 1, 0 < t <T,

ũx (0, t ) = 0, ũx (1, t )≥−ṽ−q1 (1, t ), 0 < t < T,
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ṽx (0, t ) = 0, ṽx (1, t )≥−ũ−q2 (1, t ), 0 < t < T,

ũ (x,0) ≥ u0 (x) , ṽ (x,0) ≥ v0 (x) , 0 ≤ x ≤ 1.

Similarly, a lower solution of the problem (1.1), û, v̂ ∈ C ([0,1]× [0,T ))∩C 2,1((0,1)× (0,T )), is

defined by reversing the inequalities.

Lemma 1. Let (ũ, ṽ) and (û, v̂) be a positive upper solution and a nonnegative lower solution

of the problem (1.1) in [0,1]× [0,T ), respectively. Then, we get following results;

(a) ũ ≥ û and ṽ ≥ v̂ in [0,1]× [0,T ),

(b) if (u∗, v∗) is a solution, then ũ ≥ u∗ ≥ û and ṽ ≥ v∗ ≥ v̂ in [0,1]× [0,T ).

Proof. (a) We give the proof by utilizing Lemma 2.1 in [2]. Let Θ= ũ − û and Ψ= ṽ − v̂ . Then

Θ(x, t ) and Ψ(x, t ) satisfies

Θt ≥Θxx +a(x, t )Ψ,Ψt ≥Ψxx +b(x, t )Θ, 0 < x < 1,0 < t <T,

Θx (0, t ) ≤ 0,Ψx (0, t )≤ 0, 0 < t < T,

Θx (1, t ) ≥ c(t )Ψ(1, t ),Ψx (1, t )≥ d (t )Θ(1, t ), 0 < t < T,

Θ(x,0) ≥ 0,Ψ (x,0) ≥ 0, 0 ≤ x ≤ 1,

where

a(x, t ) =
(1− ṽ(x, t ))−p1 − (1− v̂ (x, t ))−p1

ṽ(x, t )− v̂(x, t )
, if ṽ 6= v̂ ; = 0,otherwise,

b(x, t ) =
(1− ũ(x, t ))−p2 − (1− û(x, t ))−p2

ũ(x, t )− û(x, t )
, if ũ 6= û ; = 0,otherwise,

c(t ) =
−ṽ−q1 (1, t )−

(
−v̂−q1 (1, t )

)

ṽ(1, t )− v̂(1, t )
, if ṽ 6= v̂ ; = 0,otherwise,

d (t ) =
−ũ−q2 (1, t )− (−û−q2 (1, t ))

ũ(1, t )− û(1, t )
, if ũ 6= û ; = 0,otherwise.

For any fixed τ ∈ (0,T ), we will show that Ψ ≥ 0 and Θ ≥ 0 for 0 ≤ x ≤ 1 and 0 ≤ t ≤ τ. For

contradiction, we assume that Θ has a negative minimum in [0,1]×[0,τ] and min[0,1]×[0,τ]Θ≤

min[0,1]×[0,τ]Ψ. Let
_
Θ(x, t ) = e−Mt−Lx2

Θ(x, t ) and Ψ̄(x, t )= e−Mt−Lx2

Ψ(x, t ), where

L = max
0≤t≤τ

c(t )/2, M = 2L+4L2
+ max

[0,1]×[0,τ]
a(x, t )+ max

[0,1]×[0,τ]
b(x, t ).

Then Θ̄ and Ψ̄ satisfies

Θ̄t ≥ Θ̄xx +4LxΘ̄x + (2L+4L2 x2
−M )Θ̄+a(x, t )Ψ̄, 0 < x < 1, 0 < t < τ,

Ψ̄t ≥ Ψ̄xx +4LxΨ̄x + (2L+4L2 x2
−M )Ψ̄+b(x, t )Θ̄, 0< x < 1, 0< t < τ.

Since Θ̄≥−δ and Ψ̄≥−δ on the boundary ([0,1]×{0})∪({0,1}×(0,τ]), where−δ := min[0,1]×[0,τ]

Θ̄ < 0, it follows from the strong maximum principle for weakly coupled parabolic systems



QUENCHING PROBLEMS FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM 327

(cf. Theorem 15 of Chapter 3 in [7]) that Θ̄ cannot assume its negative minimum in the in-

terior. Hence Θ̄ > −δ in (0,1) × (0,τ]. Let (x0, t0) be a minimum point on the boundary

{0,1}× (0,τ]. Since Θ̄x (0, t ) ≤ 0,0 < t ≤ τ, the same strong maximum principle implies that

x0 = 1 and Θ̄x (x0, t0)< 0. But,

Θ̄x (1, t0) =−(c(t0)−2L)Θ≥ 0,

a contradiction. Then, we obtain that ũ ≥ û and ṽ ≥ v̂ in [0,1]× [0,T ).

(b) It is clear from definition 2 that every solution of the problem (1.1) is an upper solution as

well as a lower solution of the corresponding problem. If (u∗, v∗) is a solution, then we get

ũ ≥ u∗ and ṽ ≥ v∗,

u∗
≥ û and v∗

≥ v̂ .

and

ũ ≥∗≥ û and ṽ ≥ v∗
≥ v̂ ,

in [0,1]× [0,T ) from Lemma 1-(a). ���

For a given pair of ordered upper and lower solutions (ũ, ṽ) and (û, v̂) we set

S1 = {u ∈C ([0,1]× [0,T )) : û ≤ u ≤ ũ},

S2 = {v ∈C ([0,1]× [0,T )) : v̂ ≤ v ≤ ṽ},

S1 ×S2 = {(u, v)∈C ([0,1]× [0,T ))×C ([0,1]× [0,T )) : (û, v̂) ≤ (u, v)≤ (ũ, ṽ)}.

Let

f1(x, t , v(x, t )) = (1−v(x, t ))−p1 , g1(x, t , v(x, t ))=−v−q1 (x, t ),

f2(x, t ,u(x, t )) = (1−u(x, t ))−p2 , g2(x, t ,u(x, t ))=−u−q2 (x, t ).

Throughout this section we make the following hypothesis on the above functions in the

problem (1.1);

(H1)-(i) The functions f1(x, t , ·), f2(x, t , ·) are in Cα,α/2([0,1]× [0,T )) and g1(x, t , ·), g2(x, t , ·) are

in C 1+α,(1+α)/2({1}× (0,T )), respectively.

(H1)-(ii) Let f1(·, v) and g1(·, v) are C 1-functions of v for v ∈ S2, and f2(·,u) and g2(·,u) are

C 1-functions of u for u ∈ S1, respectively. Also,




(
f1

)
v (x, t , v)≥ 0 for v ∈ S2, (x, t ) ∈ [0,1]× [0,T ),

(
f2

)
u (x, t ,u)≥ 0 for u ∈ S1, (x, t ) ∈ [0,1]× [0,T ),

(
g1

)
v (x, t , v)≥ 0 for v ∈ S2, (x, t ) ∈ {1}× (0,T ),

(
g2

)
u (x, t ,u)≥ 0 for u ∈ S1, (x, t ) ∈ {1}× (0,T ).

(2.1)



328 BURHAN SELCUK

The condition (2.1) implies that f1(·, v), g1(·, v) are non-decreasing in v and f2(·,u), g2(·,u)

are non-decreasing in u, respectively, which is crucial for the construction of monotone se-

quences.

Next, we are going to construct monotone sequences of functions which give the esti-

mation of the solution (u, v) of the problem (1.1). Specifically, by starting from any initial

iteration
(
u0, v 0

)
we can construct a sequence {u(k), v (k)} from the linear iteration process





u(k)
t −u(k)

xx = f1(x, t , v (k−1)), 0< x < 1,0 < t < T,

v (k)
t −v (k)

xx = f2(x, t ,u(k−1)), 0< x < 1,0 < t < T,

u(k)
x (0, t ) = 0, u(k)

x (1, t ) = g1(1, t , v (k−1)), 0< t < T,

v (k)
x (0, t ) = 0, v (k)

x (1, t ) = g2(1, t ,u(k−1)), 0< t < T,

u(k)(x,0) =u0(x), v (k)(x,0) = v0(x), 0≤ x ≤ 1.

(2.2)

It is clear that the sequence governed by (2.2) is well defined and can be obtained by solving

a linear initial boundary value problem. Starting from initial iteration
(
u0, v 0

)
= (ũ, ṽ) and(

u0, v 0
)
= (û, v̂), we define two sequences of the functions

{
u(k), v (k)

}
and

{
u(k), v (k)

}
for k =

1,2, . . . respectively, and refer to them as maximal and minimal sequences, respectively, where

those functions satisfy the above linear problem.

Lemma 2. The sequences
{

u(k), v (k)
}

,
{
u(k), v (k)

}
possess the monotone property

(û, v̂) ≤
(
u(k), v (k)

)
≤

(
u(k+1), v (k+1)

)
≤

(
u(k+1), v (k+1)

)
≤

(
u(k), v (k)

)
≤ (ũ, ṽ)

for (x, t )∈ [0,1]× [0,T ) and every k = 1,2, . . ..

Proof. Let µ= ũ −u(1) and λ= ṽ −v (1). From (2.2) and Definition 1, we get

µt −µxx = ũt − ũxx − f1(x, t , ṽ) ≥ 0, 0 < x < 1, 0 < t < T,

λt −λxx = ṽt − ṽxx − f2(x, t , ũ) ≥ 0, 0 < x < 1, 0 < t < T,

µx (0, t ) = 0, µx (1, t )= ũx (1, t )− g1(1, t , ṽ) ≥ 0, 0 < t <T,

λx (0, t ) = 0, λx (1, t ) = ṽx (1, t )− g2(1, t , ũ)≥ 0, 0 < t < T,

µ (x,0) = ũ(x,0)−u0 (x)≥ 0, λ (x,0) = ṽ(x,0)−v0 (x) ≥ 0, 0 ≤ x ≤ 1.

From Maximum principle and Hopf’s Lemma for parabolic equations, we get µ,λ ≥ 0 for

(x, t ) ∈ [0,1]× [0,T ), i.e. u(1)
≤ ũ and v (1)

≤ ṽ . Similarly, using the property of a lower solu-

tion, we obtain u(1) ≥ û and v (1) ≥ v̂ .

Let µ(1) = u(1)
−u(1) and λ(1) = v (1)

−v (1). From (2.1) and (2.2), we get

µ(1)
t −µ(1)

xx = f1(x, t , ṽ)− f1(x, t , v̂) ≥ 0, 0 < x < 1, 0 < t < T,
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λ(1)
t −λ(1)

xx = f2(x, t , ũ)− f2(x, t , û) ≥ 0, 0 < x < 1, 0 < t <T,

µ(1)
x (0, t ) = 0, µ(1)

x (1, t )= g1(1, t , ṽ)− g1(1, t , v̂) ≥ 0, 0< t < T,

λ(1)
x (0, t ) = 0, λ(1)

x (1, t ) = g2(1, t , ũ)− g2(1, t , û) ≥ 0, 0 < t < T,

µ(1) (x,0) = u0 (x)−u0 (x)= 0, λ(1) (x,0) = v0 (x)−v0 (x) = 0, 0 ≤ x ≤ 1.

From Maximum principle and Hopf’s Lemma for parabolic equations, we get µ(1),λ(1) ≥ 0 for

(x, t )∈ [0,1]× [0,T ), i.e. u(1) ≤ u(1) and v (1) ≤ v (1). Therefore,

(û, v̂) ≤
(
u(1), v (1)

)
≤

(
u(1), v (1)

)
≤ (ũ, ṽ)

for (x, t )∈ [0,1]× [0,T ).

Assume that

(
u(k−1), v (k−1)

)
≤

(
u(k), v (k)

)
≤

(
u(k), v (k)

)
≤

(
u(k−1), v (k−1)

)

for (x, t )∈ [0,1]×[0,T ) and for some integer k > 1. Letµ(k) = u(k)
−u(k+1) andλ(k) = v (k)

−v (k+1).

From (2.1) and (2.2), we get

µ(k)
t −µ(k)

xx = f1(x, t , v (k−1))− f1(x, t , v (k)) ≥ 0, 0 < x < 1, 0 < t <T,

λ(k)
t −λ(k)

xx = f2(x, t ,u(k−1))− f2(x, t ,u(k)) ≥ 0, 0 < x < 1, 0 < t <T,

µ(k)
x (0, t ) = 0, µ(k)

x (1, t ) = g1(1, t , v (k−1))− g1(1, t , v (k))≥ 0, 0 < t < T,

λ(k)
x (0, t ) = 0, λ(k)

x (1, t )= g2(1, t ,u(k−1))− g2(1, t ,u(k)) ≥ 0, 0 < t < T,

µ(k) (x,0) = 0, λ(k) (x,0) = 0, 0 ≤ x ≤ 1.

From Maximum principle and Hopf’s Lemma for parabolic equations, we get µ(k),λ(k) ≥ 0

for (x, t ) ∈ [0,1]× [0,T ), i.e. u(k+1)
≤ u(k) and v (k+1)

≤ v (k). A similar argument gives u(k+1) ≥

u(k) and v (k+1) ≥ v (k) and u(k+1)
≥ u(k+1) and v (k+1)

≥ v (k+1). Therefore, it follows from the

mathematical induction, the lemma holds. ���

Lemma 3. For each positive integer k,
(
u(k), v (k)

)
is an upper solution,

(
u(k), v (k)

)
is a lower

solution, u(k) ≤ u(k) and v (k) ≤ v (k) for (x, t )∈ [0,1]× [0,T ).

Proof. From (2.1), (2.2) and Lemma 2,
(
u(k), v (k)

)
satisfies

u(k)
t −u(k)

xx = f1(x, t , v (k−1)) = f1(x, t , v (k−1))− f1(x, t , v(k))+ f1(x, t , v (k))≥ f1(x, t , v (k)),

v (k)
t −v (k)

xx = f2(x, t ,u(k−1)) = f2(x, t ,u(k−1))− f2(x, t ,u(k))+ f2(x, t ,u(k)) ≥ f2(x, t ,u(k)),

u(k)
x (0, t ) = 0, v (k)

x (0, t )= 0,

u(k)
x (1, t ) = g1(1, t , v (k−1)) = g1(1, t , v (k−1))− g1(1, t , v (k))+ g1(1, t , v (k)) ≥ g1(1, t , v (k))
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v (k)
x (1, t ) = g2(1, t ,u(k−1)) = g2(1, t ,u(k−1))− g2(1, t ,u(k))+ g2(1, t ,u(k)) ≥ g2(1, t ,u(k))

u(k)(x,0) = u0(x), v (k)(x,0) = v0(x),0 ≤ x ≤ 1,

and
(
u(k), v (k)

)
satisfies

u(k)
t −u(k)

xx = f1(x, t , v (k−1)) = f1(x, t , v(k−1))− f1(x, t , v (k))+ f1(x, t , v (k)) ≤ f1(x, t , v (k)),

v (k)
t −v (k)

xx = f2(x, t ,u(k−1)) = f2(x, t ,u(k−1))− f2(x, t ,u(k))+ f2(x, t ,u(k))≤ f2(x, t ,u(k)),

u(k)
x (0, t ) = 0, v (k)

x (0, t ) = 0,

u(k)
x (1, t ) = g1(1, t , v (k−1)) = g1(1, t , v (k−1))− g1(1, t , v (k))+ g1(1, t , v (k)) ≤ g1(1, t , v (k))

v (k)
x (1, t ) = g2(1, t ,u(k−1)) = g2(1, t ,u(k−1))− g2(1, t ,u(k))+ g2(1, t ,u(k)) ≤ g2(1, t ,u(k))

u(k)(x,0) = u0(x), v (k)(x,0) = v0(x),0 ≤ x ≤ 1.

From Lemma 2 and above inequalities, the functions
(
u(k), v (k)

)
and

(
u(k), v (k)

)
are ordered

upper and lower solutions of the problem (2.2). ���

We have the following existence theorem for the problem (1.1) via Lemma 2 and Lemma 3.

Theorem 1. Let (ũ, ṽ) , (û, v̂) be a pair of ordered upper and lower solutions of the problem (1.1),

and let Hypothesis (H1) hold. Then the sequences
{

u(k), v (k)
}

,
{
u(k), v (k)

}
given by the problem

(2.2) with
(
u0, v 0

)
= (ũ, ṽ) and

(
u0, v 0

)
= (û, v̂) convergence monotonically to a maximal solu-

tion
(
u, v

)
and minimal solution

(
u, v

)
of the problem (1.1), respectively. Further,

(û, v̂) ≤
(
u(k), v (k)

)
≤

(
u(k+1), v (k+1)

)
≤

(
u, v

)
≤

(
u, v

)
≤

(
u(k+1), v (k+1)

)
≤

(
u(k), v (k)

)
≤ (ũ, ṽ)

(2.3)

for (x, t ) ∈ [0,1]×[0,T ) and each positive integer k. Furthermore
(
u, v

)
=

(
u, v

)
(≡ (u∗, v∗)) then

(u∗, v∗) is the unique solution of the problem (1.1) in S1 ×S2.

Proof. The pointwise limits

lim
k→∞

(
u(k)(x, t ), v (k)(x, t )

)
=

(
u(x, t ), v(x, t )

)
, lim

k→∞

(
u(k)(x, t ), v (k)(x, t )

)
=

(
u(x, t ), v(x, t )

)

exist and satisfy relation (2.3). Indeed, the sequence
{

u(k), v (k)
}

is monotone nonincreasing

which is bounded from below, while the sequence
{

u(k), v (k)
}

is monotone nondecreasing and

is bounded from Lemma 2.

Let Θ= u(x, t )−u(x, t ) and Ψ= v(x, t )− v(x, t ). From (2.3), we have u(x, t ) ≤ u(x, t ) and

v(x, t )≤ v(x, t ) for (x, t )∈ [0,1]× [0,T ). Also, then Θ(x, t ) and Ψ(x, t ) satisfies

Θt −Θxx = f1(x, t , v)− f1(x, t , v), 0 < x < 1,0 < t < T,

Ψt −Ψxx = f2(x, t ,u)− f2(x, t ,u), 0 < x < 1,0 < t < T,
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Θx (0, t ) = 0,Ψx (0, t )= 0, 0 < t < T,

Θx (1, t ) = g1(1, t , v)− g1(1, t , v), 0 < t <T,

Ψx (1, t ) = g2(1, t ,u)− g2(1, t ,u), 0 < t < T,

Θ(x,0) = 0, Ψ (x,0) = 0, 0≤ x ≤ 1.

By using Lemma 1-(a) and Lemma 4-(a) process, Θ≥ 0 and Ψ≥ 0 for (x, t ) ∈ [0,1]× [0,T ), i.e.

u(x, t )≥ u(x, t ) and v(x, t ) ≥ v(x, t ). Then, we get u(x, t ) =u(x, t ) and v(x, t )= v(x, t ).

If (u∗, v∗) is any other solution in S1 ×S2, then we get from Lemma 3,

u ≥ u∗ and v ≥ v∗,

u∗
≥u and v∗

≥ v ,

and

u ≥u∗
≥u and v ≥ v∗

≥ v ,

in [0,1]× [0,T ). This implies that

u = u∗
= u and v = v∗

= v

and hence (u∗, v∗) is the unique solution of the problem (1.1). ���

3. The First Problem

In this section, we investigate quenching behavior of solution of semilinear reaction-diffusion

system (1.1) with (1.2)−(1.3) initial conditions.

Remark 1. If (u0, v0) satisfies (1.3), then we get ux < 0 and vx < 0 in (0,1]× (0,T ) by the maxi-

mum principle. Thus we get u(0, t )= max
0≤x≤1

u(x, t ) and v(0, t )= max
0≤x≤1

v(x, t ).

Lemma 4. If (u0, v0) satisfies (1.2), then ut (x, t )≥ 0 and vt (x, t )≥ 0 in [0,1]× [0,T ).

Proof. We give the proof by utilizing Lemma 2.1 in [2]. Let Θ= ut (x, t ) and Ψ= vt (x, t ). Then

Θ(x, t ) satisfies

Θt =Θxx +p1 (1−v)−p1−1
Ψ, 0< x < 1, 0< t < T,

Θx (0, t )= 0, Θx (1, t ) = q1v−q1−1(1, t )Ψ(1, t ), 0 < t < T,

Θ(x,0) = uxx (x,0)+ (1−v (x,0))−p1 ≥ 0, 0 ≤ x ≤ 1,

and Ψ(x, t ) satisfies

Ψt =Ψxx +p2 (1−u)−p2−1
Θ, 0 < x < 1, 0 < t < T,

Ψx (0, t )= 0, Ψx (1, t ) = q2u−q2−1(1, t )Θ(1, t ), 0 < t < T,

Ψ (x,0) = vxx (x,0)+ (1−u (x,0))−p2 ≥ 0, 0 ≤ x ≤ 1.
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For any fixed τ ∈ (0,T ), we will show that Ψ ≥ 0 and Θ ≥ 0 for 0 ≤ x ≤ 1 and 0 ≤ t ≤ τ. For

contradiction, we assume that Θ has a negative minimum in [0,1]×[0,τ] and min[0,1]×[0,τ]Θ≤

min[0,1]×[0,τ]Ψ. Let
_
Θ(x, t ) = e−Mt−Lx2

Θ(x, t ) and Ψ̄(x, t )= e−Mt−Lx2

Ψ(x, t ), where

L = max
0≤t≤τ

(
1

2
q1v−q1−1(1, t )

)
,

M = 2L+4L2
+ max

[0,1]×[0,τ]

(
p1 (1−v(x, t ))−p1−1

)
+ max

[0,1]×[0,τ]

(
p2 (1−u(x, t ))−p2−1

)
.

Then Θ̄ and Ψ̄ satisfies

Θ̄t = Θ̄xx +4LxΘ̄x + (2L+4L2x2
−M )Θ̄+p1 (1−v(x, t ))−p1−1

Ψ̄, 0 < x < 1,0 < t < τ,

Ψ̄t = Ψ̄xx +4LxΨ̄x + (2L+4L2 x2
−M )Ψ̄+p2 (1−u(x, t ))−p2−1

Θ̄, 0 < x < 1,0 < t < τ.

Since Θ̄≥−δ and Ψ̄≥−δ on the boundary ([0,1]×{0})∪({0,1}×(0,τ]), where−δ := min[0,1]×[0,τ]

Θ̄ < 0, it follows from the strong maximum principle for weakly coupled parabolic systems

(cf. Theorem 15 of Chapter 3 in [7]) that Θ̄ cannot assume its negative minimum in the in-

terior. Hence Θ̄ > −δ in (0,1) × (0,τ]. Let (x0, t0) be a minimum point on the boundary

{0,1}× (0,τ]. Since Θ̄x (0, t ) ≤ 0,0 < t ≤ τ, the same strong maximum principle implies that

x0 = 1 and Θ̄x (x0, t0) < 0. But,

Θ̄x (1, t0) = (q1v−q1−1(1, t0)−2L)Θ=−(q1v−q1−1(1, t0)−2L)δ≥ 0,

a contradiction. Then, we obtain that Θ̄ ≥ 0 and Ψ̄ ≥ 0 in [0,1]× [0,τ]. Thus, ut (x, t ) ≥ 0 and

vt (x, t )≥ 0 in [0,1]× [0,T ). ���

Theorem 2. If (u0, v0) satisfies (1.2), then there exists a finite time T , such that the solution

(u, v) of the problem (1.1) quenches at time T .

Proof. Assume that (u0, v0) satisfies (1.2). Then there exist

w1 = −v−q1 (1,0)+

∫1

0
(1−v (x,0))−p1 d x > 0,

w2 = −u−q2 (1,0)+

∫1

0
(1−u (x,0))−p2 d x > 0.

Define; m1 (t )=

∫1

0
(1−u (x, t ))d x and m2 (t )=

∫1

0
(1−v (x, t )) d x,0< t <T . Then, we get

m′
1 (t ) = v−q1 (1, t )−

∫1

0
(1−v (x, t ))−p1 d x ≤−w1,

m′
2 (t ) = u−q2 (1, t )−

∫1

0
(1−u (x, t ))−p2 d x ≤−w2,

by Lemma 4. Thus, m1 (t )≤m1(0)−w1t and m2 (t )≤ m2(0)−w2t ; which means that m1 (T0) =

0 or m2 (T0) = 0 for some T0 = min( m1(0)
w1

, m2(0)
w2

), (0 < T ≤ T0). Then, (u, v) quenches in finite

time. ���
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Theorem 3. If (u0, v0) satisfies (1.3), then x = 0 is the only quenching point.

Proof. Define

J(x, t ) =ux +ε (b2 −x) in [b1,b2]× [τ,T ),

where b2 ∈ (0,1], b1 ∈ (0,b2), τ ∈ (0,T ) and ε is a positive constant to be specified later. Then,

J(x, t ) satisfies

Jt − Jxx = p1(1−v)−p1−1vx < 0 in (b1,b2)× [τ,T ),

since vx (x, t )< 0 in (0,1]×(0,T ). Thus, J(x, t ) cannot attain a positive interior maximum by the

maximum principle. Further, if ε is small enough, J(x,τ) < 0 since ux (x, t )< 0 in (0,1]× (0,T ).

Furthermore, if ε is small enough,

J(b1, t ) = ux (b1, t )+ε (b2 −b1) < 0,

J(b2, t ) = ux (b2, t )< 0,

for t ∈ (τ,T ). By the maximum principle, we obtain that J(x, t ) < 0, i.e. ux < −ε (b2 −x) for

(x, t )∈ [b1,b2]× [τ,T ). Integrating this with respect to x from b1 to b2, we have

u(b2, t )<u(b1, t )−
ε(b2 −b1)2

2
< 1−

ε(b2 −b1)2

2
< 1.

So u does not quench in (0,1]. Similarly, we show that v does not quench in (0,1]. The theorem

is proved. ���

Theorem 4. If (u0, v0) satisfies (1.2)−(1.3), (ut , vt ) blows up at the quenching time.

Proof. Define

J1(x, t ) = ut −ε (x −b1)(1−v)−p1 in [b1,b2]× [τ,T ),

J2(x, t ) = vt −ε (x −b1)(1−u)−p2 in [b1,b2]× [τ,T ),

where b1 ∈ [0,1), b2 ∈ (b1,1], τ ∈ (0,T ) and ε is a positive constant to be specified later. Then,

J1(x, t ) satisfies

(J1)t − (J1)xx −p1(1−v)−p1−1 J2

= 2εp1 (x −b1) (1−v)−p1−1vx +εp1

(
p1 +1

)
(x −b1) (1−v)−p1−2v 2

x > 0

and J2(x, t ) satisfies

(J2)t − (J2)xx −p2(1−u)−p2−1 J1

= 2εp2 (x −b1) (1−u)−p2−1ux +εp2

(
p2 +1

)
(x −b1)(1−u)−p2−2u2

x > 0
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since ux (x, t ), vx(x, t ) > 0 in (0,1)× (0,T ). J1(x,τ), J2(x,τ) ≥ 0 if ε is small enough and Remark

2. Further, if ε is small enough,

J1(b1, t ) = ut (b1, t )> 0, J1(b2, t )= ut (b2, t )−ε (b2 −b1)(1−v)−p1 > 0,

J2(b1, t ) = vt (b1, t )> 0, J2(b2, t )= vt (b2, t )−ε (b2 −b1)(1−u)−p2 > 0,

for t ∈ (τ,T ). By the maximum principle, we obtain that J1(x, t ), J2(x, t ) ≥ 0 for (x, t ) ∈ [0,1]×

[0,T ). Namely, ut ≥ ε (x −b1)(1−v)−p1 and vt ≥ ε (x −b1)(1−u)−p2 for (x, t ) ∈ [b1,b2]× [τ,T ),

i.e. ut ≥ εxv(1−v)−p1 and vt ≥ εx(1−u)−p2 for (x, t ) ∈ [0,1]× [τ,T ). For x = 1, we get

ut (1, t ) ≥ ε(1−v(1, t ))−p1 ,

and

vt (1, t ) ≥ ε(1−u(1, t ))−p2 .

Thus, we get

lim
t→T −

ut (1, t ) ≥ lim
t→T −

ε(1−v(1, t ))−p1 =∞,

lim
t→T −

vt (1, t ) ≥ lim
t→T −

ε(1−u(1, t ))−p2 =−∞.

The theorem is proved. ���

4. The second problem

In this section, we investigate quenching behavior of solution of semilinear reaction-diffusion

system (1.1) with (1.3)−(1.4) initial conditions.

Remark 2. f (u0, v0) satisfies (1.4), then we get ut (x, t ) ≤ 0 and vt (x, t ) ≤ 0 in [0,1] × [0,T )

(We can give the proof as proof of Lemma 4). Also, for any
(
ξ,η

)
∈ (0,1)× (0,T ), there exists a

subset [x1, x2]× [t1, t2] of (0,1)× (0,T ) such that
(
ξ,η

)
∈ [x1, x2]× [t1, t2]. Define, H = ut ,K = vt

in [x1, x2]× [t1, t2]. We get that

Ht −Hxx = p1(1−v)−p1−1K in (x1, x2)× (t1, t2) ,

Kt −Kxx = p2(1−u)−p2−1H in (x1, x2)× (t1, t2) ,

H ,K ≤ 0 on [x1, x2]× [t1, t2].

The strong maximum principle implies that either H ,K < 0 or H ,K ≡ 0 in (x1, x2)× (t1, t2).

Since H ,K ≡ 0 contradicts to the fact that u(x, t ) and v(x, t ) is strictly decreasing t . Therefore,

ut , vt < 0. Because
(
ξ,η

)
is arbitrary in (0,1)× (0,T ), we have ut , vt < 0 in (0,1)× (0,T ).

Theorem 5. If (u0, v0) satisfies (1.4), then there exists a finite time T , such that the solution

(u, v) of the problem (1.1) quenches at time T .
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Proof. Assume that (u0, v0) satisfies (1.4). Then there exist

w1 = v−q1 (1,0)−

∫1

0
(1−v (x,0))−p1 d x > 0,

w2 = u−q2 (1,0)−

∫1

0
(1−u (x,0))−p2 d x > 0.

Define; m1 (t )=

∫1

0
u (x, t )d x and m2 (t )=

∫1

0
v (x, t )d x,0 < t < T . Then, we get

m′
1 (t ) = −v−q1 (1, t )+

∫1

0
(1−v (x, t ))−p1 d x ≤−w1,

m′
2 (t ) = −u−q2 (1, t )+

∫1

0
(1−u (x, t ))−p2 d x ≤−w2,

by Remark 2. Thus, m1 (t )≤ m1(0)−w1t and m2 (t )≤ m2(0)−w2t ; which means that m1 (T0)=

0 or m2 (T0) = 0 for some T0 = min( m1(0)
w1

, m2(0)
w2

), (0 < T ≤ T0). Then, (u, v) quenches in finite

time. ���

Theorem 6. If (u0, v0) satisfies (1.3), then x = 1 is the only quenching point.

Proof. Define

J(x, t ) =ux +ε (x −b1) in [b1,b2]× [τ,T ),

where b1 ∈ [0,1), b2 ∈ (b1,1], τ ∈ (0,T ) and ε is a positive constant to be specified later. Then,

J(x, t ) satisfies

Jt − Jxx = p1(1−v)−p1−1vx < 0 in (b1,b2)× [τ,T ),

since vx (x, t )< 0 in (0,1]×(0,T ). Thus, J(x, t ) cannot attain a positive interior maximum by the

maximum principle. Further, if ε is small enough, J(x,τ) < 0 since ux (x, t )< 0 in (0,1]× (0,T ).

Furthermore, if ε is small enough,

J(b1, t ) = ux (b1, t )< 0,

J(b2, t ) = ux (b2, t )+ε (b2 −b1) < 0,

for t ∈ (τ,T ). By the maximum principle, we obtain that J(x, t ) < 0, i.e. ux < −ε (x −b1) for

(x, t )∈ [b1,b2]× [τ,T ). Integrating this with respect to x from b1 to b2, we have

u(b2, t ) < u(b1, t )−
ε(b2 −b1)2

2
and

u(b1, t ) > u(b2, t )+
ε(b2 −b1)2

2
> 0.

So u does not quench in [0,1). Similarly, we get v does not quench in [0,1). ���
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Theorem 7. If (u0, v0) satisfies (1.3)−(1.4), (ut , vt ) blows up at the quenching time.

Proof. Define

J1(x, t ) = ut +ε (x −b1) v−q1 in [b1,b2]× [τ,T ),

J2(x, t ) = vt +ε (x −b1)u−q2 in [b1,b2]× [τ,T ),

where b1 ∈ [0,1), b2 ∈ (b1,1], τ ∈ (0,T ) and ε is a positive constant to be specified later. Then,

J1(x, t ) satisfies

(J1)t − (J1)xx −p1(1−v)−p1−1 J2

= −εq1 (x −b1)(1−u)−p2 v−q1−1
+2εq1 (x −b1) v−q1−1vx

−εq1

(
q1 +1

)
(x −b1) v−q1−2v 2

x −εp1 (x −b1)(1−v)−p1−1v−q1 < 0

and J2(x, t ) satisfies

(J2)t − (J2)xx −p2(1−u)−p2−1 J1

= −εq2 (x −b1)(1−v)−p1 u−q2−1
+2εq2 (x −b1)u−q2−1ux

−εq2

(
q2 +1

)
(x −b1)u−q2−2u2

x −εp2 (x −b1)(1−u)−p2−1u−q2 < 0

since ux (x, t ), vx(x, t ) < 0 in (0,1)× (0,T ). J1(x,τ), J2(x,τ) ≤ 0 if ε is small enough and Remark

2. Further, if ε is small enough,

J1(b1, t ) = ut (b1, t )< 0, J1(b2, t ) =ut (b2, t )+ε (b2 −b1) v−q1 < 0,

J2(b1, t ) = vt (b1, t )< 0, J2(b2, t )= vt (b2, t )+ε (b2 −b1) u−q2 < 0,

for t ∈ (τ,T ). By the maximum principle, we obtain that J1(x, t ), J2(x, t ) ≤ 0 for (x, t ) ∈ [0,1]×

[0,T ). Namely, ut ≤ −ε (x −b1) v−q1 (x, t ) and vt ≤ −ε (x −b1)u−q2 (x, t ) for (x, t ) ∈ [b1,b2]×

[τ,T ), i.e. ut ≤−εxv−q1 (x, t ) and vt ≤−εxu−q2 (x, t ) for (x, t ) ∈ [0,1]× [τ,T ). For x = 1, we get

ut (1, t ) ≤ −εv−q1 (1, t ),

and

vt (1, t ) ≤ −εu−q2 (1, t ).

Thus, we get

lim
t→T −

ut (1, t ) ≤ lim
t→T −

−εv−q1 (1, t ) =−∞,

lim
t→T −

vt (1, t ) ≤ lim
t→T −

−εu−q2 (1, t ) =−∞.

The theorem is proved. ���
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